
1

Formally Connecting an Isorecursive with

an Equirecursive Viper Semantics

Practical Work Project Description

Hongyi Ling

Supervised by Prof. Dr. Peter Müller, Thibault Dardinier and Gaurav Parthasarathy

April, 2023

1. Introduction

Program verification techniques enable proving the absence of bugs in programs, which

is becoming increasingly important given the widespread use of programs in critical

domains. Separation logic is one such program verification technique for heap-

manipulating programs. In particular, it is a program logic for proving Hoare triples

" {𝑃𝑃} 𝑆𝑆 {𝑄𝑄} " where 𝑃𝑃 and 𝑄𝑄 are separation logic assertions and 𝑆𝑆 is a heap-

manipulating program.

Heap-manipulating programs often involve recursive pointer data structures. For

example, the commonly used linked list data structure is defined with each node

containing a value field and a pointer field that recursively points to the next node:

One natural approach for specifying such recursively-defined structures in separation

logic is via recursive predicates that are interpreted via their least fixed point, which

informally refers to everything that is implied by any finite unrolling of the predicate.

We call this model of predicates the equirecursive model. As an example, the least fixed

point of the following 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 predicate

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥. 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) ∗ (𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⟶ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛))

2

is the interpretation where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) is true if and only if 𝑥𝑥 is the head of some non-

empty list of finite length and ownership is held to its fields.

In practice, it is desirable to automate separation logic proofs involving such recursive

predicates. There are various static verification tools that follow this goal, Viper [2]

being one of them. For such tools, directly implementing the equirecursive model is

infeasible, since one cannot statically know when to stop unrolling the recursive

definition. Instead, a predicate instance and its body are treated as different objects, and

unfold and fold operations are used to explicitly exchange a predicate name for its body

(or vice versa). This results in the isorecursive model of predicates.

Viper's isorecursive model for predicates has been formalized as part of an operational

semantics for a subset of the Viper language via a total heap semantics (THS). The goal

of this project is to increase the confidence of THS by formally proving in Isabelle that

verification of a Viper program w.r.t. THS implies verification of a Viper program w.r.t.

an equirecursive semantics (EquiSem) that uses an equirecursive model for predicates

(a more abstract version of EquiSem has been formalized for a subset of Viper).

Summers and Drossopoulou [1] also relate an isorecursive model and an equirecursive

model. In particular, they formalize two Hoare logics for the two models w.r.t. a

concurrent language and show that if a Hoare triple where predicates are interpreted

isorecursively is derivable, then so is the corresponding Hoare triple where predicates

are interpreted equirecursively. In our work, we are considering Viper instead of a

concurrent language (for example, we must consider inhale and exhale statements,

which they do not). Moreover, we aim to directly prove a result between two operational

semantics' for Viper programs (THS and EquiSem) instead of relating two Hoare logics.

Finally, our definitions of the iso- and equirecursive models do not perfectly match

those by Summers and Drossopoulou and their work is not mechanized in an interactive

theorem prover.

2. Light Definition of the Models

In this part, we give light definitions of the EquiSem and THS models.

3

In EquiSem, a program state is described by 𝜎𝜎,𝜋𝜋, ℎ, where environment 𝜎𝜎 maps each

local variable to a value of its type, permission mask 𝜋𝜋 maps each memory location to

a non-negative rational value indicating the fraction of permission held, and ℎ is a

partial heap. The semantics of assertions is interpreted as the least fixed point of a set

of entailment equations. Specifically, the entailment equation for a predicate 𝑃𝑃 is

𝜎𝜎,𝜋𝜋,ℎ ⊨𝐸𝐸 𝑃𝑃(𝑒𝑒) ⟺ 𝜎𝜎,𝜋𝜋,ℎ ⊨𝐸𝐸 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃(𝑒𝑒)),

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑃𝑃(𝑒𝑒)) is the body of the predicate 𝑃𝑃(𝑒𝑒). Knaster-Tarki's theorem [3,4]

allows one to show that the least-fixed point exists for predicates in Viper if recursive

occurrences of the predicate only appear in positive positions.

In THS, the permission mask 𝜋𝜋 is extended to Π which also maps each predicate

instance to a non-negative rational number, indicating the fractional permission amount

to this predicate instance. Moreover, the heap, denoted by 𝐻𝐻, is total rather than partial

as in EquiSem. A program state thus becomes 𝜎𝜎,Π,𝐻𝐻, with 𝜎𝜎 defined as in EquiSem.

Instead of defining a semantics of possibly recursively-defined predicates as the least

fixed point of an entailment equation set, a predicate instance 𝑃𝑃(𝑒𝑒) holds in state

𝜎𝜎,Π,𝐻𝐻, if there is sufficient permission to the predicate instance in Π.

THS makes use of unfold and fold operations (they are treated as skip statements in

EquiSem) to exchange predicate names for their bodies when needed. An “unfold 𝑃𝑃(𝑥𝑥)”

statement changes the program state by decreasing the permission amount to 𝑃𝑃(𝑥𝑥) by

one, and obtaining the assertions specified by the body of 𝑃𝑃(𝑥𝑥) in return. The fold

does the reverse of unfold: “fold 𝑃𝑃(𝑥𝑥)” changes the program state by replacing the

resources specified by the body of 𝑃𝑃(𝑥𝑥) with an increase of permission amount to

𝑃𝑃(𝑥𝑥) itself by one.

3. Project Goals

3.1. Core Goals

 Currently, EquiSem itself has not been formalized. However, a more abstract

version of EquiSem (AbstractInterpSem) that parametrizes over the predicate

4

interpretation has been formalized. A first goal is to obtain EquiSem by developing

a general fixed point theory in Isabelle for AbstractInterpSem and using this theory

to instantiate AbstractInterpSem with the least fixed point interpretation to obtain

EquiSem.

 Develop a general strategy for connecting THS and EquiSem.

 Formally define in Isabelle the relation between the EquiSem and THS state

models. Using this relation prove a relationship between the assertions in EquiSem

and THS (and as a result inhale and exhale statements).

3.2. Extension Goals

 Extend the results obtained in the core goals to formally prove in Isabelle that

verification of a Viper program in THS implies verification of a Viper program in

EquiSem.

References

[1] Summers, Alexander J., and Sophia Drossopoulou. "A formal semantics for

isorecursive and equirecursive state abstractions." ECOOP 2013–Object-Oriented

Programming: 27th European Conference, Montpellier, France, July 1-5, 2013.

Proceedings 27. Springer Berlin Heidelberg, 2013.

[2] Müller, Peter, Malte Schwerhoff, and Alexander J. Summers. "Viper: A verification

infrastructure for permission-based reasoning." Verification, Model Checking, and

Abstract Interpretation: 17th International Conference, VMCAI 2016, St.

Petersburg, FL, USA, January 17-19, 2016. Proceedings 17. Springer Berlin

Heidelberg, 2016.

[3] Cousot, Patrick, and Radhia Cousot. "Constructive versions of Tarski’s fixed point

theorems." Pacific journal of Mathematics 82.1 (1979): 43-57.

[4] Dardinier, Thibault, Peter Müller, and Alexander J. Summers. "Fractional

resources in unbounded separation logic." Proceedings of the ACM on

5

Programming Languages 6.OOPSLA2 (2022): 1066-1092.

	Formally Connecting an Isorecursive with an Equirecursive Viper Semantics
	Practical Work Project Description
	1. Introduction
	2. Light Definition of the Models
	3. Project Goals
	3.1. Core Goals
	3.2. Extension Goals
	References

