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1 Abstract

Chalice is a static verification language for concurrent programs. Before this project, there was
a code generator that translated Chalice programs into C#, by looking at operationally relevant
statements and ignoring all the proving constructs. The goal of this project is to extend the
existing code generator to mimic the verification constructs at runtime, and thus make detailed
runtime checking of output programs possible. The main focus of this report lies on the runtime
representation and tracking of permissions, which are the Chalice constructs that ensure the
absence of race conditions.
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2 Introduction

Chalice ([LM09] [LMS10] [LMS09]) is a static verifier for concurrent programs. It ensures ab-
sence of race conditions by associating all field locations with a Permission, which is a value
between 0 and 100%. Write and read access are only permitted if enough Permission is held:
100% is required for write access, and any value bigger than 0% gives read access. Permissions
can be passed around through inhaling and exhaling. Inhaling is the act of gaining Permission
and assuming information about the state. This takes place in several scenarios like for example
the start of a new method (precondition is inhaled) or acquiring a lock (monitor invariant is
inhaled). Exhaling is the act of giving Permissions away and guaranteeing facts about the state.
It is symmetrical to inhaling and happens for example in a fork (precondition is exhaled) or a
lock release (monitor invariant is exhaled).
Additionally, Chalice ensures the absence of deadlocks by enforcing an ordering of locks, which
must be followed when acquiring multiple locks. It is realized using a “mu” field, which is as-
sociated with all shared objects and defines the placement of the associated lock in the ordering.

There already existed a code generator prior to this thesis, which translated Chalice code into
C#. However, it only translated the operationally relevant code and ignored all verification
constructs, which constitute a substantial part of the Chalice language.

The goal of this thesis is to expand on the existing code generation, so that these constructs
have an appropriate representation at runtime and can be used to check the validity of the
execution. The runtime checking should resemble the verifier’s behavior, in order to provide
insight into the dynamic aspects of the verified programs. Since the verifier isn’t complete, it
could be that a program is rejected even though it is semantically correct. In this case, the
runtime checking could be used to examine a program at runtime and hopefully get a better
picture of the problem at hand.
We use the .NET tool Code Contracts for the runtime checks in the C# output.

This report’s main chapters are divided into the sections Approach and Implementation. The
Approach (Section 3) describes the general idea behind the representation of Chalice constructs
in C#. The Implementation (Section 4) explains the translation and functionality of the gen-
erated classes in greater detail. Finally, the code generation’s testing is described in Section 5,
and the results are discussed in Section 6.
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3 Approach

3.1 Method Modularity versus Thread Modularity

The Chalice verifier works modularly on members, i.e. each method is verified without knowl-
edge about the state at the caller-site. This requires exact pre- and postconditions for all meth-
ods. At runtime, we can be more permissive by tracking the permissions per-thread (instead of
per-method). As a consequence, a precondition that requires too few permissions doesn’t hurt,
as long as it’s only called by a thread that has all necessary permissions for the body. This
doesn’t work for forks, since the new thread will have only the permissions inhaled from the
precondition. Also, permission is never leaked, even if a postcondition is too lax.

Another option would have been to track the permissions method-modularly at runtime as
well. This would lead to inhaling and exhaling for method calls, similar to the way it works for
forks now. In this case, we would also need to store the state of the caller after exhaling, so
that we can pick up where we left when returning from the current method.
Additionally, permissions could be intentionally leaked if they are not mentioned in the post-
condition, but this wouldn’t relieve us from having to track the exact values throughout the
method, since we still need to know the exact abstract amounts of permissions, which are com-
puted dynamically. Therefore, leaking permissions would actually be more complicated than
always keeping them.

3.2 Permissions

3.2.1 Permissions in Chalice

Permissions are associated with each field location of each object. A permission denotes the
access level that the current thread has to this field location: write access, read access or none.
Write access equals a fractional permission of 100%, also called full access. Read access is gained
by having either of:

� A fractional permission α: 0% < α ≤ 100%

� An abstract read permission π: π > 0 [HLMS13]

� A positive number of the indivisible epsilon permission. One epsilon is the smallest possible
permission amount that qualifies for read access.

When exhaling an abstract read permission, it is assumed that there exists some positive fraction
which is smaller than what is currently held, but an exact fraction is not picked. The only
requirement is that the fractional or abstract permission held is bigger than 0. Holding nothing
but epsilons is not valid, since we can’t split epsilons and therefore can’t branch off abstract
read permissions from them.

3.2.2 Permission at Runtime

At runtime, we need a representation for permissions, so that we can emulate inhaling and
exhaling. Even the abstract read permissions must be represented by a concrete value. Oth-
erwise, when joining, we wouldn’t know whether an inhaled abstract read amount equals what
was exhaled earlier on, since a new thread may himself fork and join other threads. If we can’t
be sure if we’ve inhaled everything that was exhaled, then we also can’t tell if we have write
access again, or if there still exists another thread that has an abstract read permission to the
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same field.
We also want to avoid picking an amount that is too high for the rest of the execution, or
too small for the forked off thread, even if we face a setting in which the permission can get
arbitrarily small, e.g. through nested or recursive exhaling.
Picking a concrete fraction for the abstract read permission would be too restrictive. A simple
example of this problem is shown in Listing 1: At line 6, an abstract read permission is exhaled,
but the current thread will still need a fraction of 99% for the call at line 7. Therefore, the
exhaled permission at line 6 must not exceed 1%, but it must still be big enough to allow foo

to fork off further threads.
So, we want to ensure that for all occurring abstract read permissions πi to the same field, and
for any positive fractional permission α and any epsilon permission ε, it holds that:

α�
∑
i

(πi)� ε

where � means “much greater than”. In order to achieve this, the permission to a field is
represented by a triplet:

(Fraction f1, Fraction f2, Integer e)

Fraction is the name of the class used to represent rational numbers. The fraction f1 represents
a concrete fractional permission in Chalice (e.g. 50%). The fraction f2 represents abstract read
permission. By making it a fraction, it is ensured that there always exists an even smaller
abstract read permission for exhaling. The integer e represents the number of epsilons. This
representation also makes inspecting the permissions at runtime easier, because abstract and
concrete amounts can be distinguished clearly.
In theory, each element of the triplet is completely independent of the others. Practically, this
is not entirely true: For the multiplication of two permissions, some unit u needs to be picked
for f2. This unit is squared when two abstract read permissions are multiplied. The default
value for u is 1/1000. On the other hand, the unit of a concrete fraction f1 is always equal to 1.
Without this unit, the multiplication of two abstract fractions would yield the same result as
one abstract and one concrete fraction:

