
Deductive Verification of Imperative
Graph Algorithms

Gishor Sivanrupan

Supervisors: Arshavir Ter-Gabrielyan, Prof. Dr. Peter Müller
ETH Zürich

September 15, 2018



Contents

1. Introduction 3
1.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Viper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Manual Approach 4
2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2. The GRAPH Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3. The Edge Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4. The TrClo Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5. The $$ Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.6. apply_TCFraming Function . . . . . . . . . . . . . . . . . . . . . . 6
2.1.7. The Link and Unlink Methods . . . . . . . . . . . . . . . . . . . . 7

2.2. The append Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2. Method Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3. Method Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4. The Loop Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Frontend Language 11
3.1. Graph Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. Universe Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Graph Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6. Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7. Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Translation 16
4.1. Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1. Method Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2. Local Variable Declarations . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3. Graph Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



4.1.4. Fresh Variable Assignment . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.5. If-then-Else and While Statements . . . . . . . . . . . . . . . . . . 20
4.1.6. Loop invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. Type Checking 22
5.1. Graph Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1. Set Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2. Graph Literals (Explicit Sets) . . . . . . . . . . . . . . . . . . . . . 22
5.1.3. Binary Set Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.4. Conditional Set Expressions . . . . . . . . . . . . . . . . . . . . . . 26

5.2. Node Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3. Generating Proof Obligations . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1. Field update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2. Method Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3. Graph Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4. Node assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.1. Node check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.2. Graph check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. Implementation 32
6.1. Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1.1. Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.2. Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . 35

7. Evaluation 44
7.1. Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1. Split Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.2. Join Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.3. Other Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.1. Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4. Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8. Future Work 51
8.1. List Update Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2. Graph Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3. Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4. More General Update Formulas . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5. Prioritized SMT Computations . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendices 53

3



A. Preamble 54
A.0.1. The Edge Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.0.2. The TrClo Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.0.3. The ZOPG Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.0.4. The apply_TCFraming Function . . . . . . . . . . . . . . . . . . . . 58
A.0.5. The DAG Update Formulas . . . . . . . . . . . . . . . . . . . . . . 59
A.0.6. The ZOPG Update Formulas . . . . . . . . . . . . . . . . . . . . . 60

B. Declaration of originality 61

4



1. Introduction

1.1. Abstract

The goal of this project is to design a frontend extension of the Viper infrastructure, that
allows to encode graph properties without the need to rewrite them into first order logic.
For doing that, we used the known expertise in manually verifying graph algorithms, and
tried to implement them in such a manner that this expertise is applied automatically.

We have realized that there is a lot of expertise for specific graphs like directed acyclic
graphs. Because of that we have designed a type system, which the frontend uses for
applying the appropriate wisdoms for the specific graphs.

Our frontend is able to verify several graph algorithms, and the user does not need to write
the expertise by himself. Additionally, our frontend is able to check the type invariants
of graphs after state updates. However, in bigger graph algorithms, the frontend does
not always insert the needed wisdoms.

1.2. Viper

Viper is a verification infrastructure used for verifying properties of programs written in
an intermediate verification language called the Viper language. It allows to reason in
separation logic. However, it is not directly possible to specify higher order topological
properties of graphs like reachability or acyclicity in the Viper language. Reachability can
be simulated in first-order logic([3]), but it requires manually writing axioms. Manually
writing them is error-prone and hence could lead to unsoundness.

1.3. Goal

We will design a language extension of Viper, and a frontend that translates the language
extension to a valid Viper program. The frontend adds axioms automatically, such that it
is possible to verify graph algorithms without losing the amout of automation Viper has.
Afterwards, we will work with manually proven graph algorithms to test the performance
of the frontend.



2. Manual Approach

In this chapter, we will describe what ingredients are needed to be able to verify graph
properties like acyclicity in a manually written graph algorithm in the Viper language.
For that, we will consider a small Viper method shown in Listing 2.5, which appends a
node to the last element of the list.

2.1. Preliminaries

In this section, we will briefly describe some parts of the program, which are needed to
write graph algorithms.

2.1.1. Nodes

We define objects on the heap as nodes. We can access them by having references to
them. In Viper, we define Ref typed variables as node objects. Hence, whenever we talk
about node typed variables, we actually mean Ref typed variables.

2.1.2. The GRAPH Macro

The GRAPH macro takes a set of references nodes as an input. It expresses that null is
not in the set and that we have access to all node typed fields of the elements of the
set.

For every node typed field $field$, we add require that

forall n:Ref :: {n.$field$} n in nodes ==> acc(n.$field$))

holds. If we had only one node field called next, we would define a graph as in Listing
2.1.

Closedness

Additionally, we can constrain that all node typed fields are also contained in nodes or
store the value of null. For a field next, we would describe it as in Listing 2.2.



1 define GRAPH(nodes)
2 !(null in nodes)
3 && ( forall n:Ref :: {n.next} n in nodes ==> acc(n.next) )

Listing 2.1.: The GRAPH macro

1 ( forall n:Ref ::
2 {n.next in nodes}
3 {n in nodes, n.next}
4 n in nodes && n.next != null ==> n.next in nodes )

Listing 2.2.: The closedness property for the field next

2.1.3. The Edge Domain

Edge is an abstract domain type, which contains several functions and axioms. For
example, it contains the create_edge(p:Ref, s:Ref): Edge to create directed edges
between two nodes.

The complete Edge domain is given in Appendix A.0.1

2.1.4. The TrClo Domain

The TrClo domain encodes the edge relation and its transitive closure, the exists_path
relation. Both functions take as arguments an edge set EG and two nodes start and end
and return Bool.

The first one, edge, returns true if and only if EG contains create_edge(start, end)

The second one, the exists_path function is used to get the transitive closure of the
edge function.

Furthermore, it contains the functions acyclic_graph(EG: Set[Edge]),

func_graph(EG: Set[Edge]), and unshared_graph(EG: Set[Edge]), and their corre-
sponding axioms.

For acyclic_graph, the axiom specifies that for any two nodes v1 and v2, there cannot
be an edge from v1 to v2, and at the same time a path from v2 to v1.

For func_graph, it says that if one node v has an edge to the node v1 and v2 in EG, then
v1 == v2 must hold

For unshared_graph, it says it analogously in the other direction, e.g if two nodes v1
and v2 have an edge to v, then v1 == v2 must hold.

7



1 function $$(refs:Set[Ref]): Set[Edge]
2 requires forall n:Ref :: {n.next} n in refs ==> acc(n.next)
3 ensures forall p:Ref, s:Ref ::
4 { create_edge(p,s) }
5 p in refs && s in refs && p.next == s
6 <==> create_edge(p,s) in result

Listing 2.3.: The $$ function

The complete TrClo domain is contained in Appendix A.0.2

2.1.5. The $$ Function

The $$(g: Set[Ref]) function returns the set of edges of the graph represented by g.
More precisely, the result of the function is the set that contains exactly the elements
satisfying the following conditions:

1. they are representable by create_edge(p, s), for some nodes p and s.

2. p and s are such that p in g and s in g, and p has a node typed field referenced
to c

The function is shown in Listing 2.3.

2.1.6. apply_TCFraming Function

The apply_TCFraming(g0: Set[Ref], g1: Set[Ref]) function is used when we need
transitive closure related information about the union of two graphs. The problem is
that exists_path of g0 relations are not automatically added to g0 union g2 by the
frontend, as it is unclear, how to preserve the negative exists_path relation between
two nodes.

The apply_TCFraming function generally does not give us the complete transitive closure
relation, but approximates it.

For any two nodes for which there exists a path in one of the two graphs, we can be sure
that there is also a path in the union of the two graphs. For any two nodes, for which
there does not exist a path in one of the two graphs, we can also conclude that there
does not exist a path in the union of them.

The apply_TCFraming function is defined in Appendix A.0.4

8



1 method link(g:Set[Ref], x:Ref, y:Ref)
2 requires x in g
3 requires y != null ==> y in g
4 requires PROTECTED_GRAPH(g,x)
5 requires x.next == null
6 ensures PROTECTED_GRAPH(g,x)
7 ensures x.next == y
8 ensures y == null ==> $$(g) == old($$(g))
9 ensures y != null ==> forall v1:Ref, v2:Ref ::

10 { edge(old($$(g)),v1,v2) }
11 edge($$(g),v1,v2) <==> edge(old($$(g)),v1,v2) ||
12 (v1==x && v2==y)
13 ensures y != null ==> (forall v1:Ref, v2:Ref ::
14 { exists_path($$(g),v1,v2) }
15 (v1 != v2) ==> (
16 exists_path($$(g),v1,v2) <==>
17 exists_path(old($$(g)),v1,v2) ||

(exists_path(old($$(g)),v1,x) &&
exists_path(old($$(g)),y,v2))))

↪→

↪→

Listing 2.4.: The list link method

2.1.7. The Link and Unlink Methods

Precise update formulas for the existing path relation are not known for destroying edges
in general graphs. However, there are precise update formulas for specific graphs.

For acyclic list segments, we use the link and unlink, with update formulas defined in [3].
The Link method is defined in Listing 2.4, where PROTECTED_GRAPH(g, x) means that
we only have full access to the node fields with x. For all other nodes in g, we only have
read permissions.

We additionally have link and unlink methods for directed acyclic graphs (DAGs).

Furthermore, we have link and unlink methods for Zero or one path graphs. These are
graphs, if for each pair of nodes u and v, there is at most one path of length ≥ 1 from
u to v. That means for example that cycles are allowed, however, nested cycles are not
allowed.

We have the update formulas for both types of graphs from [1]. The link and unlink
methods are specified in the Appendix.
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1 field next: Ref
2 method append(g:Set[Ref], x:Ref) returns (new_g:Set[Ref], y:Ref, last:

Ref)↪→

3 {
4 var old_g:Set[Edge] := $$(g)
5 last := x
6 while ( last.next != null )
7 {
8 last := last.next
9 }

10 y := new(*)
11 y.next := null
12 new_g := g union Set(y)
13 assume apply_TCFraming(g, Set(y))
14 link(new_g,last,y)
15 assume trigger(forall u:Ref, v:Ref :: !exists_path($$(new_g),u,v) ==>

u != v && forall w:Ref :: !edge($$(new_g),u,w) ||
!exists_path($$(new_g),w,v))

↪→

↪→

16 assume trigger(forall u:Ref, v:Ref :: !exists_path($$(new_g),u,v) ==>
!edge($$(new_g),u,v) )↪→

17 }

Listing 2.5.: The append method

2.2. The append Method

This method should create a new node and add it to an acyclic list segment.

2.2.1. Parameters

The method has an input argument g, which is a set of references, and a reference x.
More concretely, g is an acyclic list segment that starts with the node x. The output
arguments are new_g, y, and last. y and last are references to nodes in the graph.
new_g is a set of references, which again is an acyclic list segment.

