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Abstract

Security protocols are crucial for protecting sensitive information and
communications in today’s digital age. Even a minor flaw in how these
protocols are implemented can lead to serious consequences. Hence,
proving the implementations secure is attractive as we prove the absence
of such flaws.

Arquint et al. [1] propose a generic and modular methodology to verify
the security of protocol implementations. We extend their methodology
to reason about ephemeral and time-sensitive data, which must be
deleted within certain time frames. This enhancement allows us to
verify strong security properties, such as forward secrecy and post-
compromise security, for protocols that frequently renew their keys, such
as Signal. Our contributions encompass a conceptual expansion of their
methodology and an extension of their Go library, which simplifies the
verification of protocol implementations in Go. A case study, featuring
a Signal-like protocol implementation, showcases expressiveness and
practical applicability of our methodology extension.



ii

Acknowledgements

I would like to sincerely thank Linard Arquint who supervised me
throughout this thesis. He made himself available every week, whether
in his office in Zurich or from the USA, to discuss for several hours
the many questions I had. Without him, this project would not have
progressed as far as it has. I would also like to thank him for his very
attentive proofreading of this thesis, and for the hundreds of comments
that helped improve it.

I would also like to thank Prof. Dr. Peter Müller and all the members of
the Programming Methodology Group at ETH Zurich, for giving me
the opportunity to complete this thesis with them, and for the questions
and feedback they gave me during my oral presentations.

Finally, I would like to thank my family and friends for their support
throughout my studies, especially during this thesis.



Contents

Contents iii

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 The Gobra verifier . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Verifying a Go program . . . . . . . . . . . . . . . . . . 5
2.1.2 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Verification of protocol implementations . . . . . . . . . . . . 7
2.2.1 Symbolic protocol analysis . . . . . . . . . . . . . . . . 8
2.2.2 Security properties . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 DY* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Modular verification of existing implementations . . . 11

2.3 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 AEAD encryption . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Diffie-Hellman key exchange . . . . . . . . . . . . . . . 13

3 Design 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Enforcing deletion of old data . . . . . . . . . . . . . . 19

3.2 Counting permissions . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Implementation in Gobra . . . . . . . . . . . . . . . . . 22

3.3 Extension of the library . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Storing the current session version . . . . . . . . . . . . 26
3.3.2 Creation of versioned values . . . . . . . . . . . . . . . 27
3.3.3 Secure deletion of versioned values . . . . . . . . . . . 29

iii



iv Contents

3.3.4 Creating values with multiple versions for ratcheting . 30
3.3.5 Encryption and decryption of versioned values . . . . 32
3.3.6 Increasing the version of a session . . . . . . . . . . . . 35

3.4 Alternative design using obligations . . . . . . . . . . . . . . . 37

4 Case study 39
4.1 Choosing a protocol to verify . . . . . . . . . . . . . . . . . . . 39

4.1.1 Ratcheting protocols . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Initial key agreement and chosen protocol . . . . . . . 40

4.2 Implementation and verification . . . . . . . . . . . . . . . . . 44
4.2.1 Ratcheting using a key derivation function . . . . . . . 45
4.2.2 Usages and message invariants . . . . . . . . . . . . . . 47
4.2.3 First communication round . . . . . . . . . . . . . . . . 48
4.2.4 Using the deletion mechanism . . . . . . . . . . . . . . 49
4.2.5 Corruption . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Remaining work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusion 57
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59



Chapter 1

Introduction

Security protocols are omnipresent in our daily lives, they are the foundation
for many applications ranging from online banking to text messaging. These
protocols employ cryptography to achieve fundamental security properties
such as authentication and confidentiality. Online banking operations serve
as a prime example of how heavily we rely on security protocols. A breach in
the security of these protocols could lead to substantial financial losses, which
is why it is essential that these protocols and their implementations are both
correct and secure. For example, proving a property such as injective agreement
protects against replay attacks, meaning that the protocol participants reject
messages from an attacker attempting to resend messages that participants
may have sent in the past. In our online banking example, such a message
could contain the request to perform a certain transaction, and it is thus
crucial that this request cannot be replayed by an attacker.

Moreover, security protocols are not limited to the banking sector and are
now crucial to a wider audience, especially for secure messaging. Secure
messaging is a cornerstone of modern communication, with individuals,
businesses, and governments relying on it to protect sensitive information.
Robust security protocols are paramount in safeguarding the confidentiality
and integrity of messages. For instance, a security breach could lead to the
exposure of personal conversations, critical business data, or confidential
government communications, potentially resulting in severe consequences.
Therefore, several popular messaging applications, such as Signal, WhatsApp,
and Facebook Messenger, rely on the Signal protocol [9] to offer secure and
end-to-end encrypted communication to billions of users.

Guaranteeing security properties for protocols is a challenging task, especially
in the presence of a strong attacker. In order to ensure these properties for all
possible protocol executions, verification must consider an arbitrary number
of participants and protocol sessions, as well as any possible ordering of
protocol steps. Furthermore, protocol security properties are generally not
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2 1. Introduction

local to a particular participant but global, such as mutual authentication
between two parties. This presents an additional challenge for verification
as it requires a global view of the protocol execution. Moreover, it is also
particularly difficult to reason about implementation-level specificities, such
as mutable state and concurrency, while reasoning about security properties.

In this regard, two aspects of the protocol must be considered: the high-level
protocol itself (that we will call model), and its implementation. Proving
security properties for a protocol model is an active field of research and
several promising automatic verifiers have been proposed (like Tamarin [10]).
However, a verified protocol model does not imply that an implementation
is free of security vulnerabilities and achieves the same security properties as
its model. This is why we focus on verifying security properties for protocol
implementations.

While Arquint and al. [1] propose a promising methodology for verifying
security properties for protocol implementations, they do not reason about
sensitive data that must be deleted in a timely manner. However, such rea-
soning is necessary for proving security properties like forward secrecy and
post-compromise security, for protocols that periodically renew keys, like
Signal. Forward secrecy informally guarantees that past keys remain secret
even when newer keys or long-term keys become known to the attacker. It
is crucial for secure communication, as it ensures that an attacker cannot
decrypt past messages even if they manage to compromise a participant
later on. Post-compromise security informally means that a participant can
communicate securely with a peer, even when certain secrets from the past
have leaked. This is sometimes referred to as healing, which allows commu-
nication to resume securely at some point after a compromise. Protocols
like Signal achieve both of these properties by using a key rotation scheme
within a protocol session, where a communication key is used to generate its
successor and is then deleted.

The work of Arquint et al. comes with a Reusable Verification Library
that implements protocol-independent components of the methodology to
reduce the verification effort per protocol. Because their methodology is
generic, the Reusable Verification Library can be implemented in a wide
variety of programming languages. For the scope of this thesis, we will limit
ourselves to protocol implementations written in Go, for which the Reusable
Verification Library has been implemented.

In this thesis, we extend the methodology for the modular verification of
security protocol implementations by Arquint et al. to make it capable of rea-
soning about sensitive and ephemeral data that must exist only for a limited
time before being deleted. We present a generic extension of the methodology
that allows the verification of any type of protocol implementation using
ephemeral data, like Signal, in order to satisfy strong security properties
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such as forward secrecy and post-compromise security. In addition to the
methodology, we extend the Go Reusable Verification Library accordingly.
Finally, we evaluate our methodology and our extension of the Go Reusable
Verification Library by partly verifying a protocol implementation employ-
ing a key rotation scheme to achieve forward secrecy and post-compromise
security.

1.1 Outline

The remainder of this thesis proceeds as follows.

In Chapter 2, we introduce the necessary background knowledge for this
thesis, including an introduction to the verification of Go programs, a re-
view of existing works aiming at verifying protocol implementations, and
explanations of basic cryptography concepts.

In Chapter 3, we first present the conceptual idea behind our methodology
to verify protocol implementations relying on ephemeral data. We then
explain how we extended the Go Reusable Verification Library to support
our methodology.

In Chapter 4, we present a case study of our methodology on a Signal-like
protocol implementation, and explain how we can use the library to verify
strong security properties for this implementation.

Finally, in Chapter 5, we conclude and discuss future work.





Chapter 2

Background

In this chapter, we introduce the reader to the concepts that are necessary
to understand the rest of this thesis. We start by introducing how code
verification works with a particular focus on the Gobra [16] verifier. Then, we
present existing work on the verification of protocol implementations, which
will form the foundation of our work. Finally, we explain two important
cryptographic concepts that will be used in the protocols that we aim to
verify.

2.1 The Gobra verifier

Gobra [16] is a verifier for programs written in the Go programming language.
In practice, a user writes a specification of the program, and Gobra verifies
that every execution of the program satisfies this specification. Gobra is
based on the Viper [11] verification infrastructure. This means that the Gobra
specification and Go implementation are translated to the Viper intermediate
language, which is then verified using one of the Viper backends.

In this section, we first provide the reader with a brief introduction to
the modular verification of Go programs using Gobra. We then introduce
fractional permissions, which are used to reason about heap memory accesses
and in particular allow concurrent read operations.

2.1.1 Verifying a Go program

The first step in the verification of a Go program is to write a specification
of the program, describing its intended behavior. To do so, the user writes
verification annotations for each function of their Go implementation. These
annotations do not interfere with the execution of the program and are only
used for verification purposes.
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6 2. Background

1 requires a >= 0 && b >= 0
2 ensures product == a * b
3 func multiply(a, b int) (product int) {
4 product = a * b
5 assert product == 0 ==> (a == 0 || b == 0)
6 }

Figure 2.1: This function returns the product of two positive integers. On line 1, “requires”
specifies the precondition. Here, we specify for this particular example that multiply may only
be called with positive arguments. On line 2, “ensures” specifies the postcondition. Here, the
postcondition states that the product is equal to the product of the two arguments. On line 5,
we use an “assert” statement to prove that one of the parameters must be zero if the product
is zero. In this case, the assertion is not necessary for the verification of the function and is only
given as an example.