(fa,0,0)·(0,fb,0) = (0,fa · fb,0) 6= (0,fa,0)·(0,fb,0) = (0,fa · fb · u,0)

So now, the following equation holds:

(0,fa/u,0)·(0,fb,0) = (fa,0,0)·(0,fb,0)

See 4.3.2 for details about the operators on permissions. A further restriction is that due to
machine precision, a Fraction cannot be split indefinitely often, since it cannot be smaller than
1/maxInt. However, we assume that this amount is never reached.
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Listing 1: Example of a read exhale in Chalice

1 method m(o : SomeObject)

requires acc(o.f,100);

ensures acc(o.f,100);

{

5 var res : int;

fork tk := foo(o,10);

call res := bar(o);

//some computation

join res := tk;

10 o.f := res; //need write access here

}

method foo(obj : SomeObject, t : int) returns (res : int)

requires acc(obj.f, rd)

15 ensures acc(obj.f, rd)

{

var i : int;

var s: seq<token<SomeObject.foo>>

i := 0;

20 while(i<t)

{

fork s[i] := foo(obj,0);

i := i + 1;

}

25 //some computation

// join all tokens, then return

}

method bar(obj : SomeObject) returns(res : int)

30 requires acc(obj.f, 99)

ensures acc(obj.f, 99)

{...}

3.3 Book-Keeping

We need to keep track of the permission that is held by a thread, in order to be able to check
whether it has the necessary access level for processing the statements, and to compute a valid
abstract amount for exhales. This task is carried out by the static class Tracer, which is located
in the Chalice.cs file (see Section 4.1). The book-keeping is done via its thread static field
PermissionTracer:

Listing 2: Map and PermissionTracer definition

using Map = //Alias

System.Collections.Generic.Dictionary<System.Tuple<object, string>, Permission>;

...

[Pure] static public class Tracer

{

[ThreadStatic] public static Map PermissionTracer;

...

}
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The alias Map is used for convenience, as this type has many occurrences. A Dictionary is
a hash map: It represents a collection of keys and values, and it provides a mapping from a
specific key to it’s associated value. In this case, the keys are (object,string)-tuples. The string
represents the field identifier; the object is the object whose field is accessed. The values in the
dictionary are the permissions associated with the field locations that are uniquely defined by
the key. The ThreadStatic attribute ensures the desired thread modular behavior:
Each thread has it’s own PermissionTracer dictionary, and cannot directly access the dic-
tionary of another thread. However, this means that when a new thread is forked off, it has
to initialize this field and add the correct permissions to the newly generated dictionary. See
chapter 4.2 for a detailed description of the in- and exhaling process. It is important to note
that this initialization has to be done before the precondition of the method is checked, since
the precondition might reason about permissions. The Tracer class also provides the function-
ality for altering dictionary entries more conveniently, checking access requirements in-line, and
Map-arithmetic (described in chapter 4.3.3).

3.4 Monitors

In Chalice, locking and unlocking is fairly straightforward:

Listing 3: Locking in Chalice

method foo()

{

var v1 := new SomeClass;

share v1; //makes v1 lockable

//noncritical code

acquire(v1);

//critical section

release(v1)

}

A read or write lock can be obtained for every shared object. The object reference is all that
is needed to try to acquire a lock, so there is no extra monitor class required. The monitor
invariant is defined in the class description of the object that is locked on (e.g. in SomeClass’s
definition in Listing 3). The invariant is inhaled when acquiring a lock, and exhaled when releas-
ing it. share and unshare can be regarded as special cases of release and acquire respectively.

In C# without runtime checking, this simplicity had been preserved by using the class
System.Threading.Monitor.Enter(obj) or Exit(obj).
In this approach, share and unshare statements were ignored. Read acquire and read release
were also not supported.

For the runtime checking, we want to be able to mimic the verifier’s behavior more closely, there-
fore we decided to use the class System.Threading.ReaderWriterLock instead. This gives us
the possibility to support share and unshare statements, read locks (RdAcquire and RdRelease

in Chalice), and theoretically up- and downgrading of a lock. However, only Downgrade is avail-
able in Chalice; Upgrade is not.
The drawback of this approach is that we need a central class that unequivocally maps objects
that can be locked on to their respective ReaderWriterLock object. This functionality is pro-
vided by the static MonitorHandler class. Similarily to the Tracer from the Listing 2, this
class uses a Dictionary for book-keeping:
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Listing 4: definition of monitorPerms

public static class MonitorHandler

{

public static System.Collections.concurrent.ConcurrentDictionary

<object,System.Threading.ReaderWriterLock> monitorPerms;

...

}

The usage of a concurrent dictionary instead of a normal one ensures that monitorPerms can be
accessed by different threads without leading to race conditions or related errors. This wasn’t
necessary for the Tracer’s dictionary, since it is ThreadStatic.
The key is the object that is associated with the lock (v1 in Listing 3). The value is the cor-
responding ReaderWriter object. The dictionary simultaneously keeps track of the availability
of the lock (shared or not) and, if shared, provides the required object-to-lock mapping.
Other than the dictionary, the MonitorHandler class provides methods to facilitate access to it.
There is one method for each lock-relevant Chalice statement, except the Lock statement. This
reduces the code needed at the caller site to one call (plus the in- and exhaling checks). In other
words, the complexity that is newly generated by this approach is handled in the example-
independent Chalice.cs file. Details about the MonitorHandler methods can be found in
Section 4.3.4.
The Chalice construct Lock(obj, body, isRead) acquires a lock for executing a block of state-
ments. It is translated as consecutively acquiring the lock of obj, then executing the statements
in body, and finally releasing the lock again. The boolean isRead determines whether a read
lock or a write lock is to be acquired/released. Since we use the same constructs as for acquiring
and releasing locks, no extra inhaling and exhaling mechanisms or MonitorHandler methods
are needed for this construct.