2.2.2. Method Body

The method works as follows: First, it iterates over the list segment starting with x, until
it reaches the last element of it, and assigns last to that element. Then, it assigns y to
a fresh reference, initializes its next field with null, and assigns new_g to the union of
the input graph g and the new node y. Finally, it links last with the new node y.
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1 requires GRAPH(g)
2 requires x in g
3

4 requires forall n:Ref :: n in g ==> exists_path($$(g),x,n)
5

6

7 requires acyclic_graph($$(g))
8 requires func_graph($$(g)) //trivial, if we only have one reference

typed field.↪→

9 requires unshared_graph($$(g))
10

11

12 ensures new_g == g union Set(y)
13 ensures GRAPH(new_g)
14 ensures acyclic_graph($$(new_g))
15 ensures func_graph($$(new_g))
16 ensures unshared_graph($$(new_g))
17 ensures forall n:Ref :: n in new_g ==> ((exists_path($$(new_g), x, n)

&& (exists_path(old($$(g)), x, n) || n == y)))↪→

18 ensures forall n1: Ref, n2: Ref :: n1 in new_g && n2 in new_g ==>
(edge($$(new_g), n1, n2) <==> (edge(old($$(g)), n1, n2) || (n1 ==
last && n2 == y)))

↪→

↪→

Listing 2.6.: The method specification of append

In the method body on line 14, we call the function apply_TCFraming(g, Set(y)) and
assume its result, because we need the exists_path relation of g union Set(y).

The two assumptions on the lines 17 and 18 of Listing 2.5 are needed for triggering and
have no other effect.

2.2.3. Method Specification

The footprint of the append is specified in Listing 2.6. In the prestate, we want that g is
a closed graph, hence we apply the macro defined in Section 2.1.2. In the postcondition,
we want that new_g, which is defined as g union Set(y) to be a closed graph.

Additionally, we want x to be an element of g. In the precondition, we want that for
all nodes n in g, there exists a path from x to n, such that x is the starting node of the
acyclic list segment g.

We want that in the precondition g is acyclic, functional, and unshared and in the
postcondition, new_g should have these properties. As we only have one reference typed

11



1 invariant GRAPH(g)
2 invariant last in g
3

4 invariant forall n:Ref :: n in g ==> exists_path($$(g),x,n)
5

6 invariant acyclic_graph($$(g))
7 invariant unshared_graph($$(g))
8

9 invariant $$(g) == old_g

Listing 2.7.: The loop invariant

field in this example, graphs are always functional.

Furthermore, we want to check that the exists_path relation has been updated correctly.
First of all, we want to check that for all references n in new_g, there exists a path from
x to n. Secondly, for each node n in new_g, either there has been a path from x to n
in the old graph, or n is equal to y. With these assertions, we ensure that only one new
edge has been added.

2.2.4. The Loop Invariant

The loop invariant is specified in Listing 2.7. As we only iterate over the graph g without
changing it, most conditions in the invariant are preserving the specifications from the
prestate. The only additional invariant that we need for the loop counter is last remains
in g.

2.3. Automation

In Section 2.1, we have shown several functions and domains, that need to exist and that
we need to use before we can encode and verify graph algorithms in Viper. It should be
possible to insert these parts of code automatically.

For example, the user needs to write several preconditions, to define a set of references as
a graph. Then, one would need to write them again in the while loop invariant. Another
example is that the user generally specifies graphs as a set of references. But to be able
to reason about reachability properties, one would need to reason about the set of edges
from the graph.
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3. Frontend Language

In this example, we will define the core elements of our frontend language. First, we will
describe our graph and node type system, then we will specify functions and operations
of the frontend.

3.1. Graph Type System

3.1.1. Motivation

As mentioned earlier in Section 2.1.7, path update formulas after destroying edges in
general graphs are not known. Hence, generally we cannot preserve the transitive closure
after destructive updates. However, there are update formulas for for some classes of
graphs: DAGs, ZOPGs, and Lists. While it is possible to specify acyclicity and "func-
tionality" of graphs, it is fundamentally impossible to specify that a graph is a ZOPG
in first-order logic.. However, we know how to check field updates and some binary set
expressions such that they preserve the zero or one path property. Because of that, we
have decided to create a type system, such that the user can specify some input graphs
as ZOPGs. We take this as given, and we check at each state update that the ZOPG
property is preserved. With that, it would be sound to use the update formulas.

DAGs and ZOPGs are not comparable: There are DAGs, which are not ZOPGs, and
there are ZOPGs, which are not DAGs. For this reason, we call graphs, that are DAGs
and ZOPGs, Forests. We get the following topology lattice:

The edges mean that the cell with the outgoing edge is a subtype of the cell with the
incoming edge.



Additionally, we also want to differentiate between closed and general graphs. We will
see later in section 5.1.3 that binary set expressions with closed graphs could result in a
more concrete Topology than general graphs. We get the following closedness lattice:

In our frontend language, for every graph declaration, we would need to specify their
static topology and closedness. We specify the concrete type as follows:

Graph["Topology", "Closedness"] In place of "Topology", we can write the following
types:

• Forest

• DAG

• ZOPG

• _, which means that the graph has a general topology.

In place of "Closedness", one can write two types:

• Closed

• _ which means that it is unknown, if the graph is closed or not.

The type of any graph begins with the Keyword Graph. If the type attributes are emitted,
then this means that it is a general graph. Generally, one can only use the type system in
the method parameters and in the local variable declarations in the method body. One
cannot use them in functions, domains. Also, one cannot use them in forall expressions,
even if it is in a method.

3.2. Nodes

If we declare a variable of type node, we need to specify in the type parameters, to which
graph they belong. A node type is specified as follows:

Node["Graph"]

There are again several options of what to write in place of "Graphs":

• One can write just one graph, for example Node[g]. This means that the node is
either in the specified graph or null.
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• It is possible to write multiple graphs (Node[g0, g1]) This means that the node
is either in the union of the specified graphs, or null.

• One can write Node[_], which means that the graph is in the universe. That means
for input nodes that it either is in the union of the input graphs or null. For non
null output nodes, it means that it must be in the union of the input and output
graphs. For non null nodes in the method body, it means that it is in one of the
existing graphs, or it is a fresh node.

One can again leave the type attributes and only write Node. This is equivalent to
Node[_] in methods. Again, it is not possible to write type arguments in forall expres-
sions and anything except method parameters and local variable declarations inside the
the method body.

3.3. Universe Variable

We have added the variable UNIVERSE to all methods. It is initialized as the union of all
input graphs. Whenever a local or output graph is assigned, or a fresh node is created,
we add the new nodes to the UNIVERSE.

3.4. Graph Literals

We have also added the possibility to write Graph() in order to specify explicit graphs.
It is handled equivalently as explicit Sets with elements of type Ref. That means that
between the brackets, one can specify the nodes, which should be element of the explicit
graph.

3.5. Functions

We have added the following functions to the specification of the frontend:

1. EDGE This function takes one graph argument, and two nodes, and is translated
to the edge function. Additionally, one could also only put the two nodes as
arguments. Then, the frontend will add UNIVERSE or the union of input (and
output) graphs as graph argument.

2. EXISTS_PATH This function takes the same arguments as EDGE, and is translated
to the exists_path function. One could again only pass two node arguments. It
would behave the same way as EDGE.

3. DISJOINT This function takes two input graph parameters. It checks, if the two
graphs do not intersect.
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4. ACYCLIC takes one graph parameter g, and is translated to acyclic_graph($$(g)).
Hence, it specifies that the graph is acyclic.

5. FUNCTIONAL This function also takes one graph parameter g, and is translated to
func_graph($$(g)). That means that every node can only have an outgoing edge
to at most one node.

6. UNSHARED This function applies the function unshared_graph. That means that
every node can only have an incoming edge from at most one node.

7. CLOSED This function specifies that the passed graph is closed.

8. IS_INITIALIZED This function is used for local and output graph variables. This
may be useful for the user, if a local graph g has been initialized inside of a loop, such
that the frontend is not able to register that the graph is initialized after the while
statement. In that case, the frontend is not able to automatically insert the loop
invariants of subsequent while statements, such that it is preserved that g is initial-
ized. The user can manually write in the loop invariants that IS_INITIALIZED(g).
Assuming this function could lead to unsoundness.

3.6. Operations

We have added the following operations to the frontend:

1. UPDATE This operation is a generalization of a field update x.next := y. We need
this generalization, as a field update updates the set of edges twice: First, when the
field gets unlinked, and then when it gets linked. This operation takes four or three
arguments: The first one is the name of the field. The second one is the graph,
on which the update has to be executed. This argument is optional, the frontend
would put UNIVERSE, if it is left out. The last two arguments specify the two nodes
that should be connected. The first node will be connected to the second.

2. UNLINK This operation is similar to the previous one, except that it only unlinks.

3. LINK This is the analogue link operation.

4. NEW This operation is used to create a fresh node. It is assured that all node typed
fields are initialized to null.

The operations UPDATE_ZOPG, UNLINK_ZOPG, LINK_ZOPG, UPDATE_DAG, UNLINK_DAG and
LINK_DAG are defined similarly to UPDATE, UNLINK, and LINK except that they use the
corresponding update operations.
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3.7. Fields

Fields can be of type Node, but they cannot take any type arguments. They cannot be
of type Graph.

There are several magic fields, that set the settings of the frontend. They get deleted for
verification:

1. __CONFIG_OUROBOROS_INLINE This field enables function inlining. That means that
functions defined by the frontend are getting inline.

2. __CONFIG_OUROBOROS_TYPE_CHECK This field adds type checking. Without this
field, the frontend believes, that the user knows which update operationss are sound
to use.

3. __CONFIG_OUROBOROS_UPDATE_INVARIANTS This field adds update invariants before
link methods. It behaves differently, depending on if type check is on or off. If
type check is off, it will check the update invariants of the graph, which has been
specified in the link method, depending on the specified topology in the link method.
Otherwise, it will check all update invariants of all graphs depending on whether
they are affected by this update or not.
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4. Translation

In this chapter, we will discuss how the frontend will translate the program written in
the frontend language, such that we get a valid Viper program, and that the user may
be able to verify graph algorithms.

4.1. Preamble

In each verification of a program, the frontend will add all the operations from section 2,
and synthesize them correctly, such that the field names of the given program are taken,
and the operations are correct adapted to the number of node fields.

Because of that, the user is able to apply functions and methods from the preamble,
without specifying them.

4.1.1. Method Specifications

If a method has any input or output graphs, the frontend will insert the corresponding
pre- and postconditions automatically for each graph. Particularly, it will add that
null is not contained in the union of input graphs. Additionally, it will give us the
access permissions for Node typed fields of the elements of the graphs. We need these
permissions in order to specify graph properties like closedness and acyclicity. Lastly, it
will add for each input Graph g the topology and closedness properties. That means that
for each closed graph, it will require that all Node fields from the elements in the graph
are either null or are also contained in the graph. For each DAG, it requires acyclicity.
For ZOPGs, it will requires that a function IS_ZOPG holds. This function is not specified,
as ZOPGs cannot be specified in first-order logic.

In the postcondition, it will ensure that null is not contained in the union of input
and output graphs, and that we have the access permissions for Node typed fields. The
properties of each graph are expressed in the same manner as in the precondition.