The main types of annotations are preconditions, postconditions, lemmas and
loop invariants. Preconditions and postconditions are used to specify the
behavior of functions. Preconditions specify the requirements that must be
met before a function is called, and postconditions specify the guarantees
that the function provides when it returns. The verification of the function
is successful when Gobra can prove that the postcondition holds whenever
the precondition holds. Lemmas are ghost functions, meaning that they are
only used for specification purposes and are not part of the implementation.
They are used to express and prove auxiliary properties of the program’s
specification and can be called in other verification annotations to help Gobra
prove more complex properties. Loop invariants are assertions that must
hold at the beginning and the end of each iteration of a loop, and are used to
specify the behavior of loops. An example of a function with some verification
annotations is shown in Figure 2.1.

Preconditions and postconditions enable a modular verification of the pro-
gram, i.e. we verify functions in isolation and only consider the specification
of the functions that they call, not their bodies. Doing so, we verify only
once the correctness of a function. This greatly improves performance, as
it decomposes the verification of a program into the verification of each
component.

2.1.2 Permissions

Gobra supports verifying programs that manipulate heap memory. Gobra
reasons about potential side-effects or their absence using separation logic,
an extension of Hoare logic. In particular, a permission is associated with
every heap location and a heap access induces a proof obligation that the
current function has the necessary permission. A permission is created
when allocating a heap location. Permissions allow us to deduce whether
a callee might modify a heap location or not, because the callee may only
modify a heap location if it has permission to do so. To specify which heap
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1 requires acc(a, 1/2) && acc(b, 1/2)
2 requires *a >= 0 && *b >= 0
3 ensures acc(a, 1/2) && acc(b, 1/2)
4 ensures product == *a * *b
5 func multiply(a, b *int) (product int) {
6 product = *a * *b
7 assert product == 0 ==> (*a == 0 || *b == 0)
8 }

Figure 2.2: This function returns the product of two positive integers. This is the same example
as in Figure 2.1, but this time reading a and b from heap locations. acc(a, 1/2) specifies
permission of 1/2 to the heap location a. Notice that we require read permissions (line 1), which
we can return at the end of the function (line 3). Removing line 1 would result in a verification
error.

locations are accessible to a function and with which permissions, we use an
accessibility predicate, denoted acc.

By default, a function has no permission to access heap locations. To give a
function permission to access some location, we specify the corresponding
permission in the preconditions. A permission of 1 to a heap location gives
full permission, allowing the function to read and write to the location, and
a permission of 0 gives no permission. Gobra uses fractional permissions,
which defines a permission as a rational number between 0 and 1. Any
strictly positive permission smaller than one only gives read permission to
the heap location. There can only be a total permission amount of 1 for each
heap location, which enforces that there can be either only a single writer
at a time or multiple readers. To illustrate how we can use permissions in
Gobra, we show in Figure 2.2 the same example as in Figure 2.1, but this
time a and b are pointers to heap locations.

Another construct supported by Gobra that will be useful in this thesis is
the predicate. A predicate is a parametrized assertion to which we give a
name. It is defined with the keyword pred. In particular, a predicate can
be used to abstract over individual permissions. For example, we could
create a predicate to express permission to access an array of bytes instead of
specifying the permission to each byte individually. A predicate that does
not contain an assertion is called an abstract predicate. We will see later how
they can be useful.

2.2 Verification of protocol implementations

Verifying a protocol implementation requires more work than verifying the
correctness of a simple Go program. Indeed, a protocol describes a distributed
system where each participant is implemented in a separate program. We
can verify each participant individually, but we would like to express and
prove protocol-level global properties that require the collaboration of all
participant implementations.
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In this section, we introduce the notion of symbolic protocol analysis to
present how protocols are usually modeled when verifying their security
properties. Next, we discuss the security properties that we aim to ver-
ify. We then present two existing approaches aiming at verifying protocol
implementations. These approaches are the main basis for our work.

2.2.1 Symbolic protocol analysis

In symbolic protocol analysis, we analyze a protocol at a higher level of
abstraction to verify its behavior in all possible executions. We use the
symbolic model of cryptography, where we assume that the cryptographic
primitives are secure, i.e. the plaintext can only be obtained from a ciphertext
if decryption is performed with the correct decryption key. Additionally, we
assume that all operations are performed on symbolic terms instead of bytes.

Furthermore, we consider a Dolev-Yao [7] attacker present in the network.
This attacker can perform arbitrary operations on this term level, has full
control over the network (including reading and sending any message), and
can corrupt any participant (which means that the attacker learns all the
terms contained in a participant’s state).

A common way for reasoning about protocols in this setting is to consider all
possible traces of a protocol. A trace records the sequence of protocol events
in a particular run of the protocol. Security properties can be expressed as
a logical expression about a trace, and then verified by checking whether
it holds for all possible traces of the protocol. Automated provers like
Tamarin [10] and ProVerif [3] can verify trace-based security properties by
analyzing all possible traces.

In this work, we aim to verify security properties for protocol implementations.
While verifying protocol models is useful to prove the security of the protocol
design, it does not guarantee that an implementation of this protocol is
free of security vulnerabilities induced by common programming errors
or the incorrect implementation of the protocol design. When considering
the verification of protocol implementations, traces can also be used. By
expressing an invariant over the trace and proving that this invariant is
maintained by all executions, we obtain properties that hold for all possible
traces. We call this invariant the trace invariant. Then, we verify security
properties by showing that these security properties are implied by the trace
invariant. We detail the security properties that we aim to verify in the next
paragraph.

2.2.2 Security properties

We have mentioned that using a trace and maintaining a trace invariant
allows us to prove some security properties. In particular, we want to prove
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forward secrecy and post-compromise security for certain protocols. In this
subsection, we explain what these properties are and why they are important.

Forward secrecy is a security property expressing how past communications
are protected from a future compromise. A protocol is forward-secure if
compromising the current state of a participant does not reveal past com-
munications, meaning that the attacker cannot decrypt previous messages.
However, forward secrecy does not protect future communication. The at-
tacker could use the compromised knowledge to impersonate a legitimate
participant and read all future communications. This is why we are interested
in the next property, post-compromise security.

Post-compromise security is a security property expressing how future com-
munications are protected from a past compromise. First, notice that post-
compromise security is not achievable after the unrestricted compromise of
a participant. After such a compromise, other participants have no guar-
antee whether they are communicating with the compromised participant
or the attacker because the attacker has access to the same secrets as the
compromised participant and can thus impersonate this participant. We
instead consider the formalized notion of post-compromise via state [5]: a
participant can communicate securely with a peer even when a past state of
the participant is revealed to the attacker, as long as the participant’s current
state is not revealed to the attacker and some secret data remains available
exclusively to the participants. If the participant’s current state is revealed to
the attacker, post-compromise security via state trivially holds but we get no
guarantee of the security of future communications. To be able to prove this
property, we must be able to prove that a certain state in the past, to which an
attacker has gained access, does not contain the secret data on which future
communication depends.

In the following, we will introduce two existing approaches in this veri-
fication setting aiming at verifying strong security properties for protocol
implementations. These approaches are the main basis for our work.

2.2.3 DY*

DY* [2] is a framework for proving security properties about protocol im-
plementations written in the F* programming language. Using a particular
code structure and a particular way of storing program state, DY* is able to
account for some implementation-level specificities.

While DY* uses a trace to record protocol events, it is not ghost, i.e. the trace
is not only used for verification purposes. In particular, each participant’s
state is stored in a serialized way on the trace. When a protocol participant
is taking a protocol step, it first reads its serialized state from the trace,
deserializes it, performs the step, and then saves its new serialized state to
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the trace. This means that only protocols with this particular way of storing
program state can be verified with DY*. This also affects the runtime behavior
of the protocol, as the trace must exist and be used to store and retrieve the
program state.

This trace is append-only and existing entries cannot be modified or deleted.
In addition to state changes, the trace records all operations that are impor-
tant for proving security properties (nonce generation, sent messages, and
corruption). Ultimately, this global trace contains each participant’s current
and all past states, and provides a global view over the entire distributed
system. DY* achieves modular reasoning by specifying a trace invariant
and verifying that each function modifies the global trace only in ways that
maintain the trace invariant. Global security properties can then be proved
from this trace invariant.

On the global trace, each state is annotated with a session state identifier to
indicate to which participant and protocol session it belongs. This models
the fact that a participant may be involved in multiple independent protocol
sessions simultaneously. The session state identifier includes a version that
distinguishes between different phases within a protocol session (further
explanations about versions will be given in section 3.1.2). Each participant’s
state comprises several values that together constitute the program state
of the participant. By value, we mean here and in the rest of this thesis a
piece of data that is stored on the heap. Each of these values is assigned a
secrecy label, indicating which participant is allowed to read a value and at
what times. These secrecy labels enable modular reasoning about secrecy
because a secrecy label provides an over-approximation of which participant
states might contain a particular value. A value can be made accessible to
a participant p, to only some specific session s of a participant, or even to
some specific version v of a session. A secrecy label is most often defined
as a list of everyone who can access the value1. For example, a value with
a secrecy label [(Alice), (Bob, 3), (Charlie, 2, 7)] can be accessed by Alice at
any time, by Bob in session 3, and by Charlie when his second session is in
version 7. We will keep this notation of secrecy labels throughout this thesis.
Additionally, the secrecy label of a value can also be Public, which means that
the value is accessible to everyone, including the attacker.