We do not deal with the deadlock avoidance constructs in the scope of this project. These
are part of the possible future work (Section 6.2).

3.5 Inhale and Exhale

3.5.1 Calls

A Chalice call looks like this:

Chalice call

call r1,r2, ... := someObj.foo(p1,p2,...);

r1, r2, ... are the return values of foo, and p1, p2, ... are the parameters. In Chalice,
the verifier checks and exhales foo’s precondition, and inhales its postcondition. Note that
Chalice does not have to enter foo’s body or check its postcondition here. At runtime, we do
not need to inhale or exhale anything, since we stay in the same thread. The precondition is
checked, then the execution of the body starts. On return, the postcondition is checked.

3.5.2 Forks and Joins

A fork in Chalice looks like this:

Chalice fork

fork tk := someObj.foo(p1,p2,...);
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Here, tk is the token that is associated with the fork. The current thread has to check that
the precondition can be satisfied, then it exhales it. The new thread inhales the method’s
precondition first, then starts its execution. In Chalice, the verifier would just proceed with the
next statement, without actually forking anything off, since it verifies modularly and statically.
A join looks like this:

Chalice join

join r1, r2, ... := tk;

The postcondition of the forked method is inhaled at this point in Chalice. At runtime, the
whole PermissionTracer content is inhaled, not just the postcondition. That means that at
runtime, even the permissions that aren’t mentioned in the postcondition are inhaled again, so
no permission is leaked. Thus, we can safely ignore the postcondition for inhaling at runtime,
since all we need to know is stored in the Tracer (the postcondition is still checked though).
The implementation of inhaling and exhaling is explained in Section 4.2.2.

3.5.3 The Main Method

Chalice does not need main methods, since it works modularly on methods without having the
need for a definite starting point of the program. This is different at runtime, as we need a
entry point to start the execution. C# requires a Main method (capitalized) without arguments
for that purpose. The execution will start with the default constructor of the class that defines
the main method, and then continues by calling Main(). We initialize the MonitorHandler and
the permissionTracer in this constructor, so that they can be used thenceforwards. Since the
constructor might be used again later on in the program, we have to check that they aren’t
already initialized first.
If Chalice defines a lowercase main method without arguments, the corresponding inhaling
method (see Section 4.2.2) will be the first one to be called by the actual C# Main method.
Therefore, the main method’s precondition will be inhaled at the start of the program execution,
so the start of the C# program is in that respect similar to the start of a new thread. If Chalice
does not define a main method, then no Main is generated and the output program will not be
executable without first adding it manually. That’s why the main methods have been added to
the examples for testing (Section 5).

3.5.4 Monitor Invariants

Locks in Chalice can be obtained for any object. This object can define a monitor invariant, or
just let it be true.

Chalice acquire

acquire obj;

When a write lock is acquired, the permissions in the invariant are inhaled. When a lock is
released or shared, the permissions are exhaled. When acquiring or releasing a read lock, the
same happens, but the inhaled and exhaled permissions are abstract.
At runtime, these operations are performed in two steps. For shares and releases, the invariant
is exhaled first, then the lock operations takes place. For acquires, the lock operations are per-
formed before inhaling the invariant. Here is an example of a write lock acquire with runtime
checks:
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C# write lock acquire

MonitorHandler.acquireWriteLock(obj);

Tracer.PermissionTracer = Tracer.mapAdd(Tracer.PermissionTracer, obj.collectInvPerm());

The lock operations are performed by the MonitorHandler, they are explained in detail in
Section 4.3.4. The collectInvPerm method is explained in Section 4.2.4.
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4 Implementation

4.1 Structure

4.1.1 Code Generation without Runtime Checks

In this subsection, we describe the code generation (without runtime checking) that existed at
the start of this project. The basic code generation uses two files:
Chalice.cs and ChaliceToCSharp.scala.
The C# source file Chalice.cs is used for auxiliary classes whose definitions are independent
of the Chalice code. It contains three class definitions: ImmutableList<E>, ChannelBuffer<E>,
and ChalicePrint. As the name suggests, ImmutableList<E> provides basic functionalities for
a list that cannot be altered after creation. The generic type parameter E dictates the type of the
list’s elements, which also must implement the interface IEnumerable<E>. ChannelBuffer<E>

consists of the private field Queue<E>, and the thread-safe methods public void Add(E e)

and public E Remove(). ChalicePrint just outputs integers or booleans to the console.
ChaliceToCSharp.chalice defines the ChaliceToCSharp class. Its top level method convert-

Program takes a list of Chalice classes and channels stored as ASTs, and converts it to C# code
and stores it in the file out.cs.
Chalice.scala is the file that implements the Chalice console command, which is mostly used
to verify Chalice source files. For example, the command

chalice dining-philosophers.chalice

will start the verifying process for the dining-philosophers.chalice source file. To activate
C# code generation, the parameter gen must be added:

chalice /gen dining-philosophers.chalice

With this command, the verifier will perform its task as before, and as soon as it has successfully
finished, the code generation will be initiated:

Scala code for C# code generation

val converter = new ChaliceToCSharp();

writeFile("out.cs", converter.convertProgram(program));

The parameter program is the output of the parser. However, if the verification fails, then the
code generation does not take place.

4.1.2 Code Generation with Runtime Checks

It was decided that it should still be possible to generate the basic program without runtime
checking as before, so the changes made should not affect the previous code generation.
A new file ChaliceToCSharpRTC.scala defines the ChaliceToCSharpRTC class (RTC stands for
runtime checking). It works similarly to the ChaliceToCSharp class, but the grammar rules
have changed so as to include the checking mechanisms. The ChaliceToCSharpRTC class inher-
its from ChaliceToCSharp, but only few definitions could actually be reused.
The runtime checking uses the same Chalice.cs file as the basic code generation. The three
classes from before remain unaltered, but four new classes have been added: Fraction, Per-
mission, Tracer, MonitorHandler. The purpose of these classes is explained in Section 3,
implementation details can be found in 4.3. This change does not affect the behavior of the
original code generation, since it only uses the three classes from before.
Chalice.scala also needs to be changed. Firstly, the command line parameter genRTC is added,
so that the new code generator can be enabled from the command line:
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chalice /genRTC dining-philosophers.chalice

Before starting the verification, it is checked whether genRTC is enabled. If so, the code genera-
tion is started before verifying the program. This means that the code is generated even if the
verification fails, which makes sense because the failing cases are more interesting to examine
at runtime. The code generation with runtime checks is started by this:

Scala code for C# code generation with runtime checks

val converterRTC = new ChaliceToCSharpRTC();

writeFile("out.cs", converterRTC.convertProgram(program));

Note that the original parameter gen is still checked after the verification process, so if both
/gen and /genRTC are used, the out.cs file is first written with runtime checks, and will be
overwritten after the verification exactly if the verification is successful.