The declared types of the graphs specify type invariants that have to hold in the prestate
and in the poststate. If one wants that some input graph has some property in the
prestate of the method, one would need to write them in the precondition. For ex-
ample, if one wants an input graph g of type Closed Forest, but an output graph of



1 field left: Node
2 field right: Node
3 method specs(
4 g0: Graph[ZOPG, _], g1: Graph, x: Node[g0]) returns (
5 g2: Graph[DAG, Closed], y: Node)
6 requires DISJOINT(g0, g1)
7 requires CLOSED(g0)

Listing 4.1.: The frontend specifications of the method specs.

a ZOPG, one needs to declare the graph as g: Graph[ZOPG, _], and add in the pre-
condition the two function applications ACYCLIC(g) and CLOSED(g). In that way, the
static type of g is declared as Graph[ZOPG, _], but the dynamic type in the prestate is
Graph[Forest, Closed]

For every input node in the method formal arguments, the frontend inserts the precon-
dition that its value is either null or that it is contained in the declared graph. For
every output node, the frontend inserts the postcondition analogously. We have added
this constraint, because with this restriction, we know that this node is either null, or we
have the access permissions to Node fields. Additionally, if we want to do a field update,
we need a graph, on which we can perform this update. In that way, we are know at
least that each Node is contained in the UNIVERSE.

As an example on how the methods’ pre- and postconditions are inserted, we will consider
the method specification in the Listing 4.1.

The Viper encoding of the method specs is shown in the Listing 4.2. The requirement
that null is not contained in the union of the input graphs, is added on line 4. The
frontend requires the access permissions for all Node typed fields from the graphs on line
5 to 8. g0 is a ZOPG, and g1 is a general graph. Hence, we do only add the precondition
IS_ZOPG(g0). The specification of node x is added on line 9. The next two lines are the
user-specified preconditions in the frontend language.

In the postconditions, the frontend again inserts the null check and the access permissions
first. Afterwards, the frontend adds the closedness and acyclicity checks of g2. Finally,
the node specification is also checked.

4.1.2. Local Variable Declarations

In this section, we will describe how the frontend will handle local graph and node
variables in the method body. Additionally, we will show how the UNIVERSE variable
works.
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1 method specs(
2 g0: Set[Ref], g1: Set[Ref], x: Ref) returns (
3 g2: Set[Ref], y: Ref)
4 requires !(null in g0 union g1)
5 requires (forall n: Ref :: { n.left } (n in g0 union g1) ==>
6 acc(n.left, write))
7 requires (forall n: Ref :: { n.right } (n in g0 union g1) ==>
8 acc(n.right, write))
9 requires x != null ==> (x in g0)

10 requires DISJOINT(g0, g1)
11 requires CLOSED(g0)
12 ensures !(null in g2 union g0 union g1)
13 ensures (forall n: Ref :: { n.left } (n in g2 union g0 union g1) ==>
14 acc(n.left, write))
15 ensures (forall n: Ref :: { n.right } (n in g2 union g0 union g1) ==>
16 acc(n.right, write))
17 ensures CLOSED(g2)
18 ensures acyclic_graph($$(g2))
19 ensures y != null ==> (y in g0 union g1 union g2)

Listing 4.2.: The Viper encoding of the method specs

Graph Variable Declarations

If a graph variable is declared, the frontend creates a unique variable. We need a unique
variable which would specify if the graph has been initialized other not. If the graph has
not been initialized, we cannot get the access permissions for the input graphs. Without
the permissions, we are also not able to check the type of the graph. Hence, we treat
uninitialized graphs as if they do not exist.

The type of the variable depends on if type checking is enabled. If that is the case, it
creates a Int variable, and initializes it with 0. Otherwise, it creates a Bool variable,
and assigns it to false.

The reason for the two different type is because when we type check, we will do a reaching
definitions analysis. Then, after a graph assignment, we would assign the corresponding
Int variable to a unique value, such that we know that if the variable has that unique
value, then this concrete assignment reaches.

As an example, if we disable type checking, and declare a graph as:

var g: Graph[_, _]

, then the frontend translates this declaration to:
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var g: Set[Ref]
var g_init: Bool := false

Node Variable Declarations

If a node variable is declared, the frontend checks to which corresponding graph it has
assigned to by the user, and inhales that the node is either null or in that graph.

For example, if we declare a node var n: Node[g0, g1] for some graphs g0 and g1, the
frontend adds the statement after the declaration:

inhale n != null ==> n in g0 union g1

4.1.3. Graph Assignments

If a graph g, which has a unique variable g_init, is assigned, the frontend sets g_init
such that it specifies that g has been initialized.

4.1.4. Fresh Variable Assignment

There are two possibilities, how a node can be assigned to a fresh reference: We can use
the Viper new() method, or the frontend NEW() method.

If we use the NEW() method call, the frontend will declare a new node variable, and
assign it to the result of the method call create_node(UNIVERSE), which returns a node
outside of the UNIVERSE with access permissions to all reference typed fields. Additionally,
it expands the UNIVERSE by this new node variable. Finally, it initialized the node, which
the user initially wanted to assign to new node, to the new node variable.

The reason, why we use this approach is that now the frontend internally has a variable
which points to the fresh node. This variable can be used in the loop invariant, to
preserve that the UNIVERSE contains the fresh node. Additionally, the create_node
method ensures that all Node typed fields are initialized with null.

The create_node method is a bodyless method and is shown in Listing 4.3.

If we use the new() method, we can specify to which fields we want to have access.
The frontend can only handle cases, when we have access to all reference typed fields.
Otherwise, it will throw an error. If all reference typed fields are specified, the frontend
will call the NEW() method to get a fresh node with access permissions to all node fields.
Additionally, it will inhale that we have access to all other specified fields in the NEW()
method.

Consider the example in Listing 4.4. The translated version of the fresh node assignment
is shown in Listing 4.5. The translated version only contains the assignment. As val is a
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method create_node(u: Set[Ref]) returns (node: Ref)
requires !((null in u)) && (forall n: Ref :: { n.next } (n in u) ==>

acc(n.next, 1 / 2))
ensures !((null in u)) && (forall n: Ref :: { n.next } (n in u) ==>

acc(n.next, 1 / 2))
ensures !((node in u))
ensures acc(node.next, write) && node.next == null

Listing 4.3.: The create_node method

1 field val: Int
2 field next: Node
3 method create()
4 {
5 val x: Node
6 x := new(*)
7 }

Listing 4.4.: Viper program with a method, that creates a fresh node

Int typed field, create_node does not provide access permission to that field. Hence, it
is inhaled on line 6. Line 5 is a node check, that x remains in the UNIVERSE. As UNIVERSE
has been updated one line before, this assertion is trivially true. We still do this check,
because it could have been that the user has declared the node to be part of a smaller
graph. Then, we would need to add an error.

4.1.5. If-then-Else and While Statements

The frontend translates if or while statements, when fresh nodes are created in their
bodies. If that is the case, it creates a new variable var body_scope: Bool, initializes
it on top of the body to false, and inside the statement body to true. It collects the

1 var fresh_x: Ref
2 fresh_x := create_node(UNIVERSE)
3 var x: Ref
4 x := fresh_x
5 UNIVERSE := UNIVERSE union Set(x)
6 assert x in UNIVERSE
7 inhale acc(x.val, write)

Listing 4.5.: Translation of the body of create from Listing 4.4
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variable to be set to true, to support the fresh node generation. It uses that for generating
the loop invariants.

4.1.6. Loop invariants

The frontend uses the UNIVERSE variable to preserve that null is not in any of the existing
graphs and that it has access permissions to all reference typed fields. Additionally, it
preserves that all existing graphs are subsets of the UNIVERSE.

The frontend adds an invariant to preserve that we have access to all Node fields in the
universe.

In the loop invariants, the frontend needs to preserve some important properties of each
existing graph.

We define existing graphs as follows: All input graphs are existing graphs. All local and
output graphs are existing graphs, if they have been initialized. Otherwise, they are
handled as empty graphs.

In order to check this dynamically, we express a local graph g depending on its variable
g_init, that specifies, if g is initialized. More concretely, we express g as cond ? g : Set[Ref](),
where cond is either the expression g_init or g_init != 0, and it is true, if g is ini-
tialized.

If the frontend knows that the graph has been initialized, it will insert the invariant
g_init or g_init != 0, respectively. However, sometimes it is not possible for the
compiler. Hence, the user has the possibility to add the invariant IS_INITIALIZED(g),
to preserve that the graph is initialized.

For all nodes, that have been constructed by the NEW method, we want that the fresh
node is also contained in the universe, independently of whether the user still has a local
variable initialized to the fresh node. Recall that the frontend has internally created new
variables for fresh nodes in Section 4.1.4. Additionally, we have collected, which scope
variable (from Section 4.1.5) has to be true, such that the internally created variable is
assigned to a fresh node. We use this information to specify that if the scope values is
true, then the fresh node is contained in the UNIVERSE.

Finally, the frontend preserves that the local and output nodes are in the graphs that
have been specified in the declaration. The frontend preserves the same expression, that
it inhaled, when the node has been declared.

23



5. Type Checking

In this chapter, we will first discuss the type rules of graphs and nodes. Afterwards, we
will discuss, when we would need to check the types, and how. Types are checked by
taking the static types, and if they are not enough, assertions are added to the code.

5.1. Graph Type Rules

We can formulate closedness and acyclicity in separation logic in the Viper language.
Hence, if we want to check if some expression has some specific graph type, we may want
to first check if it is of the the non-closed and cyclic version of that type, and then add
the closed and acyclic proof obligations, if needed.

In this section, we will show how we can check the type of variables, explicit sets, binary
set expressions, conditional set expressions, and method calls.

5.1.1. Set Variables

If we want to check, if a graph variable g fulfils a specific type, we first check if the
declared type of g is a subtype of the specified type. In that case, we do not need to add
any additional assertions.

Otherwise, we need to check the type of the variable. We do it in the following way:
We collect all reaching definitions of g, and check that the type is fulfilled in each of the
reaching definitions.

5.1.2. Graph Literals (Explicit Sets)

For all explicit sets, we first need to ensure that null is not in the set. Afterwards, we
check that we have all access permissions to all node typed fields.

Generally, we check if the explicit set is of some specific type by applying the functions
ACYCLIC, CLOSED and IS_ZOPG. However, there are some special cases:

Empty Set: An empty set can be of any type. Hence, we never need to add any
assertions for type checking empty sets.



Singleton Set: A singleton set can be of any non-closed type. If we want to check
closedness, we simply check it with the closedness function.

In listing 5.1 on line 12, we have the following line:

var newGraph: Graph[Forest, Closed] := Graph(newNode)

After this line, we would need to check if we have access permissions for all node typed
fields of newNode. Additionally, as Graph(newNode) is a singleton graph, we know that
it is automatically of type Forest, but we need to check closedness. Hence, we need to
add the following assertion:

assert !(null in Set(newNode)) && (
(forall n: Ref ::

{ n.next }
(n in Set(newNode)) ==>
acc(n.next, write)) && CLOSED(Set(newNode)))

5.1.3. Binary Set Expressions

We can support three binary set operations, which result in a set: union, intersection
and setminus. We also differentiate whether the two operands are disjoint or not. For
each combination, we have created a table, where the header row and the header column
describe the type of the two operand graphs, and the cells describe the type of the
resulting graph. The header row describes the type of the right hand side, and the
header column the type of the left hand side.

Set Union

The union operation is commutative. Hence, the union tables are symmetric.

Disjoint Set Union The resulting graph cannot be declared to have a more concrete
type than a general graph if both operands are non closed.