The version label attributed to each session is used to introduce a notion
of temporality. Initially, all session versions are 0 and are incremented at
some times to represent new protocol phases. A value with a secrecy label
[(p, s, v)] can only occur in the specific phase of the protocol when the session
s of participant p has version v. DY* enforces this restriction with a suitable
invariant over states, which they enforce whenever state is stored on the trace.

1A secrecy label can also be defined by the union or the intersection of participant, session
and version identifiers, which we omit for brevity.
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Thus, only data from the current version can be stored, ensuring that neither
outdated keys nor future keys are present in memory. Hence, these versions
are used to define the period of existence of values. Building on this, they are
able to prove forward secrecy and post-compromise security for protocols
like Signal.

A hierarchy between secrecy labels is necessary to express some properties.
For this, DY* introduces a CanFlow(l1,l2) relation specifying that a less
restrictive secrecy label l1 can flow to a more restrictive secrecy label l2.
For example, the label [(Alice), (Bob)] can flow to the more specific [(Alice)].
And the label [(Alice)] can flow to a single session [(Alice, 3)]. In particular,
DY*’s state invariant expressing that a value should be readable in the current
context can be specified using the CanFlow relation: the value’s label should
flow to the current participant, session and version.

Protocol implementations written in F* and verified with DY* are executable
but require a special runtime environment that provides access to the trace
such that a participant’s state can be stored and retrieved. Additionally, the
DY* framework is composed of a library, containing protocol-independent
parts that only need to be verified once, and can then be reused across
different protocols. This significantly reduces the overall verification time.

2.2.4 Modular verification of existing implementations

The DY* framework can only verify protocol implementations written in
the functional F* language that adhere to certain assumptions about their
structure and program state storage. However, these assumptions do not
hold in general for existing implementations. Arquint et al. [1] present a
methodology for verifying existing heap-manipulating protocol implementa-
tions. This methodology is agnostic to the programming language and relies
only on standard features present in most separation logic-based verifiers.
In the following, we will focus on Go implementations and the Gobra [16]
verifier.

This methodology is inspired by DY* [2] and also uses a global trace to pro-
vide a global view of the entire system. To address the issue of arbitrary code
structure in existing implementations, the trace is treated as a concurrent data
structure. This treatment ensures that all possible interleaving of events are
considered, without relying on any code structure assumptions. As existing
implementations manage the program state in their unique ways, we cannot
assume that they store the state on the trace or rewrite implementations to
do so. Instead, local invariants are used to relate the program state stored
at a participant to events on the trace. Because the global trace is a shared
structure, each participant maintains its own local snapshot, which is a local
copy of the global trace. Since the global trace can only grow, a snapshot
is a prefix of the global trace. The global trace only records a sequence of
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events corresponding to high-level operations (similar to DY*, except for
the state storage entry) that must maintain a trace invariant, which is used
to prove global security properties. Unlike DY*, the global trace is a ghost
data structure for verification-only purposes, which will be erased before
compilation. As such, the global trace has no impact on the runtime behavior
or performance.

Furthermore, separation logic’s resources are used to prove injective agree-
ment, which is to the best of our knowledge not possible with DY*. To do so,
they use that separation logic’s resources are not duplicable, so if an assertion
includes two resources, they are distinct. This can be used to express the
uniqueness of an event and prove that an implementation detects when an
attacker replays messages, which is necessary to satisfy injective agreement.
Because DY*’s invariant is expressed in first-order logic, it is unclear how
they could reason about the uniqueness of particular events.

Similarly to DY*, this methodology comes with a library, called the Reusable
Verification Library, which allows the reuse of protocol-independent parts
(verified only once) across different protocol implementations. Because they
are using Gobra, verification is based on separation logic, which allows us
to reason about heap manipulations. Currently, any creation of an array of
bytes (i.e. creation of nonce, keys, etc.) is controlled by a memory predicate
Mem. The Mem predicate is used to abstract over the memory of a byte array
and thus specifies permissions to every byte in the array. The predicate body
is shown below, for illustration purposes only2:

1 pred Mem(s []byte) {
2 forall i int :: 0 <= i && i < len(s) ==> acc(&s[i])
3 }

Permission to this predicate is then required by all library functions perform-
ing operations on the associated byte array.

Each created value is also assigned a secrecy label, like in DY*, to specify
allowed readers. However, this methodology does not support versions
in secrecy labels. Without this fine-grained temporality, it is not possible
to prove forward secrecy and post-compromise security for protocols like
Signal.

2.3 Cryptography

In this section, we explain two important cryptographic concepts: AEAD
encryption [14] and Diffie-Hellman key exchange [6]. These notions will play

2The Mem predicate is in fact abstract in the library, meaning that clients of the reusable
verification library cannot get direct access to the individual bytes of the array and instead
have to perform all operations via corresponding library calls.
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a major role in the rest of this thesis. However, the discerning reader can skip
this section if he or she is already familiar with these basics.

2.3.1 AEAD encryption

In the protocols that we aim to verify and that we will present later, authenti-
cated encryption with associated data (AEAD) [14] plays an important role in
the communication between participants. AEAD is a symmetric encryption
scheme. It provides confidentiality, meaning the encrypted message cannot
be read by an attacker who does not know the key. It also provides authentic-
ity, meaning that an active attacker cannot modify the encrypted message or
associated data without being detected and that the receiver can verify that
the message was sent by the expected sender.

AEAD encryption takes as input a key, a plaintext, and optionally some
associated data, and returns a ciphertext. While the message is sent encrypted
and authenticated, the purpose of the associated data is to send in clear some
data that is not confidential but that is authenticated. For example, we will in
the following use the associated data to send public keys in an authenticated
way. Then on the receiver side, AEAD decryption takes as input the same
key, the ciphertext, the received associated data, and returns the plaintext if
decryption succeeds.

2.3.2 Diffie-Hellman key exchange

A Diffie-Hellman key exchange [6] is a public-key protocol that allows two
participants to agree on a shared secret key over an insecure channel. Each
participant p has a secret key sp and a public key gsp , where g is a primitive
root modulo a prime number3. In a Diffie-Hellman key exchange, participants
Alice and Bob first exchange their public keys gsAlice and gsBob over the insecure
channel. Then, Alice computes a shared secret key (gsBob)sAlice = gsAlice·sBob

by combining her secret key and Bob’s public key, and Bob computes the
same shared secret key (gsAlice)sBob = gsAlice·sBob by combining his secret key
and Alice’s public key.

This key exchange will be extensively used in the protocols that we aim to
verify and that we will present later.

3In the following, we will not mention the modulo prime number for brevity.





Chapter 3

Design

In this chapter, we explain how we extended the work of Arquint et al. [1],
presented in section 2.2.4, to express time-sensitive values and to enforce
their deletion at the right time. Practically, we extended their Reusable
Verification Library in order to provide someone verifying a protocol imple-
mentation with the possibility of proving security properties like forward
secrecy and post-compromise security. In the following sections, we will
refer to this person as the developer, who uses this library to verify a protocol
implementation.

We start by giving an overview of our goal and a high-level idea of our
methodology to achieve it. Then, we introduce counting permissions, as the
core tool on which our deletion mechanism is based. We continue by ex-
plaining how we extended the library to implement our deletion mechanism.
Finally, we give a brief look into an alternative approach that would have
been simpler, but that is not currently supported by Gobra [16].

3.1 Overview

This section gives an overview to better understand our goal and the high-
level idea of our methodology to achieve it. With the aim of verifying
properties like forward secrecy and post-compromise security for a protocol
implementation, we need to model the fact that some ephemeral values
should only exist for a limited amount of time. Additionally, we need to
enforce that these values are deleted before the end of their time frame.

We start by explaining the goal of our methodology by introducing a relevant
protocol, the Diffie-Hellman Ratchet [13], and the security properties we want
to prove about it. Then, we explain how we introduce a notion of temporality
in the methodology, by adding versions, which define fine-grained time
frames during which certain values are present in memory. Finally, because

15
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Figure 3.1: The Diffie-Hellman (DH) Ratchet [13] is a continuous key agreement protocol
between two participants, Alice and Bob, which repeatedly performs Diffie-Hellman key exchanges
to encrypt each message with a new key. Here, AeadEnc(K, MSG, ad) refers to the AEAD
encryption of the message MSG with the key K and the associated data ad. KDF(a, b) refers to
a key derivation function that derives a new key from two inputs a and b. This figure is inspired
by a similar figure from the DY* paper [2].

versions specify that a value should only be able to exist in some time frame,
we reason about how to enforce that it is deleted before this time frame ends.

3.1.1 Goal

We aim to verify protocol implementations that frequently renew their com-
munication keys to provide strong security properties. A notable example is
the Signal Double Ratchet protocol. We consider a slightly simpler protocol,
on which Signal is based, involving a single ratchet; the Diffie-Hellman
Ratchet.

Diffie-Hellman Ratchet

The Diffie-Hellman (DH) Ratchet [13] is a continuous key agreement protocol,
which repeatedly performs Diffie-Hellman key exchanges to encrypt each
message with a new key. It is presented in Figure 3.1.
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The protocol starts with an established communication key K0, mutually
shared by both participants. The initiator uses the responder’s public key
and a newly generated secret key to compute a shared Diffie-Hellman secret.
This new shared secret and K0 are input to a key derivation function (KDF)
to derive a new communication key K1, which is used to encrypt a payload,
i.e. MSG1. This step of generating a new key from the previous one is called
a ratcheting step. Behind this name, there is the idea of a ratchet, which one
could turn in one direction to generate new keys, but that cannot be turned
back, meaning that previous keys cannot be derived from the current one.
Then, K1 is used to encrypt the message sent to the responder, accompanied
by the initiator’s new DH public key gx1 . The responder can compute the
same Diffie-Hellman shared secret and take the same ratcheting step to obtain
K1, then use K1 to decrypt the message. This iterative process is repeated for
each message, i.e., every payload is encrypted with a different key obtained
by ratcheting the previous one.