4.2 Inhale and Exhale

4.2.1 Forks and Joins without Runtime Checking

In order to support forking and joining at runtime, two extra members need to be defined: a
delegate foo delegate(paramType p1, paramType p2, ...), and a class Token foo. Because
lookahead would be quite complicated, those two definitions need to be added for all methods
defined in Chalice, even if they never occur in forks.
The delegate is used to encapsulate the method, which is necessary for the asynchronous call
in C# . Its parameters must match the parameters of the encapsulated method.
The Token has a field for every return value of the method foo. Additionally, it has a field
del for storing an instance of the method’s delegate, and a System.IAsyncResult field async,
which represents the status of the asynchronous call. So the number of fields is the number of
return values plus two.

For forking without runtime checking, a delegate and a token are instantiated, the delegate
is stored in the token and then the actual fork takes place:

C# fork

someObj.Token_foo tk = new someObj.Token_foo(); //uses a locally unique identifier

tk.del = new foo_delegate(someObj.foo);

tk.async = tk.del.BeginInvoke(p1, p2, ..., out tk.r1, out tk.r2, ..., null, null);

The delegate constructor takes the method handle as an argument. BeginInvoke takes the
following arguments: One normal argument per Chalice method argument (here: p1, p2,

...), one out-argument per return value (here: r1, r2, ...), and two extra null arguments.
The null arguments are for callbacks; they are never used in our generated code.
Joining is much simpler:

C# join

tk.del.EndInvoke(out r1, out r2, ..., tk.async);

EndInvoke has one out-argument per return value, plus the async field that was assigned by
the fork.
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4.2.2 Forks and Joins with Runtime Checking

For forking with runtime checking, we have to check and exhale the precondition, and we need to
let the newly generated thread inhale its precondition with the correct abstract read fractions.
Two extra methods need to be defined for each actual Chalice method in order to be able to
do this: initializeThread foo and collectPrecond foo

collectPrecond foo collects all the permission restrictions that occur in the precondition,
stores them in a object of type Map and then returns it. This is needed because the parent
thread needs to know what he has to exhale.
The Tracer needs to be initialized before entering the original method body, otherwise the pre-
condition would not be satisfied. This initialization is performed by initializeThread foo,
which wraps the forked method: First it inhales the precondition by adding the permissions to
the Tracer, then it calls the original method. In order to support the abstract read permissions,
it can take a Map as an argument: Map persIn. The parent thread can store the exhaled per-
missions in there, so that the current thread knows exactly what amounts he has inhaled. This
is necessary since the read amount can vary from fork to fork, but the sum of the permissions
in circulation should still be 100% for each field location. If a thread does not provide a Map
(i.e., persIn is null), then the precondition is inhaled with default values of 1/10 for the abstract
read amounts.

Furthermore, we need to be able to inhale the correct permissions when joining a thread again.
This is made difficult by the fact that the new thread can fork off further threads, and thus
end up with permission amounts that cannot be known from the pre- and postcondition alone.
Just as the parent thread needed to pass the exhaled amounts to the new thread, the new
thread needs to pass his Tracer’s Map to the thread that’s joining it, so that the joining thread
can inhale it. For this, each Chalice method and its InitializeThread method get a new out
parameter: out Map pers. At the end of each method body, the current PermissionTracer

is assigned to this parameter. This is necessary because we do not know in advance which
methods are forked, so we do not know whether a return is actually a join or not.

The delegate needs to be changed in order to match the signature of the InitializeThread foo

method instead, because we want this to be the first method that is executed by the new thread.
This means that the parameters out Map pers and Map persIn need to be included:

C# with runtime checks: delegate definition

public delegate void foo_delegate(type1 p1, type2 p2, ...,

out resultType1 r1, out resultType2 r2, ..., out Map pers, Map persIn);

In the token, the fields Fraction rdFrac, Map pers, and bool joinable are added. The field
rdFrac is used for the rd(tk) expression in Chalice, which represents the abstract read frac-
tion that was picked when forking off the thread associated with the token tk. The boolean
joinable states whether the token can be joined in Chalice. It prevents tokens from being
joined twice, which is already ensured by tk.async at runtime, but we need it anyway because
contracts in Chalice may talk about it.
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C# with runtime checks: Token definition

public class Token_foo {

public main foo_delegate del;

public System.IAsyncResult async;

public Map pers;

public Fraction rdFrac;

public bool joinable;

public resultType1 r1;

public resultType2 r2;

...

}

Finally, a fork and join now look like this:

C# with runtime checks: fork

Token_foo tk = new Token_foo(); //locally unique identifier

Tracer.addElement(tk, "joinable",100);

tk.joinable = true;

Map dict; //locally unique identifier

dict = someObj.collectPrecond_foo(params);

tk.rdFrac =Tracer.scale(dict); //scales the abstract read permissions

Tracer.subtract(dict); //exhale

tk.del = new foo_delegate(someObj.initializeThread_foo);

tk.async =

tk.del.BeginInvoke(p1, p2, ...,

out r1, out r2, ..., out tk.pers, Tracer.copyMap(dict), null, null);

C# with runtime checks: join

Contract.Assert(Tracer.TryGetValue((object)tk, "joinable") &&

Tracer.tempPerm ≥ new Permission(100) && tk.joinable);

tk.joinable = false;

tk.del.EndInvoke(out r1, out r2, ..., out tk.pers, tk.async);

Details for the Tracer methods can be found in Section 4.3.3. The copy constructor for Maps
is used for passing dict to ensure that it cannot be altered after the fork, which would be very
unsound.

