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1 Motivation
Program verification techniques enable proving the absence of bugs in programs,
which is becoming increasingly important given the widespread use of programs in
critical domains. Separation logic (SL) [9] is one such program verification technique
for heap-manipulating programs. It provides a way to prove Hoare triples {P} c {Q},
where P is a precondition, c is the code to be executed and Q is a postcondition. A
Hoare triple {P} c {Q} holds if whenever P holds before the execution, then Q holds
after the execution of c. Concurrent separation logic (CSL) [8] further extends SL
to verify concurrent programs. It enables c in the Hoare triple {P} c {Q} to contain
concurrency, and asserts the triple only if it holds for all possible interleavings in
parallel executions of c.

In practice, it is desirable to automatically verify source code statically. Viper [7]
is an automatic verification infrastructure, which includes the Viper intermediate
verification language (IVL) and verifiers to automatically check the correctness of
Viper IVL programs. The assertion language in the Viper IVL is based on SL. The
Viper infrastructure has been used as a foundation to develop various verifiers for
real-world programming languages using SL and CSL reasoning principles. This is
achieved by developing Viper front-ends that translate input programs and their
specifications, such as pre- and postconditions, into Viper IVL programs. Examples
for Viper front-ends include Gobra [11] for Go, Nagini [6] for Python, Prusti [2] for
Rust, and VerCors [3] to verify Java Programs.

In order for such a front-end translation to be sound, the correctness of the
Viper program must imply the correctness of the input program w.r.t. the input
specification. In general, the soundness of translations in current Viper front-ends
is not formally proved. In recent work, Arlt [1] started addressing this issue, by
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formally defining a simple Viper front-end that supports concurrency and proving its
translation sound once and for all in the Isabelle theorem prover. Arlt’s work shows
the feasibility of formally proving the soundness of Viper front-end translations,
where the proof relies on the soundness of CSL proof rules for the developed front-
end. However, the work was specific to a particular translation. Moreover, the work
deals directly with the operational semantics of a Viper program. This requires
proving low-level steps to bridge the gap between Viper’s operational semantics and
the front-ends’ CSL, which is cumbersome.

Our project aims to explore a general approach for proving Viper front-end trans-
lations sound once and for all. Moreover, instead of directly working with the correct-
ness of a Viper program via its operational semantics, we want to instead work with
a separation logic proof representation of a Viper program (such a representation
already exists).

2 New Approach
To show the soundness of the translation from a front-end program to a Viper pro-
gram, we need to prove that if the Viper program is correct w.r.t. Viper’s operational
semantics, then the front-end program is also correct w.r.t. to the front-end’s oper-
ational semantics. In the new approach, we will construct this proof in three steps:

1. First, if the Viper program is correct w.r.t. its operational semantics, then there
exists a valid SL proof for it. The existence has already been proved formally.

2. Second, convert the SL proof of a Viper program into a CSL proof of the front-
end program. Developing a general approach for dealing with this step is the
main goal of this project.

3. The soundness of a front-ends’ CSL guarantees that a CSL proof of a front-end
program implies the correctness of the front-end program w.r.t. the front-ends’
operational semantics. The focus of this work is not on proving the CSL
soundness (but we could use the approach by Vafeiadis [10] to prove such a
result).

Our hope is that constructing the proof by connecting an SL proof of the Viper pro-
gram with a CSL proof of the front-end will lead to a proof that more directly matches
the intuition for why the translation is sound compared to Arlt’s approach [1], which
directly dealt with Viper’s operational semantics.

In addition to applying the new proof strategy, we also want the approach to work
for different kinds of front-end languages and corresponding CSLs. This will require
abstracting various components, including the state model and the leaf statements of
the front-end (such as assignments and allocations, but not, for example, sequential
or parallel compositions). Our goal is to provide generic building blocks (in the
form of formally proved lemmas) that can be used to systematically construct the
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proof of a translation. For example, we want to prove general rules for reasoning
about the translation of compositional front-end constructs (e.g. parallel and loop
compositions), where we will impose requirements on the leaf statements of the
front-end. To ensure that our rules are useful, we will use them to prove a concrete
translation.

One challenge is that our building blocks will have to account for nontrivial mis-
matches between the front-end state and the Viper state. For example, in Arlt’s
work [1], the front-end’s state model distinguishes between owning a heap location
or not owning the heap location, while the Viper semantics supports fractional owner-
ship of heap locations [4] represented by rationals. Dealing with this gap is nontrivial,
because Viper may be reasoning with ownership amounts that cannot be represented
in the front-end state. While Arlt’s solution is specific to this particular mismatch,
we aim to develop a general approach. In particular, our approach should also be
able to handle the case when a front-end uses fractional ownership represented by ra-
tionals (as is standard in the literature) and when the Viper semantics uses fractional
ownership represented by reals (which is what the actual Viper verifiers use, since
SMT solvers have built-in support for reals but not for rationals). Arlt’s approach
does not work for the mismatch between rationals and reals.

3 Project Goals
3.1 Core Goals

1. Develop a general framework mechanised in Isabelle for proving the soundness
of concurrency-supporting Viper front-ends. The framework should support
the following compositional front-end constructs: sequential composition, if
statements, while loops, and parallel composition. The front-end leaf state-
ments, the front-end state model, and the Viper state model should be param-
eters of the framework. The framework should provide sufficient conditions on
the front-end and Viper state models to ensure the soundness of different parts
of the front-end translation. These conditions should be sufficient to handle the
following two instantiations of the state models: (1) the front-end state model
distinguishes only between owning and not owning a heap location (as in Arlt’s
work) and the Viper state model supports fractional permissions represented
by reals, (2) the front-end state model supports fractional permissions repre-
sented by rationals and the Viper state model supports fractional permissions
represented by reals.

2. In Isabelle, formalise a concurrency-supporting front-end language (syntax and
semantics) that supports heap operations and all of the compositional con-
structs supported by the framework defined in core goal 1. The front-end
language must support allocating, writing, and reading heap locations.
In Isabelle, define the CSL assertion language for the developed language.
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The assertion language must support fractional permissions represented by
rationals.
In Isabelle, define an executable translation from the front-end language and
the annotations (such as pre- and postconditions expressed in the CSL assertion
language) to Viper.

3. In Isabelle, instantiate the framework defined in core goal 1 for the language
and translation defined in core goal 2. The instantiation should prove the
soundness theorem of the translation defined in core goal 2 (assuming the
soundness of the front-ends’ CSL).

3.2 Extension Goals
1. In Isabelle, show that the general framework is able to deal with more advanced

parallel constructs (e.g., conditional critical regions used by O’Hearn [8] and
Brookes [5]). This may require extending the framework.

2. In Isabelle, extend the CSL assertion language with more advanced features
(for example, recursive predicates) and use the framework to obtain the corre-
sponding soundness theorem for the adjusted translation.

3. Document the strengths and weaknesses of the new approach developed in the
core goals compared to Arlt’s approach.
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