After this ratcheting process has been performed and has given us a commu-
nication key Kn, the previous key Kn−1 is no longer needed and is deleted.
Deleting the previous key is an essential step for a protocol implementation
to achieve forward secrecy, which we explain in the following.

Security properties

The DH Ratchet protocol is designed to provide strong security properties,
such as forward secrecy and post-compromise security. We define these
properties below and explain how the DH Ratchet protocol satisfies them.

Forward secrecy. The DH Ratchet protocol is designed to be secure against
an attacker recording all previous encrypted messages and obtaining a shared
secret or a communication key at some point. If the attacker compromises a
participant, for example, Alice, they may be able to decrypt some messages
using the keys and secrets stored in Alice’s memory. If Alice keeps storing all
previous secrets and session keys, then the attacker would be able to decrypt
all previous messages that they previously observed on the network. This
is why it is crucial for Alice to delete previous secrets and communication
keys as soon as she has derived the new ones. Indeed, if previous keys are
correctly deleted from Alice’s memory, then the attacker may only be able to
decrypt the last message and not all previous ones.

Therefore, the DH Ratchet protocol satisfies forward secrecy. This property
is enabled by two main factors: cryptographically preventing past com-
munication keys from being derived from long-term secrets and current
communication keys, and securely deleting previous keys.
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Post-compromise security. Additionally, the DH Ratchet protocol is de-
signed to be self-healing, meaning that it should allow communication to
resume securely at some point after a compromise. This is the property
of post-compromise security. Recall that post-compromise security is not
achievable after the unrestricted compromise of a participant, but we instead
consider that some secret data remains available exclusively to the partici-
pants after the compromise (post-compromise via state [5]). In the DH Ratchet
protocol, we consider that the attacker compromised Alice’s Kn communi-
cation key after she derived the new Kn+1 key, and after she and her peer
Bob have deleted their DH private key they used to compute Kn+1. At this
point, the attacker cannot obtain Kn+1 because they cannot have access to the
associated DH shared secret.

Therefore, all future communication keys are safe from the attacker, so
the DH Ratchet protocol satisfies post-compromise security via state. Post-
compromise security requires that past states do not contain secret data on
which future communication depends. This is why it requires fine-grained
reasoning about the data occurring in a participant’s state at a particular
point in time, and secure deletion of old data.

Our methodology to prove these two strong security properties, forward
secrecy and post-compromise security, requires a notion of temporality be-
cause we have to specify the lapses of time during which certain keys are
possibly present in memory. Outside these lapses, keys must not be present
in memory because they have either not been generated yet or have already
been securely deleted.

3.1.2 Versions

To introduce a notion of temporality, we divide the time axis into successive
time frames. We number these time frames with integers, starting at 0, and
call them versions. Similarly to what is done in DY* [2], each participant’s
session is given a version field, which keeps track of the current version
of the protocol. At this point, we can uniquely identify a time frame in a
protocol session by the triplet (p, s, v), where p is the participant executing
the protocol session s, and v is the version defining the time frame. We call
this triplet a version identifier.

We then use these identifiers to specify the time frames during which certain
terms are present in memory. Recall that each term, e.g. a key or a nonce, is
assigned a secrecy label stating who can access it. While these labels could
previously only be defined from participant or session identifiers, we now
allow them to be defined from version identifiers (p, s, v) as well.

We distinguish two cases: versioned and unversioned terms. A term is said
to be versioned if it is made to be accessible only in one or several specific
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versions of the current protocol session. Conversely, a term is said to be
unversioned if it is made to be accessible by the current participant or session,
i.e. in all versions of the current protocol session. For example, considering
the current session s of participant p, a term with secrecy label [(p, s, 0), (p′)],
where p′ is any other participant, is versioned because it is only readable
in version 0 of the current session s. But a term with secrecy label [(p)] or
[(p, s)] is unversioned because it is readable in all versions of the current
session s. Additionally, we define a i-versioned term as a versioned term that
is accessible in version i.

The existing methodology already enforces that unversioned terms can only
be accessed by participants or sessions allowed by their secrecy label. A key
property of our methodology extension is to ensure that versioned terms can
only be accessed when the session is in a version allowed by their secrecy
label. Intuitively, this means that an ephemeral key, defined as a versioned
value, should only be accessible during a limited time frame defined by
the versions allowed by its secrecy label. The crucial difference of this work
compared to the existing methodology is that it allows non-monotonic secrecy
labels, i.e. a term being readable now might not be readable in all future
timepoints.

On a high level, enforcing the time-limited existence of versioned terms
requires two kinds of checks. First, we enforce when creating a versioned
term that it should be readable in the current version of the protocol. Second,
we enforce that when increasing the version of a session, all versioned terms
that are no longer accessible in the new version have been deleted. While
the first check can be easily implemented similarly to the existing check for
unversioned terms, the second check requires more work. Indeed, using
Gobra, there is no trivial way to check a condition on all versioned terms that
are stored in memory at a particular time point.

This second check is to ensure that ephemeral keys are deleted when they
are no longer needed. Let us discuss this in more detail.

3.1.3 Enforcing deletion of old data

Before increasing the version of a session, we have to securely delete all
versioned terms that are no longer accessible in the new version. By doing
so, we more generally ensure that terms are only accessible in the versions
allowed by their secrecy label.

We discuss next the solution used in DY*. However, this solution is not
applicable in our setting, which does not restrict the way implementations
store application state. Hence, we afterward present a more generic solution.
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Existing approach in DY*

In DY* [2], a participant uses a storage API to store all of its knowledge on
the trace. In particular, recall from section 2.2.3 that a participant stores the
knowledge of ongoing sessions into an array, composed of each serialized
session state, and each session is given a version number. Upon updating
some session state, the participant can also update and increment the version
number of the session. An invariant over the state makes sure that only
data from the session’s version can be stored, ensuring that old keys cannot
remain in memory. Practically, this means that previous keys are effectively
deleted from the state when the session’s version is incremented.

This solution is however not applicable to us because, as explained previously,
we do not restrict the way implementations store application state, and we use
a ghost trace, removed at runtime, which cannot store program data. Because
we do not store the program state on the trace, it makes it impossible to
express the same invariant over the state as in DY* in our case. Furthermore,
DY* enforces the invariant over state only at certain time points, namely
when the state is stored on the trace, without taking into account the state
in-between. Finally, it is not sure if DY* enforces that outdated keys are
securely deleted, meaning explicitly zeroed out from memory. In the next
part, we present our generic approach to enforce the deletion of old data.

Our approach

As we cannot simply iterate over the full session state to remove outdated
keys like in DY*, we present a new approach to ensure that versioned values
get safely deleted before their version expires. Note that our approach only
extends the existing approach of Arquint’s et al. [1], which means that our
modified library can still be used to verify unversioned protocols in the same
way as before.

The intuition of the methodology is to let the developer (that is verifying a
protocol implementation) choose when to delete a versioned value. For this
purpose, we provide a secure deletion function that deletes a value by zeroing
out the memory and ensuring that this write operation is not optimized away
by the compiler. The crucial aspect now is to verify that, before the session
version is incremented, the secure deletion function has been called for all
versioned values that will no longer be accessible in the new version.

Intuitively, we could solve this problem with a counter. Starting with version
i, we use the counter ci := 0. Each time we create a versioned value readable
in version 0, we increment the counter ci = ci + 1. And each time we delete a
versioned value readable in version 0, we decrement the counter ci = ci − 1.
When we increment the version of the session, we check that ci = 0, meaning
that all versioned values readable in version i have been deleted.
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However, this approach cannot be trivially implemented in our case because
we cannot just use a counter variable that the developer could access at will:
they would just have to manually set it to 0 before incrementing the version of
the session, and the counter check would be meaningless. We would have to
ensure that the developer cannot directly manipulate the counter, which may
be difficult to achieve. Additionally, we want to support concurrency which
would require us at least to use an atomic counter or to protect the counter by
a lock. Instead, to solve these challenges without the limitations of a counter
variable, we will create a mechanism based on counting permissions [15]. Those
will be explained in the next section, before using them to design our deletion
mechanism.

Note that with this approach, one could think that the developer could just
never increment the version of the session, and thus would never have to
delete any versioned value. While this is true, if the developer wants to verify
meaningful properties like forward secrecy, they will have to increment the
version at some point to express the property in terms of the version.

3.2 Counting permissions

Because keeping track of created and deleted values using a counter variable
could be easily bypassed by the developer, we base our work on counting
permissions [15]. While counting permissions follow a similar idea as a
counter, they overcome the limitations mentioned earlier and are suitable for
our use case, i.e. they support arbitrary representations of the application
state and can be adapted to support concurrency.

We start by introducing the notion of counting permissions. Because this
permission model is not available in the current version of Gobra, we then
explain how we can obtain similar functionality using the existing permission
system.

3.2.1 Introduction

Counting permissions are a permission model where permission shares are
valued in Z ∪ {u}, where u represents the identity element of the share
addition operation. A share of value 0 means full permission, a share of
value u means no permission, and any other value means partial permission.
A non-negative share n ≥ 0 is called a token factory and can be split, for
any integer k > 0, into another factory n + k and an equivalent amount of
negative token bundles of value −k < 0. A token factory and some amount
of token bundles can be summed, and the result is always non-negative
(because the subtracted bundle value had to be added to the factory before).
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In particular terms, counting permissions can be used as a counter: a full
permission (0) can be split into a factory 1 and a bundle −1 representing
incrementing the counter by one. A second increment would create a factory 2
and a second bundle −1. Invertly, decrementing the counter could be done
by summing the factory 2 with a bundle −1, resulting in a factory 1.