4.2.3 Predicates

In Chalice, a predicate definition looks like this:

predicate pred{acc(f1) && f1!=null}

A predicate is defined in a class, the identifiers it mentions belong to the fields of this class.
pred is the name of the predicate, and f1 is a member of the same class as pred. An occurrence
of the predicate in a contract looks like this:

requires obj.pred;

Where obj belongs to the class that defines pred. A predicate can be folded and unfolded
again. Folded means that the predicate is looked at as one package. For evaluating parts of the
predicate, it needs to be unfolded.
We decided to always evaluate the predicates at runtime, without looking at the current folding
state. Statements concerning the folding of a predicate are just translated to comments in C#.
Another approach would have been to keep track of the current folding state, which is a possible
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extension for future work.
For each predicate definition pred, two methods are generated in the C# code:

public Map collectPredPerm_pred()

public bool checkPredicate_pred()

checkPredicate is the one used in C# contracts. It simply evaluates the predicate as a boolean
expression.
collectPredPerm is used when the permissions for a inhale or exhale are collected (e.g. in
collectPrecond foo). Like in collectPrecond, the permissions are added to a Map which is
then returned. The caller can then add the returned Map to his own:

dict = Tracer.mapAdd(dict, obj.collectPredPerm_pred());

This output is generated when a MemberAccess(obj,pred) occurs in an inhaled contract or in
another predicate. An Access(ma, perm), in which ma is a predicate, is translated to this:

dict = Tracer.mapAdd(dict, Tracer.permTimesMap(perm, obj.collectPredPerm_pred()));

In this case, perm is a permission (e.g. 50% ). dict is some Map identifier; it could even be the
PermissionTracer.
The default value of PredicateEpsilon, which represents the abstract read fraction that is
multiplied with the predicate in a rd(pred) expression, is 1/100.

4.2.4 Monitor Invariants

Again, two methods are used:

public Map collectInvPerm()

public bool checkInvariant()

Again, checkInvariant is the one used in C# contracts. collectInvPerm is used when a moni-
tor invariant is inhaled or exhaled. Additionally, checkRdInvariant is defined, which works like
checkInvariant but only requires read access to all field locations mentioned in the invariant.
No permission multiplication is performed for checking the read invariant, the only requirement
for the check to evaluate to true is that the current thread holds some permission amount > 0%
for the mentioned field locations, independent of the actual amount that is stated. Note that
this doesn’t allow releasing less than what was previously inhaled, since the release of the read
lock relies on the collectInvPerm, not on the checkRdInvariant. This approach was taken
due to the general weakness of in-line checks, as explained in Section 4.4.3.
There can only be one monitor invariant per class. All invariant-members of a Chalice class
will be concatenated and translated into those two C# methods. For the read acquire and
read release, the result of collectInvPerm is just multiplied with the MonitorEpsilon per-
mission to obtain an abstract read fraction instead of the full amount. The default value of a
MonitorEpsilon permission is (0,1/100,0).

4.3 Operations

4.3.1 The Fraction Class

A Fraction represents a rational number q = a/b using the two integers numerator (a) and
denominator (b). It implements the IComparable interface of C#, which is used to compare
objects with one another and is useful for relational operators. However, its function CompareTo

is only defined for arguments of type integer or Fraction. The constructor of Fraction either
takes two integers (a and b), or another Fraction (copy constructor).
Several arithmetic and relational operators are defined statically for (Fraction, Fraction) and
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(Fraction, int) pairs. Their implementation follows the mathematical interpretation as rational
numbers.
Additionally, the methods cancel, divides are defined, and ToString, GetHashCode and
Equals are overridden.
void cancel() simplifies the quotient by dividing both the numerator and the denominator by
their greatest common divisor. This method is used by some operators to normalize arguments
and results.
bool divides(int n) checks whether the argument n is divisible by this, i.e. it returns true
iff n · a/b ∈ Z. This must be true if a permission is mutiplied by some number n of epsilon
permission.
string ToString() is defined by object, it is overridden in Fraction in order to improve read-
ability when inspecting a Permission when debugging. GetHashCode and Equals are overridden
so that they match the == and != operator’s definition.

4.3.2 The Permission Class

A Permission represents a Chalice permission as a (Fraction, Fraction, integer) tuple. The rea-
soning behind this is explained in Section 3.2. It implements the IComparable interface with
the methods CompareTo(Permission other) and CompareTo(int percent). The Permission’s
constructor can either take two Fractions and an integer (the whole triplet), just an integer
denoting the percentage for the first element, or another Permission (copy constructor). There
is also a constructor that takes a boolean, which is used to set the boolean field isRdLiteral.
This field is used as a workaround for checking that > 0% is held, even if the translation uses a
≥ instead of a > operator: The method for ≥ checks this field, and returns the result from > 0
instead if it’s true. Picking the right operator during translation would require to look into the
right hand side of ≥, which is complicated. Neither the boolean constructor nor the field are
used in any other context.
Also, it overrides the Equals, GetHashCode and ToString methods for the same reasons as in
the Fraction class.
Again, the arithmetic and relational operators are defined statically.
static Fraction getReadFractionUnit() defines the unit u of the abstract read permission,
which is used by the Permission multiplication. The default value is 1/1000.
For the operators, let pA, pB be Permissions, so that pA = (a1, a2, a3) and pB = (b1, b2, b3) with
the types (Fraction, Fraction, integer).

⊕ : pA + pB := (a1 + b1, a2 + b2, a3 + b3)

	 : pA − pB := (a1 − b1, a2 − b2, a3 − b3)
⊗ : pA × pB :=

(
a1×b1, (a1×b2) + (b1×a2) + (a2×b2×u), b1×a3 + a1×b3

)
� : undefined

== : pA = pB := (a1 = b1) ∧ (a2 = b2) ∧ (a3 = b3)

6= : pA 6= pB := !(pA = pB)

≥ : pA ≥ pB := (a1 > b1) ∨
(

(a1 = b1) ∧ (a2 > b2)
)
∨
(

(a1 = b1) ∧ (a2 = b2) ∧ (a3 ≥ b3)
)

≤ : pA ≥ pB := (a1 < b1) ∨
(

(a1 = b1) ∧ (a2 < b2)
)
∨
(

(a1 = b1) ∧ (a2 = b2) ∧ (a3 ≤ b3)
)

> : pA > pB := !(pA ≤ pB)

< : pA < pB := !(pA ≥ pB)
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For the multiplication (⊗) to be defined, (b1×a3 + a1×b3) must be an integer. The following
two requirements guarantee this:
a3 6= 0 =⇒

(
b2 = 0 ∧ b3 = 0 ∧ b1.divides(a3)

)
b3 6= 0 =⇒

(
a2 = 0 ∧ a3 = 0 ∧ a1.divides(b3)

)
An abstract read permission times an epsilon is never allowed, hence the b2 = 0 and a2 = 0
conjuncts above. The result of such a multiplication couldn’t be an integer because we assume
that abstract read fractions are always much smaller than concrete fractions, and therefore the
result would be smaller than one.

