
Runtime Checking for Chalice

Student project for Heinz Hegi, supervised by Alex Summers

25. April 2012

Introduction

Program verification is a useful tool for designing correct software. Chalice
is a specialised language and verifier for concurrent programs. It statically
analyses programs and detects concurrency bugs such as deadlocks and race
conditions. To do this, Chalice checks the contracts specified by the program-
mer and keeps track of field access permissions. Permissions are modeled as
fractions between 0% and 100%. They can be handed from one method or
thread to another at calls/returns or forks/joins. A thread always has full
access to it’s local objects, but has to transfer the corresponding permission
to a Monitor when sharing an object. Data access is only allowed when the
method/thread holds enough specific permission: 100% is needed in order to
gain write access, whereas any fraction > 0% grants read access. All access
rights and contracts are verified statically and do not affect the behavior of
the program itself. Since there is no dynamic checking, the current C# code
generator ignores the verification code and translates only the underlying
program.

Goal

The goal of this project is to implement a runtime checker for Chalice. This
can be used to get more information about where exactly and why the verifi-
cation process failed, or to expand the language in order to handle constructs
that can’t easily be verified statically, such as iterative quantification: if the
programmer wants to iterate through a list whose length is unknown at com-
pile time, and wants to fork off a thread for every referenced object in the list,
then the verifier doesn’t have enough statical information to be useful. This
is mainly an aliasing problem. In order to solve this, the programmer would
need to state assumptions about the list’s content, so that the compiler can
infer whether or not the needed permissions can be given to the threads. At
runtime, the list is given, and thus it’s fairly easy to see if problems occur.

1



Tasks

The core task is to add to the existing Chalice-to-C# code generation an
appropriate state representation and transformation for all the verification
constructs, so that the runtime verification works properly and meaningful
information about the verification process can be obtained Also, the existing
code generation has to be updated in order to support all current Chalice
language features. At this stage, predicates are immediately evaluated, so
fold and unfold statements can be ignored.

Then, there are two possible extensions:

• An alternative handling of predicates, which distinguishes holding a
predicate from holding it’s contents. This mimics the static verifier’s
behavior.

• Handling of iterative quantification in the runtime checker as previously
explained.

2