We therefore annotate the library functions such that they keep track of the
number of versioned values, i.e. increment the counter when creating a new
versioned value and decrement the counter when safely deleting such a value.
Unversioned values do not need to be tracked as they do not have to be safely
deleted because they can be present in memory for the entire (remaining)
execution of the protocol.

To implement a deletion mechanism using the counting permissions model,
we use an abstract predicate that we call guard(i int), which takes a version
number as an argument, and on which we initially have full permission 0.
The library functions that create a versioned term readable in version i require
access to the token factory n ≥ 0 of guard(i), and return an incremented
share n + 1, without returning the token bundle −1. Invertly, the secure
deletion function returns a token bundle −1 upon deletion of a versioned
term readable in version i. Therefore, if the developer deletes all i-versioned
terms, they will obtain as many token bundles −1 as the value of the token
factory n. Summing them together will result in a full permission n = 0. This
means that we know that no i-versioned values exist in memory when we
have full permission on guard(i).

The major difference with a simple counter variable is that the developer
cannot create a −1 token bundle the way they could just decrement the counter
variable. They have to delete all i-versioned terms and cannot circumvent the
deletion mechanism.

To support concurrency using counting permissions, we could protect the
token factory with a (ghost) lock. Then, splitting the factory to obtain a
bundle, or summing the factory with a bundle, would require acquiring the
lock. This lock would however complicate the entire reasoning as the lock
and each thread would have to be aware of the amount of created versioned
values. Thus, in the next section, we present an alternative to counting
permissions that, in addition to supporting concurrency without a lock, is
supported by Gobra.

3.2.2 Implementation in Gobra

Gobra [16] currently does not support counting permissions but only frac-
tional permissions, which were explained in section 2.1.2. Recall that in this
model, permission shares are valued in [0, 1] ∩ Q, a share of value 0/1 means
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no permission, a share of value 1/1 means full permission, and any other
value means partial permission.

Because fully encoding counting permissions using fractional permissions
is not trivial, we instead restrict ourselves to a solution based on fractional
permissions that tracks the number of versioned values with the help of our
annotated library functions.

Idea

We introduce below two abstract predicates that we use to implement our
deletion mechanism.

1 pred guard(v uint32)
2 pred receipt(key []byte , v uint32)

The guard predicate can be seen as the token factory and is initially given
with full permission (1/1) to the developer. The receipt predicate can be
seen as a token bundle. The idea is for all library functions that create
a versioned value key readable in version v to require partial permission
to guard(v), and to return the same amount of permission of receipt(key,

v). Then, upon deletion of key, the secure deletion function requires some
amount of permission of receipt(key, v) and returns the same amount of
permission of guard(v). We illustrate these explanations with the Gobra
specification of two basic Create and Delete functions given below. Note
that in Gobra, a function argument annotated with ghost is an argument
for verification purposes only, i.e. it is not part of the program state and is
removed at runtime.

1 requires acc(guard(version), versionPerm)
2 ensures acc(receipt(key , version), versionPerm)
3 func Create(ghost version , ghost versionPerm) (key []byte) {/* ... */}

4 requires acc(receipt(key , version), versionPerm)
5 ensures acc(guard(version), versionPerm)
6 func Delete(key []byte , ghost version , ghost versionPerm) {/* ... */}

In practice, the developer may have to create several v-versioned values
and will consume some amount of permission of guard(v) for each of them.
For each created value, they will receive the same amount of permission of
receipt(key, v) as the amount of permission of guard(v) they consumed to
create it. When they want to increment the version of the session, they will
have to delete all v-versioned values and will consume all receipt(key, v)

fractional permissions. They will receive the same amount of permission of
guard(v) as the consumed receipt(key, v) permission for each deleted value.
Therefore, we know that no versioned value readable in version v remains in
memory when we have full permission on guard(v). The following lemma
expresses this property:
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Lemma 3.1 We denote perm the function taking a predicate and returning its
available permission fraction. If there exists a v ∈ N such that perm(guard(v)) = 1,
then v is the current session’s version, and no v-versioned value exists in memory.

Consequently, we require full permission on guard(v) to call the function
that increments the version of the session.

Additionally, this approach naturally supports concurrency, because separa-
tion logic allows us to split the permission of the guard predicate into several
fractions and hand each fraction to a different thread. Doing so, each thread
can independently perform creation and deletion operations on versioned
values because they only require a fraction of the permission of the guard

predicate.

Similarly to counting permissions, the developer cannot bypass the deletion
mechanism because they cannot obtain guard or receipt fractional permis-
sions without going through the library functions. This is assuming that the
developer does not use Gobra’s inhale statement to bypass the permission
system.

Note that the receipt predicate takes the created byte array key as an argu-
ment. This is used at deletion time to verify that we delete the actual value
associated with the receipt, before returning the guard(v) permission fraction.
Otherwise, the developer could simply delete arbitrary (unversioned) val-
ues to transform some receipt(key, v) permission fraction into a guard(v)

permission fraction, and thus violate lemma 3.1.

Choosing the right permission amounts

With these library specifications, the developer has some flexibility in choos-
ing fractional permission amounts when invoking library functions. Indeed,
upon creating or deleting a versioned value, the developer chooses the per-
mission amount of the guard or receipt that will be consumed. Picking too
large permission amounts that would result in a contradiction of lemma 3.1
correctly results in verification errors. The chosen permission amounts thus
only affect completeness.

When creating versioned values, the developer has to choose small enough
permission amounts of the guard predicate to consume so that all desired
values can be created. For example, if they want to create 3 versioned values,
but consume 1/2 of guard for the two first values, they will not be able
to create the third value because they will not have enough permission of
guard left. This does not affect the soundness of the methodology but simply
prevents the developer from implementing their goal. It is therefore in their
interest to carefully choose permission amounts. Note that unboundedly
many versioned values can be created even when it is not statically known
how many values will be created in the implementation. For example,
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this is doable by consuming 1/2 of the guard predicate permission for the
first created value and dividing the consumed permission by 2 for each
subsequent created value, i.e. consuming 1/4 for the second value, 1/8 for
the third value, etc.

When deleting a versioned value, the developer has to specify the same
permission amount of the receipt predicate to consume as the amount
that was created by the library when creating the versioned value. Indeed,
automatically picking the available permission amount of receipt in the
current context could be insufficient in cases where some permission amount
of receipt has leaked or is hidden1, and is either way not currently supported
by Gobra. This is why we require the developer to manually specify the
right permission amount of receipt to consume. If the developer calls the
delete function and specifies a smaller amount than the permission amount
of the receipt predicate that was created by the library, while there will be
no immediate verification error, the developer will not be able to recover
the full permission to the guard predicate. This will prevent them from
incrementing the version of the session. Again, the methodology’s soundness
remains unaffected, but the developer has to be careful when specifying the
permission amount of receipt to consume to avoid completeness issues. The
following lemma expresses this property:

Lemma 3.2 Let v represent the current version of the session and n the number
of v-versioned values in the current state. ∀i ∈ J1, nK, we denote keyi the i-th
v-versioned value. Additionally, we assume the developer always deletes a versioned
value specifying the same permission amount as the one they used to create it, and
more generally that no permission amount of the predicates guard and receipt has
leaked or is hidden. Then, we can express the following property:(

perm(guard(v))+
n

∑
i=1

perm(receipt(keyi, v))

)
= 1

To conclude, we have obtained a satisfactory approach to track the number
of versioned values, which meets all of our requirements. Our approach
is, contrary to counting permissions, supported by Gobra. As we wanted,
our approach also supports arbitrary representations of the application state,
concurrency and unboundedly many versioned values. Despite giving more
flexibility to the developer, this method is sound and constitutes the core of
our deletion mechanism.

1We say that some permission amount to a heap location or a predicate x leaks when the
total available permission amount of x in the current context is not fully returned to the caller
in a postcondition of the current function, so a permission amount of x is lost forever. We say
that some permission amount of x is hidden when it is folded in a predicate y, meaning that a
permission amount of x is replaced with a permission amount of y.
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3.3 Extension of the library

We introduced a general mechanism to enforce the deletion of versioned
values before the end of their time frame, defined in terms of versions allowed
by their secrecy label. This mechanism is central to the methodology. In
this section, we explain how we integrate it in Arquint’s et al. Reusable
Verification Library [1], to provide the developer with functions handling
versioned values.

We start by explaining how we store and access the current version of a
session. Then, we explain how we adapted the functions that create a value,
e.g. a nonce, to support versioned values according to our methodology.
Similarly, we present our secure deletion function made to delete those
versioned values. We continue by introducing two special cases that required
particular effort to support versioned values and fit our methodology: key
ratcheting and encryption/decryption. Afterward, we describe our function
for increasing the version of a session when all “old” values have been
deleted.

Finally, we give a glimpse of an alternative approach to implement a similar
deletion mechanism, based on obligations, which can be used instead if the
targeted verifier supports obligations.

3.3.1 Storing the current session version

We will later see several library functions that have to compare a version
appearing in a secrecy label to the current version of the session. Retrieving
the current version from the global trace directly is not possible because, as
it is a concurrent data structure, there might be interleaving operations by
other participants or sessions between the moment we retrieve the version
and the moment we use it. However, we assume that each session has its own
version, which can only be altered by this session. Hence, we turn the version
into a local field within the library that can only be altered by corresponding
library calls.

Currently, the library already handles the storage of the current protocol
participant and session. These are stored in a field called owner that is either a
participant identifier (p) or a session identifier (p, s), where p is a participant
and s is a session. This field is used in the concurrent data structure, as a key
to a dictionary mapping identifiers to their corresponding snapshot, where
we recall that snapshots are local copies of the global trace. Since owner is
used as a key to the snapshots mapping, we cannot include the version in
the owner field because this would result in a different map lookup whenever
the session’s version is incremented.