For example, if one of the operands is already typed as a general graph, the resulting
graph, will also be typed as a general graph. Additionally, if we want to have a union
of a DAG and a ZOPG, the resulting graph might be a general graph. This comes from
the fact that DAGs and ZOPGs are not comparable. Even if we take the union of two
ZOPGs, we only get a Graph, because it is possible that there are several edges from one
ZOPG to the other, such that there are also several paths to some nodes in the other
ZOPGs.

The same holds when we take the union of two DAGs, because it could be that one node
from one DAG has an edge to another node from the other DAG, and vice-versa.
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However, if we know that one graph is closed, then we may be able to say more about the
type of the resulting graph. For example, if both Graphs are DAGs, and one of them is
closed, we can conclude that the resulting Graph is also a (non closed) DAG. This follows
from the fact that only paths from the non closed DAG to the closed DAG are possible.
But there cannot be paths in the other direction, which are needed to get cycles.

For ZOPGs, we will not get more concrete types, as edges from one graph to the other
are sufficient to violate the zero or one path property.

If both graphs are closed, we are first of all able to say that the resulting Graph is also
closed. Additionally, we get a more concrete type for two closed ZOPGs: As both graphs
are disjoint, and do not have any outgoing edges, we can conclude that the union of them
is also a closed ZOPG.

General Set Union After creating the table, we have realized that the general set union
gives the same types as the disjoint set union. For the cases where the resulting graph is
a general graph, this follows trivially, as the general set union also contains the cases of
the disjoint set union.

When both graphs are DAGs, and one of them is also closed, we again get a DAG as
a result. This follows from the fact that if the two graphs intersect with each other, it
must hold that the connected segment of the non closed DAG, that intersects with the
other graph, must be a subset of the closed DAG. The reason is that if it was a superset
of the closed DAG, that would mean that the closed DAG cannot be closed, which is
a contradiction. We can remove the intersecting segment of the non closed DAG, such
that we get a disjoint set union.

If both graphs are closed ZOPGs and intersect with each other, we know that there are no
edges from the intersecting part to the other parts of the graphs. Additionally, we know
that the edges from the other parts to the intersecting part do not violate the ZOPG
property. Hence, we get a special case of a disjoint set union of the closed intersecting
part with the non closed other parts, where we know that the edges from the other parts
to the intersecting part are constructed in such a way, that the ZOPG property holds.
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Set Minus

In the set minus, we always know that we have at least the topology of the left hand side,
because we cannot violate some DAG or ZOPG property by removing nodes. However,
the closedness property could be lost.

Disjoint Set Minus If the two operands are disjoint, the result of this operation will
always be the left hand side. Hence, it is sufficient to take the type of the left hand side.

General Set Minus In the general case, the topology of the result of a setminus will
always be at least the topology of the left hand side, as we cannot make an acyclic graph
cyclic or add new paths by removing nodes. However, it could be that the closedness
property gets lost, as in a graph, we could remove one node which is reachable by some
other node.
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Intersection

Disjoint Intersection The intersection of two disjoint graphs is always an empty set.
As an empty is always a closed forest, we will always get a closed forest as result.

General Intersection The general intersection is similar to the general setminus. The
difference is, that in the general setminus, the topology of the left hand side remains,
while in the disjoint set minus the topology of both operands remain.

5.1.4. Conditional Set Expressions

Conditional set expressions are ternary expressions, consisting of a Boolean condition,
the then and else operands. If the condition holds, we take the then operand, otherwise,
we take the else operand. In conditional set expressions, we check if the then operand
and the else operand have the wished type. If the then operand is not of wished type,
we say that the conditional expressions is not of the wished type, if the condition does
not hold. We do it analogously for the else operand.

5.2. Node Type Rules

We can check the types of a node by asserting that the node is contained in its declared
graph.
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5.3. Generating Proof Obligations

5.3.1. Field update

A Field update consists of a unlink and a link method. The unlink method may never
violate any graph type invariants, as it only removes edges.

Before the link method, we might need to check what is linked. Assume we want to link
x with y. Then, for every closed graph of any topology, that contains x, we need to check
that y is also contained in the graph. For every DAG, that contains x and y, we need
to check that there is no path from y to x, if y and x are different nodes. Otherwise, we
would get a cycle. The DAG update would be encoded as follows:

!(exists_path($$(g), y, x))

For every ZOPG, that contains x and y, we need to check that for all two non equal
nodes u and v, that already have path from u to v, there should not be also a path from
u to x and from y to v. Otherwise, we would have created a new path from u to v.

(forall u: Ref, v:Ref ::
{exists_path($$(g),u,x), exists_path($$(g), y, v)}
u in g && v in g && u != v && exists_path($$(g), u, v) ==>

!(exists_path($$(g), u, x)) ||
!(exists_path($$(g), y, v)))

For all Forests, we need to check the DAG and ZOPG invariants.

In addition to the checks, the information about the nodes can be used to improve
the update methods. For example, if we want to link x with y, e.g. x.next := y, we
normally update the exists_path relation of UNIVERSE. But the UNIVERSE is a general
graph. That means that we will use the general unlink method, which does not contain
any update formulas for exists_path. If we knew that x and y are contained in the
same graph g, which is of type DAG or ZOPG, we can use the precise update formulas
for those topologies to get the updated exists_path relation on g. In combination with
framing, we could get the update formulas for the UNIVERSE.

5.3.2. Method Call

In case of a method call, we need to check several things before and after the call.

Before the call, we need to check for every call argument of type graph that the passed
argument has the type of the formal argument. We do not have to check that the node
arguments are in the declared graphs of the formal arguments, as this is already done in
the preconditions of the method.
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After the call, we need to make sure that the types of the formal returns of the call
graph targets are a subtype of the declared type of the targets. Additionally, we need
to check for every other graph that intersects with the call graph argument, that they
still have the declared type. Furthermore, we have to guarantee that every node target
is contained in its declared graph. Lastly, we have to assert that every node, that has
been declared to potentially be an element of any of the graph targets, is still contained
in the declared graph.

5.3.3. Graph Assignment

After a graph assignment, we first need to check that the right hand side of the assignment
has the declared type of the left hand side. This can be done by the type rules defined
in section 5.1.

Secondly, we need to assure that the nodes, that have been declared to be a potential
element of the assigned graph, are still elements of their declared graph.

5.3.4. Node assignment

After a node assignment, we need to add an assertion, that ensures that the nodes
remained in the declared graph.

5.4. Example

In this section we will look at a slightly changed version of the append method in Listing
2.5. In this version, we do not have a list, but a Forest. Additionally, we already get the
node x, which has to be linked with the new node.

5.4.1. Node check

On line 14 of listing 5.1, we have assign x_union, which is defined to be in unionGraph,
to x. Afterwards, we need to check that x_union is in unionGraph or is null. That
means that we add the following assertion:

assert x_union != null ==> (x_union in unionGraph)

After line 15, we would add an analogous assertion for n_union

5.4.2. Graph check

In the example , there are several things, that need to be checked by the frontend.
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1 field __CONFIG_OUROBOROS_TYPE_CHECK: Bool
2 field __CONFIG_OUROBOROS_UPDATE_INVARIANTS: Bool
3 field next: Ref
4 method main(g: Graph[ZOPG, _], x: Node[g]) returns (unionGraph:

Graph[Forest, Closed])↪→

5 requires x != null && x.next == null
6 requires ACYCLIC_LIST_SEGMENT(g)
7 requires CLOSED(g)
8 requires ACYCLIC(g)
9 {

10 var newNode: Node[_]
11 newNode := new(*)
12 var newGraph: Graph[Forest, Closed]
13 if(newNode != null) {
14 newGraph := Graph(newNode)
15 }
16 unionGraph := g union newGraph
17 var x_union: Node[unionGraph] := x
18 var newNode0: Node[unionGraph] := newNode
19 x_union.next := newNode0
20 }

Listing 5.1.: The frontend method append_Forest
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Assignments to Graph Literals

First of all, on line 14, newGraph is assigned to an explicit graph. After this assignment,
the frontend needs to check that we have access permissions to all Node typed fields from
the nodes in Graph(newNode). Additionally, we would need to check that the explicit
graph is a closed forest. Because it is a singleton graph, it is trivially a forest. Closedness
needs to be checked.

Reaching Definitions and Set Expressions

For each local and output graph, we create a local int variable, which we initialize with
zero. Whenever the local graph is assigned, we assign the local int with a unique value.
For example, in the Listing 5.1, we add after line 14

newGraph_init := 1

On line 16, we want to ensure that g union newGraph is a closed forest. There are
several possibilities, to check that a union of two graphs is a closed forest. By looking at
our table, we decide to check these four possible types of the two graphs:

1. g and newGraph are closed forests.

2. g and newGraph are closed ZOPGs. Additionally, we need to check acyclicity of
g union newGraph.

3. g is a closed ZOPG and newGraph is a closed forest. Additionally, we need to check
acyclicity of g union newGraph.

4. g is a closed forest and newGraph is a closed ZOPG. Additionally, we need to check
acyclicity of g union newGraph.

We know that newGraph is typed as a closed forest. Additionally, g is a ZOPG. Hence,
we can add the following assertion:

assert CLOSED(g) && acyclic_graph($$(g))

However, because of the if statement at line 13, the frontend has two reaching defini-
tions of newGraph at line 16. One of the reaching definitions has the unique value 0,
which means that newGraph has not been initialized. Hence, the frontend adds another
assertion:

assert newGraph_init != 0

In fact, the front end adds a disjunction of assertions for each of the cases. But in this
case, it is sufficient to add the two mentioned statements.
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Field update

At line 19, there is a field assignment. Generally, we would translate this to

unlink_next(UNIVERSE, x_union)
link_next(UNIVERSE, x_union, newNode0)

Because of the definitions of x_union and newNode0, we know that both variables are
either null or are elements of unionGraph. Combined with the fact that unionGraph is
a Forest, we can use the DAG update formulas:
link_DAG_next(unionGraph, x_union) and
link_DAG_next(unionGraph, x_union, newNode0). However, we still need to check the
update invariants of all affected graphs. We need to check the following statements

1. newNode is in unionGraph.

2. There is no path from newNode to x_union in unionGraph.

3. If both nodes are in g, then we need to check the update invariant of the ZOPG g.

4. If both nodes are in newGraph, then we need to check the update invariant of the
ZOPG, and DAG newGraph.

By looking at the code, one could realize that all of these assertions already hold. The
frontend would add assertions for every case.
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6. Implementation

We have implemented the described frontend from the previous chapters. In this chapter,
we will discuss, how we have implemented it.

The frontend is a plugin of Viper. A plugin of Viper has the possibility to change
the structure of the Code at several stages of the verification. We mostly changed the
structures of the Parse Abstract Syntax Tree (Parse AST) and the Abstract Syntax Tree
(AST), to translate the code to a valid Viper program.

6.1. Phases

The process of translating frontend code to Viper code can be split into two major phases,
which again consist of smaller phases.

We have designed frontend language such that it is parseable by Viper. Hence, the
frontend does not need to do anything until the parse tree has been created b< Viper.