4.3.3 The Tracer Class

The Tracer has the following fields:

public [ThreadStatic] static Map PermissionTracer;

public [ThreadStatic] static Permission tempPerm;

The PermissionTracer is explained in Section 3.3. The field tempPerm is used as the out-
parameter for TryGetValue, which is explained below. tempPerm prevents methods from hav-
ing to declare a suitable Permission variable beforehand, which would make it impossible to
use TryGetValue in preconditions. The ThreadStatic attribute prevents other threads from
interfering.
There are three methods for accessing the PermissionTracer:

public bool TryGetValue(object obj, string str, out Permission value)

public void addElement(object obj, string str, Permission value)

public void subtract(Map dict)

TryGetValue first creates a (object, string) tuple from the first two arguments, which represent
the associated field location. The object is the target of the field dereference, and the string is
the field name (which is unique in the scope of the object).
Then, TryGetValue uses that tuple to query the PermissionTracer for the Permission associated
with it, which is then stored in the out parameter. This method is overloaded, so that the out
parameter can be left out. In this case, the field tempPerm is used as the out parameter for the
query.
The method returns true if the query was successful, i.e., if an entry with this tuple as a key
exists. If no such entry exists, null is assigned to the out parameter and false is returned, which
usually leads to an assertion failure.
The purpose of TryGetValue is to facilitate in-line checks, which otherwise would need to create
the tuple first themselves, which again would make preconditions infeasible.
The Chalice statement requires acc(obj.f, 50); can now be translated to:

Contract.Requires(Tracer.TryGetValue((object)obj, f)

&& Tracer.tempPerm ≥ new Permission(50));

addElement creates a (object, string) tuple from the first two arguments, and then adds the
Permission value to the PermissionTracer entry with the tuple as a key. If no such entry exists
yet, it is created. If the entry ends up with a Permission of more than 100%, an assertion failure
occurs.
subtract takes a Map and subtracts it from the Tracer, which is used for exhaling. Inter-
nally, it iterates over the Map’s entries and subtracts them from the corresponding entries in
the Tracer. If the Map’s value is bigger than the Tracer’s, or if the Tracer doesn’t have the
entry at all, then an assertion failure occurs. This is the expected behavior, since it means that
the current thread does not own the necessary Permission for the operation it’s about to perform.
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In addition, several auxiliary methods for Map-related operations are defined in the Tracer.
Map mapAdd(Map target, object obj, string str, Permission per) is similar to addElement,
but this time the Permission is added to the target instead of the Tracer. After adding
the Permission, the updated Map is returned. The target Map is altered by this method.
Map mapAdd(Map a, Map b) implements the addition for two Maps. The result is a new Map;
the arguments remain unaltered. Again, no entry may exceed 100%.
Map permTimesMap(Permission perm, Map dict) implements the multiplication of a Permission
with a Map. Each of dict’s values is multiplied by perm and then stored in the result Map.
The same rules as for the Permission multiplication operator (defined in Section 4.3.2) apply.
Again, the argument Map remains unaltered.
Map copyMap(Map other) creates a copy of the argument and returns the copy. This method can
be used like a copy constructor.

The last three methods are used to scale the abstract read fractions of a given Map, so that
they are smaller than what the current thread holds:
Permission scaleOne(Permission old, Permission refr) scales the old’s abstract read Frac-
tion down until it is smaller than the one in refr, then it returns the result. The other two
elements of the Permission triplet are ignored. This method is used by the scale method (de-
fined below).
Permission scaleTo(Permission old, int goalDenom) scales the abstract read Fraction of old

so that its denominator is equal to goalDenom. The resulting Permission is returned. This
method too is used by scale.
Fraction scale(Map dict) first decides on a denominator maxDenom for the abstract read Per-
missions. This is achieved by iterating over all entries and calling scaleOne(entry.Value, p),
where p is the value of the same entry in the Tracer. If the Tracer is missing an entry that is
in dict, an assertion failure occurs. maxDenom is then chosen to be the maximum abstract read
Fraction’s denominator of all the results of scaleOne.
Then, the entries of dict are scaled so that their abstract read Fraction’s denominator is equal
to maxDenom. For this, scaleTo(entry.Value, maxDenom) is used. When the scaling of dict

is complete, the Fraction 1/maxDenom is returned. Note that this method alters the argument
dict.

4.3.4 The MonitorHandler Class

The MonitorHandler class is used for lock-related statements. In particular, it maintains a
mapping between source program objects and monitor objects. Its only field is monitorPerms,
which is explained in Section 3.4. All of its methods are static, and every method corresponds
to one Chalice statement or expression, except the Lock expression (as explained in Section
3.4). Note that the inhaling, exhaling and checking of the monitor invariant is not performed
by these methods. The caller must do that manually (see Sections 3.5.4 and 4.2.4 for details).