Therefore, we store the current version of a session in a separate field, as an
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1 requires versionPerm >= 0
2 requires versionPerm == 0 ==>
3 CanFlow(l.Snapshot(), nonceLabel , Readers(set[p.Id]{l.Owner ()}))
4 requires versionPerm > 0 ==>
5 acc(guard(l.Version ()), versionPerm) &&
6 l.Owner (). IsSession () &&
7 CanFlow(l.Snapshot(), nonceLabel ,
8 Readers(set[p.Id]{l.OwnerWithVersion ()}))
9 ensures err == nil && versionPerm > 0 ==>

10 acc(receipt(nonce , l.Version ()), versionPerm)
11 ensures err == nil ==> Mem(nonce)
12 func (l *LabeledLibrary) CreateNonce(ghost nonceLabel SecrecyLabel ,
13 ghost versionPerm perm) (nonce []byte , err error) {
14 // ...
15 }

Figure 3.2: Specification of CreateNonce showcasing the changes to support versioned values.
Preconditions, postconditions and arguments that are not relevant to the changes have been
omitted. CanFlow represents the flow relation between secrecy labels, as defined in section 2.2.3,
and takes a snapshot of the global trace and two secrecy labels as arguments.

integer. The session is stored as part of the library state, which makes it easily
accessible to all library functions. For a function taking a LabeledLibrary

struct l, holding the state of the library, the current version of the session
will be referred to as l.Version() in the future code figures. The owner is
similarly obtainable using l.Owner(). Additionally, it is often useful when
working with secrecy labels to know the complete version identifier (p, s, v).
This is the combination of the owner and version fields, which is returned by
l.OwnerWithVersion().

3.3.2 Creation of versioned values

It is easy to categorize functions that create values: they all return full
permission to a new memory predicate Mem of the created value. The library
provides three functions to create values: CreateNonce to create some random
value, GeneratePkeKey to create a public/private key pair, and GenerateDHKey

to create a secret key for Diffie-Hellman key exchange. Those three functions
are implemented very similarly and have required the same changes to
support versioned values. Therefore, we will only discuss the CreateNonce

function in this section. Its simplified specification is provided in Figure 3.2.

This function takes a versionPerm argument, which is required to be non-
negative. The developer can use this argument to specify whether they want
to create a versioned or unversioned nonce. Choosing 0 means that the nonce
will be unversioned, and choosing a strictly positive value means versioned.
In both cases, when the function completes with no error, it returns full
permission of the memory predicate Mem(nonce), expressing that the nonce is
now stored in memory.
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Unversioned nonce

In this case, the developer chooses 0 for the versionPerm argument. As
required by lines 2-3, the provided secrecy label has to flow to the library
owner because otherwise, the developer could create a nonce that they are
not allowed to read, contradicting the modeling of corruption. Depending on
if sessions are used, the library owner is either a participant (p) or a session
(p, s) identifier. The other preconditions do not have to be satisfied because
they are only relevant to the versioned case.

Because no version identifier (p, s, v) flows to (p, s) or (p), we know when
verifying this precondition that the nonce label must be composed of some
non-versioned identifier, e.g. is unversioned. Therefore, when the developer
chooses 0 for the versionPerm argument and proves that the nonce label is
unversioned, then the library behaves as the original implementation and
creates an unversioned nonce, without consuming any permission of guard.

Versioned nonce

In this second case, the developer chooses a strictly positive versionPerm

value. This value is used to specify the amount of permission of guard to
consume (line 5), as discussed in section 3.2.2. Additionally, the library owner
must be a session identifier (line 6) and not a participant, because a version
identifier (p, s, v) requires a session s to be defined. Finally, the nonce label
must flow to the library owner at the current version (lines 7-8). This is to at
least ensure that the created nonce is readable by the current session and
version.

However, the flow relation is not enough to ensure that the nonce label
is actually versioned. To do so, one would have to prove that the nonce
label cannot flow to the library owner (without version), as shown in this
precondition:

1 requires versionPerm > 0 ==>
2 !CanFlow(l.Snapshot(), nonceLabel , Readers(set[p.Id]{l.Owner ()}))

Establishing this precondition is however not possible because it would
entail proving that no reader specified in the nonce label has been corrupted.
Indeed, if one of the readers had been corrupted, then the nonce label
would flow to Public, so it would flow to any secrecy label, including the
library owner. Therefore, we decided to not enforce this condition, as it is
not necessary to ensure soundness of the methodology. If the developer
“accidentally” creates a nonce with an unversioned label, but uses a strictly
positive versionPerm (meant to be used for versioned values), verification
will not fail. However, they will be bound by the constraints of the deletion
mechanism. For now, this means that they will be forced to safely delete
their unversioned nonce before the next increment of the session’s version
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1 requires versionPerm > 0
2 requires acc(receipt(value , l.Version ()), versionPerm)
3 requires Mem(value)
4 ensures acc(guard(l.Version ()), versionPerm)
5 func (l* LabeledLibrary) DeleteSafely(value []byte ,
6 ghost versionPerm perm) {
7 // Overwrite the value with zeros
8 for i := range value {
9 value[i] = 0

10 }
11 // Prevent the compiler from optimizing the entire function
12 runtime.KeepAlive(value)
13 return
14 }

Figure 3.3: Implementation and specification of DeleteSafely, used to delete a versioned value.
Preconditions, postconditions and arguments that are not relevant to the deletion mechanism
have been omitted.

(but we will see in section 3.3.4 that another way is possible). Either way,
this will just result in additional proof obligations without any benefits for
proving security properties because the nonce’s secrecy label is still the same,
i.e. unversioned.

Finally, the postcondition (lines 9-10) states that the developer will receive
the same (strictly positive) amount of permission of receipt as the amount
of permission of guard consumed. This is indeed what was defined in
section 3.2.2.

3.3.3 Secure deletion of versioned values

The library provides the function DeleteSafely to securely delete a versioned
value. Its implementation and simplified specification are provided in Fig-
ure 3.3.

This function behaves like the opposite of the CreateNonce function in the
versioned case. It takes a strictly positive versionPerm argument, which is
used to specify the amount of permission of receipt to consume (line 2). The
same amount of permission of guard is then returned (line 4). Recall that
the DeleteSafely function does not check that the given receipt permission
amount for this value is the full amount of permission available. But as
discussed in section 3.2.2, it is in the developer’s interest to specify the full
amount if they want verification to succeed, i.e. eventually being able to
increment the session’s version. Additionally, DeleteSafely consumes the
memory predicate of the deleted value (line 3), expressing that the value is
no longer stored in memory.

To securely erase a value from memory, we use the implementation shown
in lines 7-12 of Figure 3.3. This ensures that the memory is zeroed out and
that this operation is not optimized away by the compiler. Line 12 currently
seems sufficient to prevent the Go compiler from eliminating the function’s
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body. Various alternatives have been surveyed by Yang et al. [17] for the C
language.

3.3.4 Creating values with multiple versions for ratcheting

When presenting the Diffie-Hellman Ratchet [13] in section 3.1.1, we ex-
plained the purpose of the ratcheting step, which is to derive a new com-
munication key from the previous one. Once a new communication key has
been derived, the previous one is no longer needed and should be deleted.
Intuitively, the new key should exist in a more recent time frame than the
previous one, and both keys should coexist for a short period of time, from
the ratcheting step to the deletion of the previous key.

In terms of versions, this means that if the previous key Kn is versioned with
the current version v, it is not sufficient to create the new key Kn+1 only with
version v + 1 because it could not coexist with Kn. Additionally, we have
seen in section 3.3.2 that creating a versioned key requires it to be readable at
least in the current context. This means that when creating Kn+1, we would
have to prove that it is readable in the current version v. To make Kn+1
readable both in version v and v + 1, we could for example use the secrecy
label [(p, s, v), (p, s, v + 1)], where p and s are the participant and session of
the library owner. This label now allows Kn and Kn+1 to coexist in version
v. Then, after the ratcheting step, the developer would want to increment
the session’s version to v + 1. The methodology enforces that Kn is deleted
before the version increment.

However, while this label makes Kn+1 theoretically readable in version v + 1,
it does not yet align with our deletion methodology. Because Kn+1 is created
while the current version is v, a permission fraction of guard(v) (and not
guard(v+1)) will be consumed2. This fraction can currently be restored only
by deleting Kn+1 before incrementing the session’s version to v + 1, which
would defeat the purpose of the ratcheting step.

Conversion function

To solve this problem, we introduce a generic way to migrate values from one
version to the next one if this is permitted by their secrecy labels. Intuitively,
a versioned value key created in version v has consumed some permission of
guard(v) and returned some permission of receipt(key, v). If key’s secrecy
label also flows to the next version v + 1, we want to allow key to continue to
exist in version v + 1. To do so, we offer the developer to convert key’s receipt
to a new receipt(key, v+1). At the same time, we return the consumed
guard(v) permission but consume an equivalent amount of guardNext(v+1)

2For the sake of clarity, note that in this and subsequent paragraphs, v and v denote the
same version value.
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1 requires l.Owner (). IsSession ()
2 requires versionPerm > 0
3 requires acc(receipt(value , l.Version ()), versionPerm)
4 requires acc(guardNext(l.Version () + 1), versionPerm)
5 requires CanFlow(l.Snapshot(), GetLabel(valueT),
6 Readers(set[p.Id]{l.OwnerWithNextVersion ()}))
7 ensures acc(guard(l.Version ()), versionPerm)
8 ensures acc(receipt(value , l.Version () + 1), versionPerm)
9 func (l* LabeledLibrary) ConvertToNextVersion(value []byte ,

10 valueT Term , versionPerm perm)

Figure 3.4: Specification of the abstract ConvertToNextVersion function, converting con-
sumed and emitted guard and receipt permission fractions to the next version when the
secrecy label of the value allows it. Preconditions and postconditions that are not relevant to the
conversion mechanism have been omitted.

permission, to make the permission amounts behave as if the developer had
created key directly in version v + 1. Note that we use a different predicate
guardNext(v+1), playing the same role as guard(v+1), for reasons that will be
explained in the next section. Ultimately, this means that before incrementing
the session’s version to v + 2, the deletion methodology will either force the
developer to safely delete key or convert it once more if permitted by its
secrecy label.

