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1. Introduction 

Program verification techniques enable proving the absence of bugs in programs, which 

is becoming increasingly important given the widespread use of programs in critical 

domains. Separation logic is one such program verification technique for heap-

manipulating programs. In particular, it is a program logic for proving Hoare triples 

" {𝑃𝑃} 𝑆𝑆 {𝑄𝑄} " where 𝑃𝑃  and 𝑄𝑄  are separation logic assertions and 𝑆𝑆  is a heap-

manipulating program. 

Heap-manipulating programs often involve recursive pointer data structures. For 

example, the commonly used linked list data structure is defined with each node 

containing a value field and a pointer field that recursively points to the next node: 

 
One natural approach for specifying such recursively-defined structures in separation 

logic is via recursive predicates that are interpreted via their least fixed point, which 

informally refers to everything that is implied by any finite unrolling of the predicate. 

We call this model of predicates the equirecursive model. As an example, the least fixed 

point of the following 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 predicate 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥. 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) ∗ (𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⟶ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)) 
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is the interpretation where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) is true if and only if 𝑥𝑥 is the head of some non-

empty list of finite length and ownership is held to its fields. 

In practice, it is desirable to automate separation logic proofs involving such recursive 

predicates. There are various static verification tools that follow this goal, Viper [2] 

being one of them. For such tools, directly implementing the equirecursive model is 

infeasible, since one cannot statically know when to stop unrolling the recursive 

definition. Instead, a predicate instance and its body are treated as different objects, and 

unfold and fold operations are used to explicitly exchange a predicate name for its body 

(or vice versa). This results in the isorecursive model of predicates. 

Viper's isorecursive model for predicates has been formalized as part of an operational 

semantics for a subset of the Viper language via a total heap semantics (THS). The goal 

of this project is to increase the confidence of THS by formally proving in Isabelle that 

verification of a Viper program w.r.t. THS implies verification of a Viper program w.r.t. 

an equirecursive semantics (EquiSem) that uses an equirecursive model for predicates 

(a more abstract version of EquiSem has been formalized for a subset of Viper). 

Summers and Drossopoulou [1] also relate an isorecursive model and an equirecursive 

model. In particular, they formalize two Hoare logics for the two models w.r.t. a 

concurrent language and show that if a Hoare triple where predicates are interpreted 

isorecursively is derivable, then so is the corresponding Hoare triple where predicates 

are interpreted equirecursively. In our work, we are considering Viper instead of a 

concurrent language (for example, we must consider inhale and exhale statements, 

which they do not). Moreover, we aim to directly prove a result between two operational 

semantics' for Viper programs (THS and EquiSem) instead of relating two Hoare logics. 

Finally, our definitions of the iso- and equirecursive models do not perfectly match 

those by Summers and Drossopoulou and their work is not mechanized in an interactive 

theorem prover. 

2. Light Definition of the Models 

In this part, we give light definitions of the EquiSem and THS models. 
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In EquiSem, a program state is described by 𝜎𝜎,𝜋𝜋, ℎ, where environment 𝜎𝜎 maps each 

local variable to a value of its type, permission mask 𝜋𝜋 maps each memory location to 

a non-negative rational value indicating the fraction of permission held, and ℎ is a 

partial heap. The semantics of assertions is interpreted as the least fixed point of a set 

of entailment equations. Specifically, the entailment equation for a predicate 𝑃𝑃 is 

𝜎𝜎,𝜋𝜋,ℎ ⊨𝐸𝐸 𝑃𝑃(𝑒𝑒) ⟺ 𝜎𝜎,𝜋𝜋,ℎ ⊨𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃(𝑒𝑒)), 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃(𝑒𝑒)) is the body of the predicate 𝑃𝑃(𝑒𝑒). Knaster-Tarki's theorem [3,4] 

allows one to show that the least-fixed point exists for predicates in Viper if recursive 

occurrences of the predicate only appear in positive positions. 

In THS, the permission mask 𝜋𝜋  is extended to Π  which also maps each predicate 

instance to a non-negative rational number, indicating the fractional permission amount 

to this predicate instance. Moreover, the heap, denoted by 𝐻𝐻, is total rather than partial 

as in EquiSem. A program state thus becomes 𝜎𝜎,Π,𝐻𝐻, with 𝜎𝜎 defined as in EquiSem. 

Instead of defining a semantics of possibly recursively-defined predicates as the least 

fixed point of an entailment equation set, a predicate instance 𝑃𝑃(𝑒𝑒)  holds in state 

𝜎𝜎,Π,𝐻𝐻, if there is sufficient permission to the predicate instance in Π. 

THS makes use of unfold and fold operations (they are treated as skip statements in 

EquiSem) to exchange predicate names for their bodies when needed. An “unfold 𝑃𝑃(𝑥𝑥)” 

statement changes the program state by decreasing the permission amount to 𝑃𝑃(𝑥𝑥) by 

one, and obtaining the assertions specified by the body of 𝑃𝑃(𝑥𝑥) in return. The fold 

does the reverse of unfold: “fold 𝑃𝑃(𝑥𝑥)” changes the program state by replacing the 

resources specified by the body of 𝑃𝑃(𝑥𝑥)  with an increase of permission amount to 

𝑃𝑃(𝑥𝑥) itself by one. 

3. Project Goals 

3.1. Core Goals 

 Currently, EquiSem itself has not been formalized. However, a more abstract 

version of EquiSem (AbstractInterpSem) that parametrizes over the predicate 
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interpretation has been formalized. A first goal is to obtain EquiSem by developing 

a general fixed point theory in Isabelle for AbstractInterpSem and using this theory 

to instantiate AbstractInterpSem with the least fixed point interpretation to obtain 

EquiSem. 

 Develop a general strategy for connecting THS and EquiSem. 

 Formally define in Isabelle the relation between the EquiSem and THS state 

models. Using this relation prove a relationship between the assertions in EquiSem 

and THS (and as a result inhale and exhale statements). 

3.2. Extension Goals 

 Extend the results obtained in the core goals to formally prove in Isabelle that 

verification of a Viper program in THS implies verification of a Viper program in 

EquiSem. 
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