6.1.1. Parse Tree

In the first phase, we transform the Parse AST, such that the subsequent type check
of Viper does succeed. For that, we will need to add missing operations, transform the
types to Viper types, and some more things. In this chapter, we will describe what has
to be done.

User Options

First of all, we will collect the magic fields defined in the section 3.7 of the program, such
that the optional phases are enabled, if needed. After having collected the user options,
the frontend deletes the magic fields.



Names Handling

Afterwards, we collect all definition names, like function names or local variable declara-
tion names, and check if any of them is equal to one of the reserved keywords defined in
chapter 3. If that is the case, then we add an error to Viper, such that the verification
process terminates with a failure message. Otherwise, we also collect all Ref or Node
typed fields.

Function Synthesizing

We load the preamble of predefined domains, operations, functions and wisdoms.

Field update operations are specified for each node field separately, hence, we need to
copy the operation for each node field. The preamble uses the (not existing) field $field$,
which we will replace by the node fields of the frontend program and copy the resulting
operation, such that we get one for each node field.

Wisdoms and functions are not specified for each node separately, but may use all node
fields at once. We then handle it depending on the function. For example, the CLOSED
function, has a precondition of the form:

(forall n: Ref :: { n.$field$ } (n in g) ==> acc(n.$field$, 1 / 2))

The frontend copies this precondition, replaces $field$ with with the name of each node
field name and returns the conjunction of them as the new precondition.

Finally, the frontend renames the definition names, if some identifiers already occured
in the names collection from the previous step. It saves the name changes for later
purposes.

Method Handing

Afterwards, the frontend collects for each method the input graphs and nodes and the
output graphs and nodes with their types.

The frontend will add several things to the method body, if one exists:

It adds a UNIVERSE variable on top of the method body. Afterwards, it will iterate over
the body, and add to any local variable declaration into a function application, such that
the type informations of the local variable declarations are preserved. For example, if we
have a following graph declaration

var g: Graph[DAG, Closed] ,

we will translate it to the following statements:
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var g: Set[Ref]
inhale CLOSED_DAG_decl(g)

Analogously, var n: Node[g0, g1] will be translated to:

var n: Ref
inhale Node_decl(n, g0 union g1)

For all output graphs and nodes, it will also inhale a function application on top of the
body.

We check for all new statements that it contains all node fields. If that is not the case,
we report an error at this stage.

We will translate all Graph typed variables to Set[Ref] typed variables, and all Node
typed variables to Ref typed variables, because otherwise, we cannot use set expressions
like in between Node variables and Graph. Hence, type information of variables gets lost
after this step and we need to collect these informations here.

Wisdoms and Operations Translation

Then, the frontend will translate some wisdoms applications defined in section 3.5 like
EXISTS_PATH to the corresponding Viper function calls to functions like exists_path
from the frontend. For example, EXISTS_PATH will be translated to exists_path and if
the first argument was the graph g, then this will be changed to the set of edges $$(g).

Furthermore, we provide the wisdom PROTECTED_GRAPH that is mainly used for the pream-
ble, but the user can also apply them. It has two different signatures:

PROTECTED_GRAPH(g: Set[Ref])

or

PROTECTED_GRAPH(g: Set[Ref], node: Ref, fieldName: String)

In the first case, the wisdom is handled in sch a way that we have 1 / 2 access permis-
sions to all fields.

In the second case, the wisdom is handled in such a way that we have 1 / 2 access
permissions to all fields, except for the specified node, which has full write permission
for the field with the name fieldName.

Analogously, the field update operations are being translated. The signature of the
UPDATE method is:

UPDATE(fieldName: String, g: Set[Ref], from: Ref, to: Ref)

or
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UPDATE(fieldName: String, from: Ref, to: Ref)

In the first case, the operation is translated to the update method for the given specific
name fieldName. In the second case, the graph g is additionally set automatically to
UNIVERSE.

6.1.2. Abstract Syntax Tree

After having translated the Parse AST such that type checking does not fail, the frontend
receives the AST. It will iterate multiple times over the method bodies in the AST to
translate it to the right Viper program.

Most of the steps, that are done in this phase could have also be done in the Parse
AST. However, in the Parse AST, error transformation is not possible. Hence, only if we
translate the method in the AST, we are able to report our own errors.

Method specifications

The frontend uses the collected input graphs and nodes and the output graphs and nodes
with their types to add the correct specifications of the method described in section
4.1.1.

Additionally, the frontend inhales two wisdoms in the beginning of the method body, if
the body exists:

It adds the Framing wisdom described in section 2.1.6 for any two input graphs.

Furthermore, it adds the apply_no_exit_closed wisdom for any two input graphs g0
and g1, where g0 needs to be a closed graph. This wisdom is similar to the No Exit
Axiom described in [3], and adds the fact that when g0 and g1 are disjoint, then there
cannot be a path from any node in g0 to any node in g1, as g0 is closed.

First Iteration

In the first iteration over the method body, the frontend will handle local variables, the
UNIVERSE variable, and the loop invariants.

While it iterates over the method body, it will maintain and update the following lists:

• A list of local Nodes and their declared type arguments.

• A list of local Graphs, its type arguments, its unique variable to check if it is
initialized, and a graph state, which says if the graph is always initialized.

• A scope variable declaration, which defines if we are in a While or If scope.
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• A list of newly created node variables by the frontend, and in which scope they
have been created.

• A list of newly created unique variables for checking if local graphs have been
initialized.

For that, it maintains a list of local Nodes and their declared type arguments, a list of

In this subsection, we will discuss what the frontend will do for each type of a statement.

• Method Body Block: The frontend iterates over all statements inside the
method body, and then initializes all scope variables with false, and all unique
variables of the local graphs to either false or 0, depending on whether type
checking is enabled or not. It adds all the new variable declarations, that have been
done during type checking, on top of the method body, such that it is reachable
from anywhere.

• While Statement: The frontend adds several invariants to the statement. Gen-
erally, it uses the available lists to add the invariants described in the section 4.1.6.
One optimization is done to the local graphs. In Section 4.1.6, a local graph g
with its unique variable g_init is defined as cond ? g : Set[Ref](), where cond
is g_init, if type checking is disabled, and g_init != 0 otherwise. In our imple-
mentation, if we know that g is always initialized on this line, we define the existing
graph as g.

Before iterating over the body of the statement, the frontend creates a new Bool
variable for the while block scope. Then, it iterates over the block, takes the
returned new block, and checks if any new node variables have been declared inside
the block.

If that is not the case, then it removes the newly created scope variable. Otherwise,
it adds on top of the returned block an assignment of the scope variable to true,
and before the while statement, it assigns the scope variable to false.

• Inhale Statement: Recall that we have inserted graph and node declaration
inhales in the Parse AST. With the help of them, we can find out, if a graph or
node has been declared with the inhale statement. If it is not a graph or node
declaration, the inhale remains unchanged.

• Graph Declaration Inhale: If a graph has been declared, the frontend learns
from its type by the name of the function application, and creates a unique variable
for the local graph. It assigns the unique variable to either false or 0. It saves the
local graph with its unique variable and the fact that it is not initialized in its list
of local graphs.

If type checking is disabled, the frontend replaces the inhale by the unique variable
assignment. Otherwise, it adds the unique variable to the arguments of the function
application, such that it gets the name of the unique variable in the type checking
phase.
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For example, consider the inhale from section 6.1.1:

inhale CLOSED_DAG_decl(g)

If the unique variable has the name g_init and type checking is disabled, then it
will replace the statement by

g_init := false

If type checking is enabled, it will replace the statement by

inhale CLOSED_DAG_decl(g, g_init)
g_init := false

• Node Declaration Inhale: If a node has been declared, the frontend learns
from the graphs, in which it is contained, if its value is not null. We inhale that
the node is either in the graph or its value is null. We again keep the inhale, if
type checking is enabled. Otherwise, we remove it.

• New Statement: In a new() statement, the user can specify, which for fields
one wants to have access permissions. We know that the user wants to have access
to at least all the node fields, as otherwise we would have reported an error in the
previous phase. But it is possible that the user also wanted access permissions to
non node fields. We call the method NEW() to get a node with access to node fields,
and the node fields are initialized with null. Then, we handle the NEW Method
Call. How this is handled is described below.

Additionally, we inhale that we have access to all the specified non node fields.

• Field Assignment: A field assignment will be translated to the corresponding
update method.

For example, if we want to assign the node typed next Field of a node n to y, we
replace the field assignment with update_next(UNIVERSE, n, y, given that the
user has not defined any entity by update_next. The field update method call is
described below.

• Local Variable Assignment: Whenever a graph has been assigned, we use the
available lists to check that the nodes, that have been declared to be potentially
part of that graph, are either still contained in their declared graphs, or are null.

Finally, we add in the list of collected graphs that the graph is now initialized.
Then, if type checking is disabled, we assign its unique variable to true.

Whenever a node has been assigned, the frontend add the check that either the
node is still contained in its declared graph, or that its value is null.

• NEW Method Call: If NEW has been called, the frontend replaces the statement
as described in Section 4.1.4. Additionally, it adds the newly created fresh variable
to the list of fresh variables, and map it to the scope variable, if this statement has
been called in a local scope.
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• Field Update Method Call: The frontend operates as described in section ??.
It translates the update methods to separate unlink and link methods.

• If Statement: For the if-then and else blocks, The frontend creates a scope
variable for each. It then iterates over each block, and checks whether it has
created a new variable in the block. If that is the case, it sets the scope variable on
top of the corresponding to true, and before the If statement to false. Otherwise,
it removes the scope variable from the list of newly declared variables.

Then, it checks for all local variables outside of the scope of the if-then and else
block, if they have been initialized in both blocks. If that is the case, it adds to
the list that the local variable is initialized, after the if statement.

Second Iteration

The second iteration is only executed, if type checking is enabled. Then, we iterate
over each method body, do a Reaching Definitions Analysis, and check the types of the
graphs. The types of the nodes have already been checked in the previous iteration. For
this iteration, the frontend maintains a wrapper containing of maps, lists and a Boolean
flag, namely

• A map of all input graphs and their types.

• A map of all input Nodes, and their graphs.

• A map of statements, that have already been copied for type checking, with a
mapping from the original variables to the copied ones.

• A map of local graphs with their types, unique variables, and the highest value, to
which the unique variable has been assigned to.

• A map of graphs with their reaching definitions. For each reaching definition, we
additionally save the value of unique variable, and the wrapper at that state.

• A list of errors, that should be reported.

• A Boolean flag, stating if type checking should be executed or not.

With these lists, the frontend executes the reaching definitions analysis and type check.

Reaching Definitions Analysis In this paragraph, we will briefly describe, what the
frontend will do in the reaching definitions analysis for specific statements. Generally,
when the Boolean flag for type checking is set to false, the frontend does not change the
statements. It only updates its lists.
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//statement s
//state after_s
//state before_while
while(b)
{
...

}
//state after_while

Listing 6.1.: The states before and after the while block

• Graph Declaration Inhale Statement: We use the left inhale statement from
the first iteration, to obtain the name, type, and the unique variable of the graph.
We add it into the list of local graphs and set the highest value of the unique value
to 0.

Additionally, we put in the list of reaching definitions, a fake definition to the
declared graph, with the integer value 0. We use this to check, whether the graph
might be uninitialized.

