
Secure Deletion of Sensitive Data in Protocol Implementations

Master’s Thesis Project Description

Hugo Queinnec

Supervisors: Linard Arquint, Prof. Dr. Peter Müller
Department of Computer Science, ETH Zurich

Start: 12th March 2023
End: 12th September 2023

1 Introduction

Security protocols are omnipresent in our daily lives, they are the foundation for many applications
ranging from online banking to text messaging. These protocols employ cryptography to achieve
fundamental security properties such as authentication and confidentiality. Online banking op-
erations serve as a prime example of how heavily we rely on security protocols. A breach in the
security of these protocols could lead to substantial financial losses, which is why it is essential that
these protocols and their implementations are both correct and secure. For example, proving a
property such as injective agreement protects against replay attacks, meaning that the protocol
participants reject messages that an attacker might have obtained in the past and tries to send
them again. In our online banking example, such a message could contain the request to perform a
certain transaction, and it is thus crucial that this request cannot be replayed by an attacker.

Guaranteeing security properties of protocols is a challenging task, especially in the presence of
a strong attacker (developed in section 2.1). In order to ensure these properties for all possible
protocol executions, verification must consider an arbitrary number of participants and protocol
sessions, as well as any possible ordering of protocol steps. Furthermore, protocol security properties
are generally not local to a particular participant but global, such as mutual authentication between
two parties. This presents an additional challenge for verification as it requires a global view of the
protocol execution.

When reasoning about correctness, two aspects of the protocol must be considered: the high-level
protocol itself (that we will call model), and its implementation. Proving security properties for a
protocol model is an active field of research and several promising automatic verifiers have been
proposed (like Tamarin [1] and ProVerif [2]). However, a verified protocol model does not imply
that an implementation is free of security vulnerabilities and achieves the same security properties
as its model. This is why we focus on verifying security properties for protocol implementations.

While Arquint and al. [3] propose a promising methodology for verifying security properties for
protocol implementations, they cannot reason about sensitive data that must be deleted in a timely
manner. This is a limitation for proving advanced security properties, such as forward secrecy
and post-compromise security, for protocols that periodically renew keys, like Signal [4]. Forward
secrecy informally guarantees that past keys remain secret even when newer keys or long-term
keys become known to the attacker. It is crucial for secure communication, as it ensures that an
attacker cannot decrypt past messages even if they manage to compromise a participant later on.
Post-compromise security informally means that a participant can communicate securely with a
peer, even when certain secrets leaked in the past. This is sometimes referred to as healing, which
allows a communication to resume securely at some point after a compromise.

Protocols like Signal achieve both of these properties by using a key rotation scheme within a
session, where a communication key is used to generate its successor and is then deleted. The goal
of this thesis is to extend the methodology by Arquint et al. to prove that time-sensitive data, such
as this communication key in the case of Signal, has been securely deleted. This allows us to prove
forward secrecy and post-compromise security properties for protocol implementations that employ
a key rotation scheme.

1



2 Background

2.1 Symbolic Protocol Analysis

This research work is a continuation of the study of symbolic methods for protocol analysis. We
use the symbolic model of cryptography, where we assume that the cryptographic primitives are
secure, i.e. the plaintext can only be obtained from a ciphertext if decryption is performed with
the correct decryption key. We assume that all operations are performed on symbolic terms instead
of bytes, which is why we abstract concrete bit-strings to terms.

Furthermore, we consider a Dolev-Yao [5] attacker present in the network. This attacker can
perform arbitrary operations on this term level, has full control over the network (including reading
and sending any message), and can corrupt any participant (which means that the attacker learns
all the terms contained in the participant’s state).

A common procedure for modeling protocols in this setting is to consider a trace. This trace
records the sequence of protocol events in a particular run of the protocol. Security properties can
be expressed as a logical expression about a trace, and then verified by checking whether it holds
for all possible traces of the protocol. Automated provers like Tamarin and ProVerif can verify
certain security properties for a protocol model by analyzing all its possible traces.

When considering the verification of protocol implementations, traces can also be used. The
overall idea is to extend the implementation with a trace data structure that is used to record
protocol operations. In order to reason about the whole protocol (and not a single execution),
we define a trace invariant. It is a property that every prefix of any trace of the protocol must
satisfy. Verifying the protocol implementation ultimately consists in proving that each action of
a participant or the attacker maintains the trace invariant, and then proving that the invariant
implies the intended security properties.