void shareElement(object obj) handles the share(obj) statement from Chalice. It requires
that the object is not shared already, and the thread must have write access to the obj.mu field.
The mu field is used by Chalice for deadlock avoidance; it is implicitly defined for every Chalice
class. If the requirements are met, then a new entry is added to monitorPerms. The value of
the new entry is a new ReaderWriterLock, the key is the object obj.
void unshareElement(object obj) handles the unshare(obj) statement from Chalice. It re-
moves the entry with key obj from monitorPerms. It requires write access to the mu field and
that the write lock associated with obj is held by the current thread.
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void acquireReadLock(object obj) corresponds to RdAcquire(obj) in Chalice. It requires read
access to mu, and obj must be shared, i.e., an entry with key obj must exist in monitorPerms.
Internally, it tries to acquire a read lock that is associated with obj. The current thread is
blocked until the lock is acquired.
void acquireWriteLock(object obj) corresponds to Acquire(obj) in Chalice. It requires read
access to mu, and obj must be shared. It works analogously to acquireReadLock, but is ex-
clusive, i.e., no other write or read lock of the same object may be held or acquired while the
write lock is held by some thread.
void releaseReadLock(object obj) corresponts to RdRelease(obj). It releases a read lock. It
requires that the object is shared and that the current thread actually holds a read lock of it.
void releaseWriteLock(object obj) corresponds to Release(obj) and requires that obj is
shared and the current thread actually holds the write lock of it.
bool isReadLockHeld(object obj) corresponds to the RdHolds(obj) expression and requires
that obj is shared. It returns true if the current thread holds a read lock of obj, and false
otherwise.
bool isWriteLockHeld(object obj) corresponds to Holds(obj) and works analogously.

4.4 Checks

4.4.1 Read and Write Checks

Whenever a field is assigned to, we have to make sure that the current thread has write access
to it. Consider a Chalice statement of the form obj.f := someObj;

When translating that, it is first checked whether the Permission in the Tracer that belongs to
the (obj,f) tuple equals 100%, and only afterwards does the actual assignment takes place. The
C# output for this statement looks like this:

Contract.Assert(Tracer.TryGetValue((object)obj, f)

&& (Tracer.tempPerm == new Permission(100)));

obj.f = someObj;

Apart from that, similar write checks are performed for the joinable field in joins (See 4.2.2)
and the mu field for some lock operations (4.3.4).

Read checks happen far more often, as they are necessary for every field that is dereferenced or
otherwise read from. Because of the pervasiveness of reads, we have to scan each expression of
every statement for field read occurrences before translating the statement itself. This scan is
done during the translation process, not at runtime. For each field read obj.f that is found,
an assertion is outputted:

Contract.Assert(Tracer.TryGetValue((object)obj, f)

&& (Tracer.tempPerm > new Permission(0)));

Additionally, the scanner looks out for implications and && expressions for short-circuiting,
because otherwise a check like (f != null && acc(f.g)) would end in a failure. Pre- and
postconditions do not generate read checks, because the support for short-circuiting would be
very cumbersome, especially since no other non-contract statements (like an if-then-else block)
are allowed in C# before the contract block has ended.
The actual translation of the statement happens after all the read access checks have been
generated.
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4.4.2 Loop Invariants

Loop invariants are translated to a set of assertions. All these assertions are first checked before
entering the loop, and then again at the end of the loop body, so that they are checked after
each iteration.
Note that the read checks generated from the invariants and the guard belong to this set of
assertions too, so that they are always checked together with the invariant.

4.4.3 Pre- and Postconditions

Pre- and postconditions are translated for all methods and functions. However, permission ex-
pressions are not accumulated like they are for inhaling and exhaling, so the checks done here
may actually be too weak in that respect. Accumulating the permissions to be checked would
require additional collector methods. This weakness of in-line checks is also the reason why
read checks for monitor invariants only check for positive amounts, and not some exact value
defined by permission multiplication like for the inhaling and exhaling (see Section 4.2.4).
Pre- and postconditions appear outside of the method body in Chalice. For C#, they are moved
to the very start of the body:

Contract location in C#

public void bar(){

Contract.Requires(true);

Contract.Ensures(true);

//computation

}

Pre- and postconditions need to be translated separately, because the grammar for postcon-
ditions differs from the one preconditions and assertions use:
Because the postcondition occurs at the start of the method body, the compiler might think
that it talks about unassigned out parameters and thus mark it as an error.
The Contract.ValueAtReturn method solves this problem by wrapping the out parameters.
Here is an example showing the translation:

Example Chalice method

method foo(i : int) returns (res : int)

requires (i > 0)

ensures (res > i)

{//computation

}

Corresponding C# output

public void foo(int i, out int res){

Contract.Requires(i > 0);

Contract.Ensures(Contract.ValueAtReturn(out res) > i);

//computation

}

4.5 Other Design Choices

Negative permission amounts are usually unsound, but we decided not to forbid them in general,
which could easily be done in the Permission class. However, we do check for negative values
in the Tracer methods addElement, mapAdd and subtract. This should be enough to prevent
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unsound Map modifications, but it still allows to have negative intermediate values in contracts.
Here is an example of a precondition that thus is valid at runtime:
requires(acc(o.f, -rd) && acc(o.f, rd) && acc(o.f,100))

We decided not to support inhaling and exhaling for channels yet, but we defined the mu-field
and the ChannelEpsilon so that contracts can talk about it. The abstract ChannelEpsilon

fraction is by default 1/10.

The Eval statement is not supported, but it doesn’t lead to an exception while translating;
only a warning is displayed.
An occurrence of the Eval statement is not that tragic; it should still be possible to inspect the
rest of the program at runtime. The only information missing is the outcome of Eval, which
only occurs in contracts. In order to be able to check the rest of the contract, the converter
will just fill in a dummy value. However, the Eval statement could actually appear nested in
other expressions that expect a different value, and thus lead to runtime errors. The warning
is there to remind the programmer that he might have to change the dummy value, so that no
error originates from Eval.

In general, the translation doesn’t stop when an unsupported construct appears, it just dis-
plays a warning so that the programmer can fix the problem in the output code manually.
Since such unsupported constructs appear mostly in contracts, the usual fix will be to just
remove the problematic part of the statement.

Downgrade is also not supported. The ReaderWriterLock used for monitors would be capa-
ble of handling up- and downgrading, but only allows a reader lock being upgraded to a writer
lock and then being downgraded again. It does not allow downgrading without upgrading, and
since Chalice doesn’t support upgrading, this requirement could never be met.
To release a write lock and then try to acquire a read lock might not have the expected behav-
ior, namely that no other thread can acquire a write lock during the downgrade. Therefore, we
decided to not support downgrade at all.