We remove the inhale statement, when the Boolean flag for type checking is set to
true.

• While Statement: Consider the code in Listing 6.1. To obtain all reaching def-
initions at before_while, we need the union of the reaching defintions at after_s
and at after_while. Because of that, we first iterate over the while block, with-
out type checking, such that we get the reaching definitions from the while block
to after_while. Then we join the these reaching definitions with the reaching
definitions at after_s, to get the reaching definitions at before_while, under the
condition that the definitions at after_s are complete. This is not always the case.
Especially, when we are in a nested loop, it is possible, that we still do not have all
the reaching definitions at the state before_while.

Because of that, we iterate over the while block again, but only type check, if the
Boolean flag is set to true. After the second iteration, we again take the union of
the reaching definitions at after_s and after_while to get the resulting wrapper
after the while block.

Additionally, we compare the two maps from local graphs to the highest values of
the unique variables, and take the mutual highest values for the resulting wrapper.

We could probably optimize the second iteration over the while loop, such that
it is only done when the original Boolean flag is set to true. However, the main
performance issue is the time it takes to verify graph algorithms, and not the time
it takes to translate the code. Furthermore, we do not get unsound by this extra
iteration, as we do not change anything to the code, and we should get the same
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1 method type_check(g0: Graph[_, _], g1: Graph, x: Node[g0], y: Node[g0])
2 requires x!= null && y != null && x != y
3 requires ACYCLIC(g0)
4 {
5 var g2: Graph := g0
6 var g3: Graph := g1
7 var g4: Graph := g2 setminus g3
8 g3 := g0
9 g2 := g1

10 UPDATE_DAG(next, g4, x, y)
11

12 }

Listing 6.2.: Type Check example

result after taking the union of the state before the while loop and the state after
the second iteration.

• If Statement: In case we have an if statement, the frontend first copies the
wrapper twice. Then, it iterates over the then-block with the first copy. Afterwards,
it takes the second copy combined with the highest values of unique variables from
the first copy, such that the unique variables are assigned to unique values in the
else block. With that copy, it iterates over the else block.

To get the resulting wrapper, it joins the reaching definitions of the two copies, and
takes the highest values from the second copy.

• Method Call And Graph Assignments If a graph has been assigned by a
method call or assignment, the frontend adds the method call to the reaching
definitions of the graph, and deletes all other definitions for this graph.

Type Check How the types are checked, is described in the chapter 5.

One problem of checking types of the right hand side of a graph assignment, is that the
value of the right hand side might have changed, if we evaluate it in the current state.
Consider the example in the Listing 6.2. On line 4, g4 is assigned to g2 setminus g3.
g2 at that state has been assigned to g0, which is a DAG.

But if we checked the type of g2 at the state of line 9, we would have erroneously come
to the conclusion that g2 is assigned to g1, which is a general graph.

Hence, we do not only need the reaching definitions, but also the states of the definitions.
For that, the frontend does always also collect the wrapper of the state of the reaching
definition.
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1 method test()
2 {
3 var g2: Graph
4 g2 := create_ACYCLIC()
5 var g3: Graph := g2
6 g2 := create()
7

8 var g4: Graph[DAG, _] := g3
9 }

10

11 method create_ACYCLIC() returns (g: Graph)
12 ensures ACYCLIC(g)
13 method create() returns (g: Graph)

Listing 6.3.: Dynamic Type Check example

Additionally, we also collect statement copies. The reason, why we use state copies, is
because when we cannot prove some type statically, and need to check the type of the
graph dynamically, we need the graph of the specific state.

For example consider the code in Listing 6.3. g3 is assigned to the graph g2 at line 5.
g2 has been assigned to the result of create_ACYCLIC, which returns a graph which is
statically declared as a general graph, but with the post condition, we learn that it is
actually a DAG. Hence, the assignment on line 7 is valid. The frontend would need to
check that g2 is acyclic at line 5. However, if he added the assertion assert ACYCLIC(g)
after line 7, the program would fail. The reason is, because g2 has been assigned to a
different graph at line 6.

Hence, if we want to check the type of some definition, the frontend creates a state copy.
That means that it creates two new variables for each local graph appearing on the right
hand side: One to copy the graph, and one to copy its unique variable.

In this example, the frontend would have created var g2_copy: Set[Ref] and
var g2_init_copy: Int, and would have assigned it to:

g2_copy := g2
g2_init_copy := g2_init

before line 5, where g2_init is the unique variable of g2. With that, the frontend can
add the assertion that assert ACYCLIC(g2_copy) after line 7, and would succeed.

• Unlink or Link Method Call When the Boolean flag is set to true, the frontend
will try to optimize the unlink or link method. If the graph, on which the update
method is being executed, is the UNIVERSE, the frontend tries to optimize the graph,
as described in section 5.3.1.
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Afterwards, it tries to optimize the update formula has been specified as the general
graph. Again, it optimizes it, as described in section 5.3.1.

Only for link methods, it will also add the update invariant described in section
5.3.1

• Method Call The frontend uses the wrapper, to check the types as described in
Section 5.3.2.

Additionally, the frontend adds for every graph, that has been assigned by this call,
a new unique value. More concretely, it takes the highest value of the unique value
saved in the mapping with the local graphs, and increments this value by one, and
adds the assignment of this unique value to the code.

• Graph Assignments The frontend checks the types as described in Section 5.3.3.
Furthermore, it adds an assignment of the unique variable to a unique value, as
described in the case of method calls.

Unused Functions

In the last step of graph translation, the frontend collects all functions and method, that
the translated program uses from the preamble. Every other function and method gets
removed by the frontend. This is done, because if we had several node typed fields, many
methods would have been added, which slows the verification down.

Inlining

If the user enables inlining, the frontend inlines the functions and the methods from the
preamble.

Inlining Function Applications The frontend inlines all preamble functions, that con-
tain a body. By doing that, the precondition gets removed. The preconditions of the
functions are expressing the access permissions for the function parameters. That means
that the access permissions will not be checked anymore. First of all, when the frontend
has inserted the code by itself, then it is mostly already asserted, that the precondition
holds. Hence, we remove a redundant check.

And if the precondition did not hold, the program will still fail, but with a different error
message, as the functions need the access permissions described in the precondition for
the body.
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Inlining Inhale Function Applications If function applications do not have a body,
and are inhaled, the frontend will inline them. For that, the frontend exhales all pure
preconditions of the function. That means that statements about access permissions
are not exhaled. After the exhale, the frontend inhales all the postconditions of the
function.

Inlining Method Calls The frontend inlines the bodyless update methods. For that, it
adds a label before the method call. Then, it exhales all preconditions and inhales all
postconditions. But before inhaling the postconditions, it replaces all old expressions by
labelled old expressions, such that the label immediately before the method call is used.
Without doing that, it would be unsound to inline, because old would refer to the state
before the method body has been executed.
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7. Evaluation

In this chapter, we will handle some test cases, to evaluate, how our frontend performs
compared to manually written code, and how much automation we achieve. Particularly,
we will discuss, which wisdoms we could add automatically, such that in the frontend,
one needs to manually apply as few wisdoms as possible.

7.1. Test Cases

We have chosen several examples of manually written graph algorithms from [4], and
tried to verify them in the frontend, namely

• a list reverse algorithm

• a program that appends two list segments in one graph.

• an algorithm that joins two acyclic lists into one acyclic list and one that joins two
DAGs into one DAG

• an algorithm that splits an acyclic list into two acyclic lists and one that splits a
DAG into two DAGs

• an algorithm that inserts a new node into a cyclic list (a ring).

7.2. Results

Except the list reverse algorithm, which did not terminate in the frontend and in the
manually written version, and the ring insert algorithm, we were able to verify all the
selected programs. However, we needed to add some wisdoms to the programs such that
they suceeded.



1 field next: Node
2 method unjoin(g0:Graph[DAG, _], g1:Graph[DAG, _],
3 x0:Node[g0], x1:Node[g1])
4 requires DISJOINT(g0,g1)
5 requires CLOSED(g0 union g1)
6 requires x0 != null && x1 != null
7 requires forall n:Node ::
8 { EXISTS_PATH(g0,n,x0) }
9 n in g0 ==> EXISTS_PATH(g0,n,x0)

10 requires forall n:Node ::
11 { EXISTS_PATH(g1,x1,n), n in g1 }
12 n in g1 ==> EXISTS_PATH(g1,x1,n)
13 requires forall n:Node, m:Node ::
14 { n in g0, m in g1 }
15 n in g0 && m in g1 ==>
16 (EDGE(g0 union g1,n,m) <==> n==x0 && m==x1)
17 requires forall n:Node, m:Node ::
18 { n in g1, m in g0 }
19 n in g1 && m in g0 ==> !EDGE(g0 union g1,n,m)
20 requires ACYCLIC_LIST_SEGMENT(g0 union g1)
21 requires x0.next == x1
22 ensures CLOSED(g0)
23 ensures CLOSED(g1)
24 ensures forall n:Node ::
25 { EXISTS_PATH(g1,x1,n), n in g1 }
26 n in g1 ==> EXISTS_PATH(g1,x1,n)
27 ensures forall n:Node ::
28 { EXISTS_PATH(g0,n,x0) }
29 n in g0 ==> EXISTS_PATH(g0,n,x0)
30 {
31 var unionGraph: Graph[DAG, Closed] := g0 union g1
32 UNLINK(next, unionGraph, x0)
33 }

Listing 7.1.: The unjoin method for lists
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7.2.1. Split Lists

Consider the example, that splits an acyclic list into two acyclic lists in Listing 7.1. This
method takes two disjoint acyclic lists g0 and g1 with two nodes x0 and x1, such that
x0 is the last element of g0 and x1 is the first element of the list g1. The edge from x0
to x1 is the only connection between the two graphs in the prestate.

We had the following postconditions:

1. g0 and g1 are closed graphs.

2. g0 and g1 are acyclic.

3. x0 remains the end of the acyclic list g0.

4. x1 remains the start of the acyclic list g1.

However, we were only able to prove the first condition.

The second postcondition could not be proved, even though we were able to show that
ACYCLIC(g0 union g1) holds in the poststate. Hence, this was a framing problem.
Adding FRAMING(g0, g1) in the end of the list solved the problem.

The last problem got also solved by adding the framing wisdom in the end.

The third postcondition, however, did still not verify, even though it did in the manual
approach. The main difference between the manual approach and the translated code by
the frontend was, that in the manual approach, the list update formula was used, while
the frontend uses the DAG update formula. The DAG update formula for EXISTS_PATH
is precise, also for acyclic lists.

Hence, the problem may be that the triggers of the postconditions of the UNLINK_DAG
method are set unfavourable. Triggers are used to instantiate forall quantifiers. Actu-
ally, there are also two exists quantifiers in the postcondition. One could negate the
whole quantifier, and the body of the quantifier to get a forall quantifier, such that one
can find better triggers. We did not find triggers, which solved our problem.

We could also think about adding the topology List to our Type System.

7.2.2. Join Lists

Consider the example, that joins two acyclic lists in Listing 7.2. This method’s structure
is slightly different to the unjoin method in Listing 7.1: Instead of receiving a Node, on
which we should update the field, we receive the start of both acyclic lists. Then, we first
need to traverse over one acyclic list to get its last element, on which we need to apply
the field update.