From this intuition, we can define the ConvertToNextVersion function shown
in Figure 3.4. Similarly to CreateNonce, the library owner must be a session
identifier (line 1) and not a participant. A positive fraction of the existing
receipt permission and the next version’s guard permission is consumed
(lines 2-4). Finally, the secrecy label of the value must flow to the next
version (lines 5-6). In return, ConvertToNextVersion returns the same amount
of permission of the current version’s guard (line 7) that was consumed when
creating the value. It also returns a receipt for the next version (line 8).

The ConvertToNextVersion function solves our ratcheting problem. While in
a protocol session with version v, we can obtain a new key Kn+1 with secrecy
label [(p, s, v), (p, s, v + 1)], where p and s are the participant and session of
the library owner, from a key Kn versioned with version v. At this point, the
two keys coexist in version v. The developer can then convert Kn+1 to the
next version, meaning that it replaces the obligation to delete Kn+1 in version
v with an obligation to delete Kn+1 in version v + 1. After this conversion, the
developer can delete the old key Kn and has now obtained full permission
to the guard(v) predicate. They can now increment the session’s version to
v + 1.

Handling mutliple guards

While the conversion function solves the initial ratcheting problem, it intro-
duces a new challenge: we now have to deal with two guard predicates at the
same time. One, guard(v), for the current version and one, guardNext(v+1)
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for the next version. Otherwise, the conversion function would not be able to
consume a fractional amount of the next version’s guardNext predicate. Be-
cause a session’s version is initialized at 0, it implies giving the developer full
permission to both guard(0) and guardNext(1) predicates at the beginning of
a protocol session.

Some parts of the implementation of our deletion mechanism rely on the
existence of a single guard(v) predicate, where v is necessarily the current
version of the session. In particular, some helper functions that play a role
in the deletion mechanism do not have access to the session state, so do not
know the current version. In these cases, guard(v) can be used to bind the
current version v to the function’s argument.

To prevent developers from accidentally calling these helper functions with
the next version instead of the current one, we introduce a distinct predicate:

1 pred guardNext(v uint32)

The guardNext predicate is another abstract predicate, like guard, and is
used in our methodology for the same purpose as guard, but for the next
version. Using this simple adaptation, we can rely on the fact that at any
time, the existing guard predicate has the current version as argument. This
is expressed in the following lemma:

Lemma 3.3

∀v1, v2 ∈ N, perm(guard(v1)) > 0 ∧ perm(guard(v2)) > 0 ⇒ v1 = v2

3.3.5 Encryption and decryption of versioned values

In section 3.3.2, we categorized functions that create values as the ones re-
turning full permission to a new memory predicate of the created value.
Functions that fit into this category, which we have not mentioned yet, are
encryption and decryption functions. Indeed, encryption functions take (and
return) read permission to a plaintext, encrypt it to create a ciphertext, and
return full permission on a new memory predicate for the ciphertext. In-
vertly, decryption functions take (and return) read permission to a ciphertext,
decrypt it to create a plaintext, and return full permission on a new memory
predicate for the plaintext. Both functions create a new value that is stored
in memory (a ciphertext and a plaintext respectively), we should therefore
make sure they are compatible with our deletion methodology.

Encryption

Encryption is the simpler case. By definition of secrecy labels, an encryption
function creates a public ciphertext, which is unversioned. Therefore, we do
not need to change the encryption function to support versioned values.
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Decryption

Since a decryption function creates a plaintext, whose value is the same as the
original plaintext used for encryption, the returned plaintext might contain
versioned values.

As a simple example, suppose that a participant creates a versioned value
key, and then encrypts and decrypts it. They will obtain a copy keycopy = key
of the initial versioned value, with its own memory predicate. While the
current deletion methodology forces the developer to delete (or convert) the
versioned value key before the next version increment, we need to adapt the
methodology to decryption functions to also enforce the deletion of keycopy.

Intuitively, we want to treat the decryption function like a creation function
and consume some permission of guard only when the created plaintext is
versioned. However, we can not refer to the plaintext or its secrecy label in
the preconditions of the decryption function to distinguish between the case
where the plaintext is versioned, in which we require a fraction of the guard

predicate, and the case where the plaintext is unversioned.

A possible solution to this problem would be to always require partial per-
mission of guard when calling the decryption function. Then, this permission
could be returned later when the developer manages to prove that the de-
crypted plaintext is unversioned. However, this is not ideal because it would
always require the developer to use the guard predicate to decrypt, even when
verifying a protocol that does not use versioned values at all and should thus
not be affected by the deletion mechanism.

Instead, we take advantage of an existing encryption property implemented
in all encryption functions of the library: everyone who can read the key
used for decryption can possibly obtain the plaintext and must thus be able
to read it. In terms of secrecy labels, this means that the secrecy label of the
plaintext must flow to the secrecy label of the used secret key3. In particular,
this means that a versioned plaintext must be encrypted with a versioned key.
Upon decryption, while we do not know the secrecy label of the plaintext
to be created, we know the secrecy label of the key used for decryption. We
thus over-approximate and treat the plaintext as versioned if it was encrypted
using a versioned key. This is a sound overapproximation that should not
burden the developer in practice.

Proving that the decryption key is versioned involves proving that its secrecy
label does not flow to the library owner. We have already seen when creating
a versioned nonce section 3.3.2 that such a negation is not provable in
general. Instead, we adopt the same workaround and require the developer

3In asymmetric encryption, while we encrypt with the public key, we consider the label
of the private (decryption) key for this property.
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1 requires versionPerm >= 0
2 requires versionPerm == 0 ==>
3 CanFlow(l.Snapshot(), GetLabel(keyT),
4 Readers(set[p.Id]{l.Owner ()}))
5 requires versionPerm > 0 ==>
6 acc(guard(l.Version ()), versionPerm) &&
7 l.Owner (). IsSession ()
8 ensures err == nil ==> Mem(res)
9 ensures err == nil && versionPerm > 0 ==>

10 acc(receipt(res , l.Version ()), versionPerm)
11 func (l *LabeledLibrary) AeadDec(ghost keyT tm.Term ,
12 ghost versionPerm perm) (res []byte , err error) {
13 // ...
14 }

Figure 3.5: Specification of AeadDec, showcasing the changes to support versioned values in
AEAD decryption. Preconditions, postconditions and arguments that are not relevant to the
changes have been omitted.

to specify whether the decryption key is versioned or not, using a versionPerm

argument. The simplified specification of the AEAD decryption function
AeadDec is provided in Figure 3.5. Like in the CreateNonce function, the
versionPerm argument must be non-negative (line 1) and is used to specify
whether the decryption key is versioned or not.

If the developer chooses 0 for the versionPerm argument, the decryption key
is meant to be unversioned, which the developer has to prove on lines 2-4. In
this case, this is the only modification to the original implementation of the
AeadDec function. Because the decryption key is unversioned, the resulting
plaintext is necessarily also unversioned, which justifies that the deletion
methodology does not apply in this case.

If the developer chooses a strictly positive versionPerm value, the decryption
key is meant to be versioned. As explained before, we do not create a
proof obligation that the decryption key is versioned. As mentioned in
section 3.2.2, this over-approximation does not affect soundness but only
forces an implementation to safely delete a plaintext in case it would not
be necessary. We then consume a partial permission of guard (line 6) and
return the same amount of permission of receipt (lines 9-10). Additionally,
the library owner must be a session identifier (line 7) for versions to make
sense. Then, if decryption succeeds, the resulting plaintext is returned and
a memory predicate is issued (line 8), expressing that it is now stored in
memory.

Finally, let’s reason about the case where the encryption key is versioned,
but not the encrypted content. When it happens, the developer is forced to
hand a strictly positive permission fraction of guard. They will receive the
same amount of permission of receipt for the plaintext in return as if it was
versioned. Since the plaintext is unversioned and exists in the current version,
it means that its secrecy label allows the current session or participant to
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1 requires versionPerm > 0
2 requires acc(receipt(value , l.Version ()), versionPerm)
3 requires CanFlow(l.Snapshot(), GetLabel(valueT),
4 Readers(set[p.Id]{l.Owner ()}))
5 ensures acc(lib.guard(l.Version ()), versionPerm)
6 func (l* LabeledLibrary) GuardFromUnversionedReceipt(value []byte ,
7 valueT Term , versionPerm perm)
8 }

Figure 3.6: Specification of the abstract GuardFromUnversionedReceipt function, removing
an unversioned value from the deletion mechanism. Preconditions and postconditions that are
not relevant to the deletion mechanism have been omitted.