In the following, we will introduce two existing approaches in this verification setting aiming
at verifying high-level security properties for protocol implementations. These approaches are the
main basis for our work.

2.2 DY*

DY* [6] is a framework for proving security properties about protocol implementations written in
the F* programming language. Using a particular code structure and a particular way of storing
program state, DY* is able to account for some implementation-level specificities.

DY* uses a global trace to model the global execution state of the protocol. When a protocol
participant is taking a protocol step, it first reads its serialized state from the trace, deserializes it,
performs the step, and then saves its new serialized state to the trace. This trace is append-only
and existing entries cannot be modified or deleted. In addition to state changes, the trace records
all operations that are important for proving security properties (nonce generation, sent messages,
and corruption). Ultimately, this global trace contains each participant’s current and all past states,
and provides a global view over the entire distributed system. DY* achieves modular reasoning by
specifying a trace invariant and verifying that each function modifies the global trace only in ways
that maintain the trace invariant. Global security properties can then be proved from this trace
invariant.

On the global trace, each state is annotated with a session state identifier to indicate to which
participant and protocol session it belongs. This models the fact that a participant may be involved
in multiple independent protocol sessions simultaneously. The session state identifier includes a
version that distinguishes between different phases within a protocol session, as explained in detail
in section 3.2.

Each participant’s state comprises several values that together constitute the program state of
the participant at that point in time. Each of these values is assigned a secrecy label, indicating
which participants are allowed to read the value.

Protocol implementations written in F* and verified with DY* are executable, but require a
special runtime environment that provides access to the trace. Additionally, the DY* framework is
composed of a library, containing protocol-independent parts that only need to be verified once,
and can then be reused across different protocols. This significantly reduces the overall verification
time.

2



2.3 Modular verification of existing implementations

The DY* framework can only verify protocol implementations written in the functional F* language
that adhere to certain assumptions about their structure and program state storage. However,
these assumptions do not hold in general for existing implementations. Arquint et al. [3] present a
methodology for verifying existing heap-manipulating protocol implementations. This methodology
is agnostic to the programming language and relies only on standard features present in most
separation logic-based verifiers. In the following, we will focus on Go implementations and the
Gobra [7] verifier.

This methodology is inspired by DY* and also uses a global trace to provide a global view over
the entire system. To address the issue of arbitrary code structure in existing implementations, the
trace is treated as a concurrent data structure. It allows arbitrary interleavings of operations, in a
more fine-grained manner than arbitrary interleavings of protocol steps in DY*, which is crucial
for soundness in this setting. As existing implementations manage program state in their unique
ways, we cannot assume that they store the state on the trace or rewrite implementations to do
so. Instead, local invariants are used to relate program state stored at the local participant-level
with the global trace invariant. The global trace only records a sequence of events corresponding
to high-level operations (similar to DY*, except for the state storage entry) that must maintain a
trace invariant, which is used to prove global security properties. Unlike DY*, the global trace is a
ghost data structure for verification-only purposes, which will be erased before compilation. As
such, the global trace has no impact on the runtime behavior or performance.

Verification is based on separation-logic, which allows us to reason about heap manipulations.
Furthermore, separation-logic’s resources are used to prove injective agreement, which is to the
best of our knowledge not possible with DY*.

Similarly to DY*, this methodology comes with a library that allows to reuse protocol-
independent parts (verified only once) across different protocol implementations.

3 Secure deletion of data

3.1 Security properties

As mentioned, some protocols achieve strong security properties by frequently renewing their keys
within the same protocol session. This is notably the case in the Double-Ratchet Protocol [8], which
is a major component of the Signal protocol.

A session of the Double-Ratchet protocol requires frequent renewal of a shared secret between
two participants using the Diffie-Hellman ratchet. Then for every message, a communication key
is derived (from the current shared secret, using a key derivation function) and used to encrypt
the message. The Double-Ratchet protocol is designed to be secure against an attacker recording
all previous encrypted messages and obtaining a shared secret or a communication key at some
point. If the attacker compromises a participant, for example Alice, he may be able to decrypt some
messages using the keys and secrets stored in Alice’s memory. If Alice keeps storing all previous
secrets and session keys, then the attacker would be able to decrypt all previous messages that he
previously observed on the network. This is why it is crucial for Alice to delete previous secrets and
communication keys as soon as she has derived the new ones. Indeed, if previous keys are correctly
deleted from Alice’s memory, then the attacker may only be able to decrypt the last message(s),
and not all previous ones.