The method takes two acyclic and disjoint lists g0 and g1, and their starting nodes x0
and x1. Both lists are closed in the prestate. The method should return the nodes x and
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1 field next:Ref
2 method join(g0:Graph[DAG,_], g1:Graph[DAG,Closed], x0:Node[g0], x1:Node[g1])
3 returns (x:Node[g0], last:Node[g0])
4 requires CLOSED(g0)
5 requires x0 != null
6 requires x1 != null
7 requires ACYCLIC_LIST_SEGMENT(g0)
8 requires ACYCLIC_LIST_SEGMENT(g1)
9 requires IS_GLOBAL_ROOT(g0,x0)

10 requires IS_GLOBAL_ROOT(g1,x1)
11 ensures forall u:Node ::
12 EXISTS_PATH(g0 union g1,x,u) <==>
13 old( EXISTS_PATH(g0,x0,u) ) || old( EXISTS_PATH(g1,x1,u) )
14 ensures forall u:Node, v:Node ::
15 EDGE(g0 union g1,u,v) <==>
16 old( EDGE(g0,u,v) ) || old( EDGE(g1,u,v) ) ||
17 (u==last && v==x1)
18 ensures ACYCLIC_LIST_SEGMENT(g0 union g1)
19 {
20 last := x0
21 while ( last.next != null )
22 invariant CLOSED(g0)
23 invariant ACYCLIC_LIST_SEGMENT(g0)
24 invariant ACYCLIC_LIST_SEGMENT(g1)
25 invariant IS_GLOBAL_ROOT(g0,x0)
26 invariant IS_GLOBAL_ROOT(g1,x1)
27 invariant last in g0
28 invariant forall n:Node, m: Node ::
29 {EDGE(g0, n, m)}{create_edge(n, m)}
30 EDGE(g0, n, m) <==>
31 old(EDGE(g0, n, m) &&
32 create_edge(n, m) in EDGES(g0))
33 invariant forall n:Node, m: Node ::
34 {EDGE(g1, n, m)}{create_edge(n, m)}
35 EDGE(g1, n, m) <==>
36 old(EDGE(g1, n, m) &&
37 create_edge(n, m) in EDGES(g1))
38 {
39 last := last.next
40 }
41 UPDATE(next, g0 union g1, last, x1)
42 last.next := x1
43 x := x0
44 }

Listing 7.2.: The join method for lists
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forall n:Node, m: Node ::
{EDGE(g0, n, m)}{create_edge(n, m)}
EDGE(g0, n, m) <==>

old(EDGE(g0, n, m) &&
create_edge(n, m) in $$(g0))

Listing 7.3.: Invariant that the edges stay the same

last, such that x is the starting node of the list g0 union g1, and last is the node,
which has been linked to x1.

The loop invariants should preserve that nothing has changed during the loop, as we do
not update the graphs.

In the post state, the following properties should hold:

1. g0 and g1 remain acyclic.

2. x reaches a node n, if and only if n has been reachable by x0 or x1 in the prestate.

3. The edges of g0 union g1 in the poststate should be nearly equivalent to the edges
from g0 and g1 in the prestate, with the only difference that an edge between last
and x1 has been created.

4. g0 union g1 is acyclic.

However, the frontend could not check that g0 union g1 is acyclic. One essential loop
invariant in the manual approach, which we did not use in the frontend, was that the
edge sets of g0 and g1 remained the same, that means $$(g0) == old($$(g0)) and
$$(g1) == old($$(g1)). The reason why we did not use it, was because we wanted
to avoid using the $$ function. Adding these invariants suffices to prove acyclicity of
g0 union g1. We tried to rewrite the invariants without using the $$ function. We tried
the following invariant:

forall n:Node, m: Node ::
{EDGE(g0, n, m)}{create_edge(n, m)}
EDGE(g0, n, m) <==>

old(EDGE(g0, n, m)

But this was not sufficient. We ended up with the invariant for g0 in Listing 7.3.

First of all, coming up with this invariant seems to be more difficult than coming up
with $$(g0) == old($$(g0)). Secondly, here we not only use the $$ function, but also
create_edge, defined in section 2.1.3. Hence, it may be better to support reasoning
about the edge set in the frontend.

Adding this loop invariant also sufficed to prove the third post condition.
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ensures CLOSED(g0) && DISJOINT(g0, g1) ==> (
forall u: Node, v: Node ::

{ exists_path($$(g0 union g1), u, v) }
(u in g0) && (v in g1) ==>
!exists_path($$(g0 union g1), u, v)

)

Listing 7.4.: One of the new postconditions to the framing method, for two graphs g0
and g1. It specified that there is no path from g0 to g1, if g0 is closed and
disjoint from g1. The other postcondition is analogous for g1.

Additionally, we were not able to fully prove the first property, namely that g0 remained
acyclic, while at the same time, we are now able to prove that g0 union g1 is acyclic.
Applying the framing wisdom in the end like in the previous example solved the prob-
lem.

The frontend could also not prove the second property, namely the fact that if there
is a path from x1 or x0 to an arbitrary node n inside their corresponding graph in the
prestate, then there must be a path from x to n in g0 union g1 in the poststate. This
again sounds like a framing problem. But applying the framing wisdom in the beginning
and in the end of the method does not solve the problem.

On line 41 in the Listing 7.2, the frontend translates the UPDATE operation to a UNLINK
and LINK operation. After updating the state of g0 union g1 with UNLINK, the gained
knowledge from applying the framing wisdom in the beginning gets lost. Hence, we need
to apply framing after every state update. Here, we would have to additionally apply
framing between unlinking and linking.

In the manual approach, the loop invariant $$(g0) == old($$(g0)) was not sufficient
for verifying that g0 union g1 is acyclic. In addition to the invariant, the No Exit
Wisdom defined in needed to be applied between unlinking and linking. In the frontend,
we added two more postconditions to the FRAMING function, which work as a No Exit
Axiom only for the two specified graphs. One of the postconditions is shown in Listing
7.4.

7.2.3. Other Test Cases

The other considered test cases did not need more manually added wisdoms.

The ring insert algorithm did not terminate. The reason was not clear. It was not able
to show that the new graph in the post condition was also a list. Apparently, there
are problems with the internal create_node function, and assigning the new ring to the
UNIVERSE.
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7.3. Conclusion

In this section, we will collect the gained experience by investigating in the previous test
cases.

7.3.1. Automation

After having considered the test cases, it seems to be crucial to apply the framing wisdom,
after every field update. More concretely, we should apply it after unlinking and linking.
Additionally, it should be applied, whenever a fresh node has been generated, or a graph
has been assigned.

The question is, on which graphs it should be applied. When a fresh node has been
generated, we only need to apply the framing wisdom on the fresh node and on each
existing graph.

For the other cases, we could apply it to every combination of two existing graphs, but
this would not scale well, if we had multiple graphs, as the more framing wisdoms are
applied, it takes more time to verify. In our test cases, we did not have big slowdowns
because of framing axioms. But we assume that in most graph algorithms, the number
of graphs is not very high.

That is why we will change the behaviour of our frontend, such that it can insert those
wisdoms automatically, at every field update, fresh node generation, or graph assignment.
However, it will only do it, if the user enables it via a magic field.

7.4. Comparative Analysis

We wanted to compare our tool with the one described in [2]. Unfortunately, it is not
publicly available anymore.
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8. Future Work

In this project, we implemented a frontend, which is able to verify several graph al-
gorithms. Our goal was to design an extension that allows to verify graph algorithms
without the lose of automation. While this goal was reached for small examples with few
state updates, the extension reaches its limits in bigger graph algorithms, particularly in
examples with several input graphs.

Hence, the frontend needs to be extended further. In the following sections, we will
describe what we could do as next steps.

8.1. List Update Formulas

As seen in the example of splitting lists in section 7.2.1, the frontend was not able to
prove that some EXISTS_PATH relations hold, when using the DAG update formulas, while
it was possible in the manual approach with the List update formulas. Even though it
might be a triggering problem, it could be beneficial to add Lists to our type system,
because the list update formulas seem to be faster and easier to verify by the frontend.

8.2. Graph Destruction

In our frontend, we are able to create new graphs with method calls, by having graphs
with access permissions. On the other hand, ever input graph of a method call, needs to
return the access permissions in the post state of the method. We may want to add the
possibility to pass graphs as input to methods, which take the access permissions in the
prestate, but do not return them anymore.

8.3. Silicon

At the moment, we use Carbon as the backend to verify programs. We do not use Silicon,
for several performance-related reasons. Mostly, the verification of the examples does not
terminate at all. We should further investigate this problem and fix it.



8.4. More General Update Formulas

At the moment, the frontend does only support

8.5. Prioritized SMT Computations

In our frontend, we often inhale framing wisdoms. Generally, we could insert much more
wisdoms. However, adding more wisdoms makes the code slower. In the verification tool
used in [3], their heuristics only adds additional wisdoms if it is not possible to prove the
postcondition.

In our heuristics, we add the framing axioms at points, where we assume that they are
needed. It may make bigger graph algorithms faster, if we added them only, if we were
not able to verify the program without them.
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Appendices



A. Preamble

A.0.1. The Edge Domain

1 domain Edge {
2 function edge_pred(e:Edge): Ref
3 function edge_succ(e:Edge): Ref
4

5 function create_edge(p:Ref, s:Ref): Edge
6 function create_edge_(p:Ref, s:Ref): Edge
7

8 axiom edge_injectivity {
9 forall p:Ref, s:Ref ::

10 { create_edge(p,s) }
11 edge_pred( create_edge(p,s) ) == p &&
12 edge_succ( create_edge(p,s) ) == s
13 }
14 }

A.0.2. The TrClo Domain

1 domain TrClo {
2

3 function exists_path(EG:Set[Edge], start:Ref, end:Ref): Bool
4 function exists_path_(EG:Set[Edge], start:Ref, end:Ref): Bool
5 function exists_spath(EG:Set[Edge], from:Set[Ref], to:Ref): Bool
6

7 /// U is the universe;
8 /// EG is the edge graph (specifies the edge relation)
9 /// A is the color predicate

10 /// M is the marker
11 function apply_noExit(EG:Set[Edge], U:Set[Ref], M:Set[Ref]): Bool
12

13 /** axiomatization of the set for instantiating color axioms with
unary reachability */↪→

14 function inst_uReach(EG:Set[Edge], x:Ref): Set[Ref]
15 function inst_uReach_rev(EG:Set[Edge], x:Ref): Set[Ref]



16

17 /** The properties of the edge relation. */
18 function acyclic_graph(EG:Set[Edge]): Bool
19 function unshared_graph(EG:Set[Edge]): Bool
20 function func_graph(EG:Set[Edge]): Bool
21

22

23 function edge(EG:Set[Edge], p:Ref, s:Ref): Bool
24 function edge_(EG:Set[Edge], p:Ref, s:Ref): Bool
25

26 function succs(EG:Set[Edge], pred:Ref): Set[Ref]
27

28 axiom ax_Succs {
29 forall EG:Set[Edge], pred:Ref, succ:Ref ::
30 { succ in succs(EG,pred) }
31 succ in succs(EG,pred) <==> edge_(EG,pred,succ)
32 }
33