An Assume statement translates to a assertion at runtime, since a wrong assume would make
the rest of the verification unsound and therefore shouldn’t occur. A comment is added to point
out that this assert actually stems from an assume in Chalice.
The code generation without runtime checks translated Assume(false) statements to an As-

sert(false), because reaching this statement means that a wrong turn has been taken. Other
assumes were ignored. So, nothing has changed for the Assume(false) case in the new code
generation.
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5 Testing

For testing the code generation, the examples in tests\examples and the custom example
nestedRecursive were used. Many of those examples were missing an appropriate main method
to be a C# starting point, and thus had to be altered (See Section 3.5.3). The table below
shows the name of the test, how it was modified and whether the verification was successful.
The modification concern the main methods in the .chalice file only.
For the verification, the newly added main methods didn’t always verify, which isn’t important
for testing the code generation. If the verification only failed because of newly generated code,
this is indicated with an asterisk (Succeeds*).
The Runtime column says whether the program behaved correctly at runtime, which requires
absence of assertion failures and unexpected results.
The last column indicates whether the runtime behavior is what is expected. Note that a
program might be expected to run correctly even if it didn’t verify, which may be due to the
thread-modularity (see Section 3.1) or simply because the problematic cases marked by the
verification process didn’t occur in the given setting. In other words: just because a contract is
unproven, that doesn’t mean that it actually has to fail at runtime.
The problems with some of the test cases are explained below.

File Modification Verifier Runtime Correct

AssociationList Added main with Init() Fails Fails Yes
AssociationList Added main without Init() Succeeds Succeeds Yes
AVLTree.iterative Added main Succeeds* Succeeds Yes
AVLTree.nokeys Added main Succeeds* Succeeds Yes
BackgroundComputation Unaltered Succeeds Succeeds Yes
cell Added calls to main1 - main4 Fails Succeeds No
CopyLessMessagePassing Added main Succeeds* Succeeds Yes
CLMP-with-ack Added main Succeeds* Succeeds Yes
CLMP-with-ack2 Added main Succeeds* Succeeds Yes
dining-philosophers Unaltered Succeeds Succeeds Yes
FictionallyDisjointCells Added main Succeeds* Succeeds Yes
ForkJoin Calls to main1 and main2 Succeeds Fails No
HandOverHand Main renamed Succeeds Succeeds Yes
iterator Unaltered Succeeds Fails No
iterator2 Unaltered Succeeds Fails No
linkedList Added main Succeeds* Succeeds Yes
OwickiGries Main renamed Succeeds Succeeds Yes
PetersonsAlgorithm Main renamed Succeeds Succeeds Yes
ProdConsChannel Main renamed Succeeds Fails No
Sieve Start renamed Succeeds Succeeds Yes
Solver Added main Succeeds Succeeds Yes
swap Added main Succeeds* Succeeds Yes
RockBand Main rename Fails Succeeds Yes
TreeOfWorker Added main Succeeds* Succeeds Yes
UnboundedThreads Added main Fails Fails No
nestedRecursive Custom Fails Succeeds Yes

cell.chalice: The runtime checker can’t find an error because the Free-statement is not
supported.
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ForkJoin.chalice: Fails at compile time due to the unsupported Eval expressions. If they are
removed in the output, the runtime checking succeeds.
The examples iterator, iterator2, producer-consumer and UnboundedThreads fail at com-
pile time because quantification is not supported.
ProdConsChannel fails due to the missing channel support (inhaling and exhaling).

In summary, there are seven unsuccessful test cases, which fail due to unsupported statements
or constructs. The remaining eighteen test cases either don’t use unsupported constructs, or
the unsupported constructs don’t affect the execution (like some Eval expressions).

6 Results

6.1 Conclusion

In the course of this project we have found an appropriate Permission-model for runtime check-
ing. Using this model, we have extended the previously existing code generation to represent
and track permissions at runtime.
Permissions are represented as a (Fraction, Fraction, integer) triple, and are associated with
(object, string) tuples denoting target and name of the field location. The tracking of the Per-
missions at runtime is done thread-modularly, unlike the static verifier which works method-
modularly. We support inhaling and exhaling of Permissions for forks, joins, predicates and
monitor invariants. Call related in- and exhaling is not needed due to the thread modular
tracking strategy.
Predicates are directly evaluated at runtime, we do not keep track of the folded/unfolded sta-
tus. We also track the mu field of channels and monitors, but we do not support inhaling and
exhaling for channels, nor do we support the deadlock avoidance mechanisms of the monitors.
Additionally, we added support for reader-writer locks and connected statements.

The implemented constructs allow us to insert read and write checks before executing opera-
tionally relevant statements. Also, we can perform extended checks in pre- and postconditions,
loop and monitor invariants and in assert statements.
The new code generation has been tested and behaves as expected for the supported constructs.
If unsupported constructs are present, it is often possible to make runtime checking work any-
way, either through dummy values or by manually removing the problematic statements in the
output code.

6.2 Future Work

The next step for improving the runtime checking would probably be to implement the deadlock
avoidance mechanisms. This could be done by using a globally accessible tree to keep track of
the locking order. However, to ensure the absence of loops, this tree would need to be locked
entirely every time a lock is inserted, which could lead to performance issues.
The permission checks for contracts and monitor invariants could be made tighter by collecting
all the permissions first, as is done for inhaling and exhaling. This could be achieved by adding
a ”collectAndCheck“ method to the Tracer class. This method would take the result of the
correct collectPrecond or collectInvPerm as an argument, and check that the permission-

Tracer holds at least the same permission amounts. This would be similar to exhaling the Map,
only that it isn’t subtracted from the Tracer.
Another possibility would be to just use a strict, linear order of all locks by associating them
with a integer. However, this approach would be too restrictive, as it is possible to have multiple
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locks that are independent in the ordering in Chalice, i.e. without one having a bigger priority
than the other.
So, a decision must be made to either prioritize performance or expressiveness.

The support of inhaling and exhaling over channels is a pending, but likely straightforward
task.
Then, there are several expressions that are currently not supported: Eval, quantification state-
ments, Free, Credit and AccessSeq are probably the most important ones. Especially Eval

occurs quite often, but supporting it is rather involved since we needed to keep track of different
states all the time.
Finally, one could implement support for keeping track of the state of predicates, instead of just
evaluating them. But the benefit of this feature is rather small compared to the other possible
improvements mentioned above.
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