Therefore, the Double-Ratchet protocol satisfies forward secrecy. This property is enabled by
two main factors: cryptographically preventing past communication keys from being derived only
from the long-term secret and current communication keys, and securely deleting previous keys.

Post-compromise security, as briefly introduced earlier, is not achievable after the unrestricted
compromise of a participant: the initiator would have no guarantee to be in communication with
the intended peer because the attacker could act exactly like the peer. We instead consider the
formalized notion of post-compromise via state [9]: a participant can communicate securely with a
peer during a session even when long-term keys have been leaked as long as there is some secret
data available exclusively to the participants. To be able to prove this property, we must be able to
prove that a certain state in the past, to which an attacker has gained access, does not contain the
secret data on which the future communication depends. Although post-compromise security is not
directly related to secure deletion, it requires a fine-grained reasoning about the data occurring in a

3



participant’s state at a particular point in time. As we will see in section 3.3, the same mechanism
as for forward secrecy can be applied.

Our methodology to prove these two strong security properties requires a notion of temporality
because we have to specify the lapses of time during which certain keys are available. Outside these
lapses, keys must not be present in memory because they have either not been generated yet or
have already been securely deleted.

3.2 Existing approach and its shortcomings

DY* uses a version label for each session, in order to indicate temporality. Initially, all versions
are 0 and are incremented at some times to represent new protocol phases. Values with version
x can only occur in states within phase x of the protocol. DY* enforces this restriction with a
suitable invariant over states. Thus, only data of the current version can be stored, ensuring that
neither outdated keys nor future keys are present in memory. Building on this, they are able to
prove forward secrecy and post-compromise security for protocols like Signal.

However, DY* does not enforce that outdated keys are securely deleted from memory. They only
show that they are not present in the current scope, but outdated keys are not explicitly zeroed out
from memory. Moreover, this solution is not applicable to existing implementations because their
state is not stored on a trace, making it impossible to express such an invariant. Furthermore, DY*
enforces the invariant over state only at certain time points, namely when the state is stored on the
trace, without taking into account the state in-between.

However, some existing implementations may contain long-running or non-terminating methods.
It would not be sufficient to enforce the invariant only at the beginning and at the end of these
methods, as this would result in an unrealistic attacker model where the attacker is assumed to not
have access to the program state most of the time. Therefore, we want to have an invariant that
always holds over the local state instead of only at certain times. This invariant must be designed
to account for the situation during key generation where keys of both current and next versions
may coexist in the state for a short period.

3.3 Our approach

This thesis extends the methodology of Arquint et al. by introducing a notion of temporality
and by enforcing secure deletion of sensitive data. We aim for a language-agnostic solution that
can be applied to existing implementations performing key rotations, such as implementations of
Signal and the Double-Ratchet Protocol. This extension will allow us to prove forward secrecy and
post-compromise security for these protocol implementations.

Our approach will use a mechanism similar to that of DY* versions to indicate the lapses of
time during which sensitive data can be present in memory. However, we have to develop a modular
verification technique to ensure that sensitive data is guaranteed to be absent in all other lapses of
time.

Currently, any creation of an array of bytes (i.e. creation of nonce, keys, etc.) is controlled by
a memory predicate Mem. The Mem predicate is used to abstract over the memory of a byte array
and thus specifies permissions to every byte in the array. The predicate body is shown in figure 1
only for illustration purposes, because the predicate is in fact abstract, meaning that clients of the
reusable verification library cannot get direct access to the individual bytes of the array and instead
have to perform all operations via corresponding library calls.

1 pred Mem(s []byte) {
2 forall i int :: 0 <= i && i < len(s) ==> acc(&s[i])
3 }

Figure 1: Illustrative body of the current memory predicate in the Go reusable verification library.

For this thesis, we add a notion of temporality via a separate memory predicate. Thinking
about how to design such a predicate will be a first challenge of this thesis. One possible approach
is a new memory predicate that marks byte arrays that require secure deletion at the end of their
lifetime and has an additional parameter specifying the byte array’s version (i.e. lifetime).

4



However, we have to ensure that variables are actually deleted from memory as specified by the
memory predicate. If we use version, it would mean to ensure that variables with a version v are
deleted from memory before the protocol transitions to version v+1.