34 axiom ax_EdgeSynonim {
35 forall EG:Set[Edge], p:Ref, s:Ref ::
36 { edge(EG,p,s) }
37 edge(EG,p,s) <==> edge_(EG,p,s)
38 }
39 axiom ax_Edge {
40 forall EG:Set[Edge], p:Ref, s:Ref ::
41 { create_edge(p,s) in EG }
42 { edge(EG,p,s) }
43 edge_(EG,p,s) <==> create_edge(p,s) in EG
44 }
45

46 // The first color axiom from the paper. (Via Refs)
47 axiom ax_NoExit {
48 forall EG:Set[Edge], U:Set[Ref], M:Set[Ref] :: {

apply_noExit(EG,U,M) }↪→

49

50 ( apply_noExit(EG,U,M) ==> (
51

52 ( forall u:Ref, v:Ref :: { edge(EG,u,v) } (u in M) && (v in
U) && !(v in M) ==> !edge(EG,u,v) ) ==>↪→

53 ( forall u:Ref, v:Ref :: { exists_path(EG,u,v) } (u in M) &&
(v in U) && !(v in M) ==> !exists_path(EG,u,v) )↪→

54 ) )
55 }
56
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57 axiom ax_instantiation_uReach {
58 forall EG:Set[Edge], x:Ref, v: Ref ::
59 { v in inst_uReach(EG,x) }
60 { exists_path(EG,x,v) }
61 v in inst_uReach(EG,x) <==> exists_path(EG,x,v)
62 }
63

64 axiom ax_instantiation_uReach_rev {
65 forall EG:Set[Edge], u: Ref, y:Ref ::
66 { u in inst_uReach_rev(EG,y) }
67 { exists_path(EG,u,y) }
68 u in inst_uReach_rev(EG,y) <==> exists_path(EG,u,y)
69 }
70

71 axiom ax_Alias {
72 forall EG:Set[Edge], start:Ref, end:Ref ::
73 { exists_path(EG,start,end) }
74 exists_path(EG,start,end) <==> exists_path_(EG,start,end)
75 }
76

77 /** T1 -- Ref-oriented encoding */
78 axiom ax_ExistsPath {
79 forall EG:Set[Edge], start:Ref, end:Ref ::
80 { exists_path(EG,start,end) }
81 { edge(EG,start,end) }
82 exists_path_(EG,start,end) <==>
83 start == end
84 || !(forall w:Ref ::
85 { edge(EG, start, w)}{ exists_path(EG, w, end) }
86 !(edge(EG,start,w) &&

exists_path_(EG,w,end)))↪→

87 // || exists w:Ref :: edge(EG,start,w) &&
exists_path_(EG,w,end)↪→

88 }
89

90 /** Follows from T1 && IND */
91 axiom ax_ExistsPathTrans {
92 forall EG:Set[Edge], u:Ref, v:Ref, w:Ref ::
93 { exists_path(EG,u,w), exists_path(EG,w,v) }
94 exists_path_(EG,u,w) && exists_path_(EG,w,v) ==>

exists_path_(EG,u,v)↪→

95 }
96

97 axiom ax_AcyclicGraph {
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98 forall EG:Set[Edge] ::
99 { acyclic_graph(EG) }

100 acyclic_graph(EG) <==>
101 forall v1:Ref, v2:Ref ::
102 { edge(EG,v1,v2) }
103 { exists_path(EG,v2,v1) }
104 !edge(EG,v1,v2) || !exists_path(EG,v2,v1)
105 }
106

107 axiom ax_UnsharedGraph {
108 forall EG:Set[Edge] ::
109 { unshared_graph(EG) }
110 unshared_graph(EG) <==>
111 forall v1:Ref, v2:Ref, v:Ref ::
112 { edge(EG,v1,v), edge(EG,v2,v) }
113 edge(EG,v1,v) && edge(EG,v2,v) ==> v1 == v2
114 }
115

116 axiom ax_FuncGraph {
117 forall EG:Set[Edge] ::
118 { func_graph(EG) }
119 func_graph(EG) <==>
120 forall v1:Ref, v2:Ref, v:Ref ::
121 { edge(EG,v,v1), edge(EG,v,v2) }
122 edge(EG,v,v1) && edge(EG,v,v2) ==> v1 == v2
123 }
124

125 axiom ax_ExistsSetPath {
126 forall EG:Set[Edge], from:Set[Ref], to:Ref ::
127 { exists_spath(EG,from,to) }
128 exists_spath(EG,from,to) <==>
129 !(forall f:Ref ::
130 {f in from}{exists_path(EG, f, to)}
131 !(f in from && exists_path(EG,f,to)))
132 }
133 }
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A.0.3. The ZOPG Domain

A.0.4. The apply_TCFraming Function

1 function apply_TCFraming(g0: Set[Ref], g1: Set[Ref]): Bool
2 requires (forall n_0: Ref :: { n_0.next } (n_0 in g0) ==> acc(n_0.next,

1 / 2))↪→

3 requires (forall n_0: Ref :: { n_0.next } (n_0 in g1) ==> acc(n_0.next,
1 / 2))↪→

4 ensures g0 union g1 == g1 union g0
5 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g0), u, v_0) } {

exists_path($$(g0 union g1), u, v_0) } (u in g0) && ((v_0 in g0) &&
exists_path($$(g0), u, v_0)) ==> exists_path($$(g0 union g1), u,
v_0))

↪→

↪→

↪→

6 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g1), u, v_0) } {
exists_path($$(g1 union g0), u, v_0) } (u in g1) && ((v_0 in g1) &&
exists_path($$(g1), u, v_0)) ==> exists_path($$(g1 union g0), u,
v_0))

↪→

↪→

↪→

7 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g0), u, v_0) } {
exists_path($$(g0 union g1), u, v_0) } (u in g0) && ((v_0 in g0) &&
!exists_path($$(g0 union g1), u, v_0)) ==> !exists_path($$(g0), u,
v_0))

↪→

↪→

↪→

8 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g1), u, v_0) } {
exists_path($$(g1 union g0), u, v_0) } (u in g1) && ((v_0 in g1) &&
!exists_path($$(g1 union g0), u, v_0)) ==> !exists_path($$(g1), u,
v_0))

↪→

↪→

↪→

9 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g0), u, v_0) } {
exists_path($$(g0 union g1), u, v_0) } (u in g0) && ((v_0 in g0) &&
(!exists_path($$(g0), u, v_0) && ((CLOSED(g0) || CLOSED(g1)) &&
DISJOINT(g0, g1)))) ==> !exists_path($$(g0 union g1), u, v_0))

↪→

↪→

↪→

10 ensures (forall u: Ref, v_0: Ref :: { exists_path($$(g1), u, v_0) } {
exists_path($$(g0 union g1), u, v_0) } (u in g1) && ((v_0 in g1) &&
(!exists_path($$(g1), u, v_0) && ((CLOSED(g0) || CLOSED(g1)) &&
DISJOINT(g0, g1)))) ==> !exists_path($$(g1 union g0), u, v_0))

↪→

↪→

↪→

11 ensures CLOSED(g0) && DISJOINT(g0, g1) ==> (forall u: Ref, v_0: Ref ::
{ exists_path($$(g0 union g1), u, v_0) } (u in g0) && (v_0 in g1)
==> !exists_path($$(g0 union g1), u, v_0))

↪→

↪→

12 ensures CLOSED(g1) && DISJOINT(g0, g1) ==> (forall u: Ref, v_0: Ref ::
{ exists_path($$(g0 union g1), v_0, u) } (u in g0) && (v_0 in g1)
==> !exists_path($$(g0 union g1), v_0, u))

↪→

↪→

13 ensures IS_ZOPG(g0 union g1) ==> IS_ZOPG(g0)
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A.0.5. The DAG Update Formulas

1 method unlink_DAG_$field$(g: Set[Ref], x:Ref)
2 requires x in g
3 requires PROTECTED_GRAPH(g,x,$field$)
4 ensures PROTECTED_GRAPH(g,x,$field$)
5 ensures x.$field$ == null
6 ensures old(x.$field$) == null ==> $$(g) == old($$(g))
7 ensures old(x.$field$) != null ==> forall v1:Ref, v2:Ref ::
8 { edge($$(g),v1,v2) }
9 edge($$(g),v1,v2) <==> edge(old($$(g)),v1,v2) && !(v1==x &&

v2==old(x.$field$))↪→

10 ensures old(x.$field$) != null ==> forall v1: Ref, v2: Ref ::
11 {exists_path($$(g), v1, v2)}
12 !exists_path(old($$(g)), v1, v2) ==> !exists_path($$(g), v1,

v2)↪→

13 ensures old(x.$field$) != null ==> forall v1:Ref, v2:Ref ::
14 { exists_path($$(g),v1,v2) }
15 exists_path($$(g),v1,v2) <==> (v1==v2) ||
16

17 ( exists n:Ref :: exists_path(old($$(g)),v1,n) &&
exists_path(old($$(g)),n,v2) &&↪→

18

19 ( !exists_path(old($$(g)),n,x) &&
!exists_path(old($$(g)),x,n) ||↪→

20

21 !exists_path(old($$(g)),n,old(x.$field$)) &&
!exists_path(old($$(g)),old(x.$field$),n) )↪→

22 )
23 ||
24 ( exists n:Ref :: n != x && n != old(x.$field$) &&

exists_path(old($$(g)),x,n) &&
exists_path(old($$(g)),n,old(x.$field$)) )

↪→

↪→

25 ||
26

27 ( exists u:Ref, v:Ref :: (u != x || v != old(x.$field$))
&& edge(old($$(g)),u,v) &&
exists_path(old($$(g)),v1,u) &&

↪→

↪→

28

exists_path(old($$(g)),u,x)
&&
exists_path(old($$(g)),old(x.$field$),v)
&&

↪→

↪→

↪→

↪→
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29

exists_path(old($$(g)),v,v2)
)

↪→

↪→

30

31 function update_DAG_invariant(g:Set[Ref], x:Ref, y:Ref): Bool
32 requires PROTECTED_GRAPH(g)
33 {
34 !(exists_path($$(g), y, x))
35 }
36

37

38 method link_DAG_$field$(g:Set[Ref], x:Ref, y:Ref)
39 requires x in g
40 requires y != null ==> y in g && y != x
41 requires PROTECTED_GRAPH(g,x,$field$)
42 ensures PROTECTED_GRAPH(g,x,$field$)
43 ensures x.$field$ == y
44 ensures y == null ==> $$(g) == old($$(g))
45 ensures y != null ==> forall v1:Ref, v2:Ref ::
46 { edge(old($$(g)),v1,v2) }
47 edge($$(g),v1,v2) <==> edge(old($$(g)),v1,v2) || (v1==x &&

v2==y)↪→

48 ensures y != null ==> forall v1:Ref, v2:Ref ::
49 { exists_path($$(g),v1,v2) }
50 exists_path($$(g),v1,v2) <==> exists_path(old($$(g)),v1,v2)

|| (exists_path(old($$(g)),v1,x) &&
exists_path(old($$(g)),y,v2))

↪→

↪→

51 ensures acyclic_graph($$(g))

A.0.6. The ZOPG Update Formulas
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B. Declaration of originality
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