We can treat this new memory predicate not only as a predicate abstracting over memory
but also as an obligation to securely delete the associated value from memory. To do this, we
can enforce, when the protocol version changes, that all instances of this new memory predicate
have an appropriate version number. Additionally, leak checks can be implemented to ensure that
all predicate instances are returned after function calls. This enforces that byte arrays with a
version have to be deleted with a dedicated secure deletion function before the protocol version is
incremented. This delete function would be the only way to discharge obligations resulting from
the new memory predicate.

Gobra does not support leak checks yet but Viper [10], on which Gobra builds, offers forperm

expressions that allow us to encode them. In order to achieve our final goal of supporting properties
like forward secrecy in the reusable verification library, we will have to extend the library with
this new memory predicate, a library method that we assume securely deletes memory, and leak
checks. For the latter, we have to extend Gobra to support obligations, building on Viper’s forperm
expressions.

4 Core Goals

• Methodology. Present a methodology that extends Arquint’s and al. work on protocol
implementation verification, and that would allow to verify the deletion of old data in
a protocol implementation. This methodology would ultimately allow the verification of
high-level security properties relying on data deletion, such as forward secrecy.

• Extension of Gobra. Extend the Gobra verifier to support the specific types of obligations
required for this project, based on existing Viper primitives.

• Extension of the Go Reusable Verification Library. Extend the reusable verification
library to support the deletion of old data, based on the new functionalities added to the
Gobra verifier at the previous step. The library will then provide higher-level APIs to handle
the deletion mechanism, that will be useful for verifying protocol implementations.

• Implementation of an example protocol. Using the previously extended verification
library, implement and verify a small protocol relying on frequent deletion of sensitive data.
Verifying a high-level property such as forward secrecy will showcase the potential of the
methodology.

• Evaluation. Evaluate the newly developed methodology and its application to the example
protocol, both qualitatively and quantitatively, by evaluating the performance of the new
Gobra functionality for checking obligations. Discuss its potential and its limitations, and see
how it compares to existing approaches, such as DY*.

5 Extension Goals

• Case study of a solution based on linear types. The Gobra verifier may benefit from a
linear type system in the future. Byte-arrays with the new memory predicate act like linear
resources that are created by a particular library call and have to be deleted by another one.
Investigate what a solution to our initial problem might look like if we take advantage of the
possibilities offered by a linear type system.

• Verification of an existing protocol. Find an existing protocol that uses memory deletion
in order to obtain security properties such as forward secrecy and post-compromise security.
Find an implementation of this protocol in Go, if possible an official implementation, and
verify it using the developed methodology and extended verification library.

5



References

[1] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for the symbolic analysis
of security protocols,” in Computer Aided Verification: 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25. Springer, 2013, pp. 696–701.

[2] B. Blanchet et al., “Modeling and verifying security protocols with the applied pi calculus and
proverif,” Foundations and Trends® in Privacy and Security, vol. 1, no. 1-2, pp. 1–135, 2016.

[3] L. Arquint, M. Schwerhoff, V. Mehta, and P. Müller, “A generic methodology for the modular
verification of security protocol implementations,” arXiv preprint arXiv:2212.02626, 2022.

[4] M. Marlinspike and T. Perrin, “The x3dh key agreement protocol,” Open Whisper Systems,
vol. 283, p. 10, 2016.

[5] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions on
information theory, vol. 29, no. 2, pp. 198–208, 1983.

[6] K. Bhargavan, A. Bichhawat, Q. H. Do, P. Hosseyni, R. Küsters, G. Schmitz, and T. Würtele,
“DY*: A modular symbolic verification framework for executable cryptographic protocol code,”
in 2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2021, pp.
523–542.

[7] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira, and P. Müller, “Gobra:
Modular specification and verification of go programs,” in Computer Aided Verification: 33rd
International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33.
Springer, 2021, pp. 367–379.

[8] T. Perrin and M. Marlinspike, “The double ratchet algorithm,” GitHub wiki, p. 10, 2016.

[9] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise security,” in 2016 IEEE
29th Computer Security Foundations Symposium (CSF), 2016, pp. 164–178.

[10] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure for
permission-based reasoning,” in Verification, Model Checking, and Abstract Interpretation:
17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings 17. Springer, 2016, pp. 41–62.

6


	Introduction
	Background
	Symbolic Protocol Analysis
	DY*
	Modular verification of existing implementations

	Secure deletion of data
	Security properties
	Existing approach and its shortcomings
	Our approach

	Core Goals
	Extension Goals