1 requires acc(guard(l.Version ()), 1/1)
2 requires nextPerm >= 0
3 requires acc(guardNext(l.Version () + 1), nextPerm)
4 ensures l.Version () == old(l.Version ()) + 1
5 ensures acc(guard(l.Version ()), nextPerm)
6 ensures acc(guardNext(l.Version () + 1), 1/1)
7 func (l* LabeledLibrary) BumpVersion(nextPerm perm) {
8 exhale acc(guard(l.Version ()), 1/1)
9 exhale acc(guardNext(l.Version () + 1), nextPerm)

10 l.manager.version = l.Version () + 1 // Increment the version
11 inhale acc(guard(l.Version ()), nextPerm)
12 inhale acc(guardNext(l.Version () + 1), 1/1)
13 }

Figure 3.7: Implementation and specification of BumpVersion, incrementing the session’s
version. In the function’s body, exhale is used to consume permission and inhale to emit
permission. Note that after the session’s version is incremented line 10, a call to l.Version()
returns the incremented version, not the old one. Preconditions, postconditions and statements
that are not relevant to the deletion mechanism have been omitted. In particular, incrementing
the session’s version requires permission to modify the library, which does not appear in this
simplified specification.

access it. This means that it could be converted to the next version infinitely
with the ConvertToNextVersion function, which would allow the value to
keep existing in memory despite version increments. Although it works,
converting this value for each version would be a verification burden in
practice. This is why we offer an additional library function, provided in
Figure 3.6, which checks if a value associated with a receipt is unversioned
(lines 3-4), and if so returns the consumed guard permission (line 5). This
conceptually removes the corresponding values from our deletion tracking
mechanism.

3.3.6 Increasing the version of a session

After having seen all cases in which a versioned value can be created, for one
or several versions, and deleted, we explain how to increment the version
of a session. This is done using the BumpVersion function, whose simplified
implementation is provided in Figure 3.7.

As explained in the core idea of the methodology (section 3.2.2), the developer
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must have deleted all v-versioned values before incrementing the session’s
version v to v + 1. This means that the developer must have obtained the full
permission of the guard(v) predicate, which corresponds to the precondition
on line 1. Indeed, by lemma 3.1, full permission to guard(v) implies that all
v-versioned values have been deleted.

Additionally, we have seen in section 3.3.4 that, if allowed by their secrecy
label, v-versioned values can be converted to version v + 1, which consumes
a partial permission of the guardNext(v+1) predicate. This means that before
incrementing the session’s version, the developer has some amount of permis-
sion of guardNext(v+1) that may vary between 0 and 1. Thus, the BumpVersion

function takes a nextPerm argument, and turns nextPerm-many permissions
of guardNext(v+1) into nextPerm-many permissions of guard(v+1) (see the
preconditions lines 2-3 and the postcondition line 5). This happens because
the BumpVersion function increments the session’s version (done on line 10,
ensured on line 4). Now that the session’s version is v + 1, the methodology
explained in section 3.3.4 requires us to use the predicate guard(v+1) instead
of guardNext(v+1). Finally, the BumpVersion function returns full permission
to the guardNext(v+2) predicate (postcondition line 6).

After incrementing the session’s version to v + 1, we are in a similar situation
as in version v but with all predicates shifted by one version. We have partial
permission to guard(v+1), and we still may have some receipts from values
converted before the version increment. As those receipts are for version
v + 1, we could delete them to obtain full permission to guard(v+1). In
parallel, permissions to guard(v+1) and guardNext(v+2) allow us to create
and convert new values, exactly like before.

Note that similarly to section 3.2.2, it is in the developer’s interest to specify
in nextPerm the full amount of permission of guardNext(v+1) that they have.
If they provide a lower amount, the function call to BumpVersion will still
succeed, but they will not be able to retrieve the full guard(v+1) permission
afterward, which will prevent them from incrementing the session’s version
to v + 2.

Summary

In this section, we have seen how we adapted the Reusable Verification
Library to support versioned values, and how the implemented mechanism
enforces the deletion of those values at the end of their time frame. While the
end result is functional and sound, we have come across various challenges
that we had to solve by complexifying the methodology a bit. In the next
section, we will give a glimpse into an alternative approach to implementing
the deletion mechanism more simply, in case obligations are supported by
the targeted program verifier.
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3.4 Alternative design using obligations

An obligation [4], defined for a thread, specifies an action to be eventually
performed by this thread. An obligation is initially emitted, and once the
action is performed, the obligation is discharged.

In this section, we first present how we could use obligations to implement
the deletion mechanism in a simpler way. Then, as Gobra does not support
obligations, we present a way to add them to the language to be able to
implement the deletion mechanism. This section will not be as exhaustive
as the description of our deletion mechanism and only aims at giving an
intuition of how obligations could be used to implement it.

Idea

With a verifier supporting obligations, we could, upon creation of a time-
sensitive value, emit an obligation to delete it before the next version incre-
ment. In practice, the obligation would be a construct linking the versioned
value to its version number. The obligation can then be discharged upon
calling the secure deletion function on the value. Then, when incrementing
the protocol’s session version, we check that all existing obligations are valid:
meaning that the version defined in the obligation is greater than or equal
to the new version number. This means that “old” obligations, with the
previous version number, must have been discharged before the version
increment.

The obligation mechanism would therefore be composed of two main parts:
an obligation construct, and a way to check that all existing obligations satisfy
certain properties.

Adding obligations to Gobra

In this section, we present a way to add obligations to Gobra to solve the
particular problem of implementing our deletion mechanism. To add obliga-
tions to Gobra, we first need to define the obligation construct. In our case, it
should be parameterized by the value to delete and its version number. We
therefore introduce the keyword obligation to define an obligation in Gobra,
and we use a syntax similar to the definition of an abstract predicate:

1 obligation Obl(key []byte , version uint32)

This construct could then be emitted upon creation of a versioned value,
by returning it in the creation function’s postcondition. Invertly, the secure
deletion function would require the obligation as a precondition, and would
not return it to discharge it.
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The second part of the mechanism is to have an assertion capable of checking
certain properties for all existing obligations. This assertion could then be
evaluated upon incrementing the session’s version. To do so, our main
challenge is to ensure that this assertion has access to all existing obligations
in its scope. Indeed, if the obligations are framed around a function call, they
will not be visible to the callee. And if obligations are not returned to the
caller after a function call, they will leak and will not be visible to the caller.

To avoid this, we introduce frame checks, to ensure that all obligations are
passed to a function call, and leak checks, to ensure that all obligations
are returned to the caller at the end of a function call. We can implement
these frame and leak checks by using inhale-exhale expressions available
on the Viper level. These expressions can be used in preconditions and
postconditions and will only be evaluated either in the caller or in the callee
context, which gives us sufficient expressivity. When verifying Gobra files,
the Gobra code is first translated to Viper code, which is then verified. To add
frame and leak checks to all Gobra functions, we could modify the translation
process to automatically add such checks to all Viper functions. In our case, a
frame check and a leak check can be defined in Viper with the same assertion,
using the forperm construct to quantify over all obligations in the current
context:

1 define check [true , forperm k: Ref , v: Int [Obl(k, v)] :: false]

Without going into details, this check assertion, when used as a precondition,
behaves as a frame check and makes sure that the function caller passes
all obligations in its scope to the callee. When used as a postcondition, it
behaves as a leak check and makes sure that the function callee returns all
obligations in its scope to the caller. Now that all obligations are always
available in the current context, we could check the version of all existing
obligations upon incrementing the session’s version, with a similar forperm

expression.

Therefore, using frame and leak checks, we provide a simple way to imple-
ment obligations in Gobra to ultimately implement a deletion mechanism.
Note that this mechanism, given for the sake of simplicity, is not optimal
yet. Indeed, it requires passing all obligations in scope, even when calling
a function that does not need to read them, which can be a verification
burden for the developer. The approach could be improved by allowing
framing obligations around a function call in the case that the callee and all
transitively called callees do not increment the version.
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Case study

Now that we have presented our methodology and its implementation in the
Reusable Verification Library [1], we apply it to a protocol to showcase its
use. We demonstrate that our implemented deletion mechanism is expressive
enough to support a protocol performing key ratcheting.

We start by explaining how we adapted the WireGuard [8] protocol to perform
Signal-like key ratcheting. Then, we present how we implemented and
verified this protocol using our methodology, and the various challenges we
faced during this process. Finally, we detail the remaining work to achieve
the verification of our protocol’s security properties.

4.1 Choosing a protocol to verify

First, we decide on a protocol to verify. We build on the WireGuard [8]
protocol to make the verification efforts manageable, as it has already been
implemented and verified with the Reusable Verification Library. Addition-
ally, we use the Signal [9] protocol as inspiration, as it uses key ratcheting
to achieve forward secrecy and post-compromise security, while WireGuard
does not.

In this section, we start by presenting the Diffie-Hellman ratchet [13], a
protocol that is a core component of Signal’s ratcheting process. We con-
tinue by explaining how we use WireGuard’s handshake to obtain the prior
knowledge required by the Diffie-Hellman ratchet. Finally, we present our
final choice of protocol, a modified version of the Diffie-Hellman ratchet, and
explain why we made this choice.

4.1.1 Ratcheting protocols

We have already mentioned the Signal protocol in the previous chapters,
which is based on the Double Ratchet algorithm. Signal [9] is a state-of-the-art

39



40 4. Case study

protocol, whose verification of a Go implementation1 has, to the best of our
knowledge, never been attempted. However, we do not consider that we have
sufficient time to verify such a complex protocol implementation in the scope
of this thesis. Optimally, we would like to verify a protocol implementation
that uses the same principles of ephemeral keys and ratcheting to achieve
comparable security properties.

Such a protocol exists and has already been introduced in section 3.1.1: the
Diffie-Hellman (DH) Ratchet [13]. Recall that the DH Ratchet is the core
component of the Signal protocol. Participants frequently exchange their
Diffie-Hellman public keys and use them to obtain a shared secret that is
used to derive new ephemeral keys to encrypt their messages. The DH
Ratchet aims to provide both forward secrecy and post-compromise security,
which are the same security properties that Signal aims to achieve. If the
DH Ratchet can provide the same guarantees as the more complex Signal
protocol, it is because the DH Ratchet uses a simpler communication model,
where participants alternate sending and receiving messages. In Signal, the
protocol has to cope with a participant sending multiple messages in a row,
as well as out-of-order and lost messages.

While the DH Ratchet now appears to be a good candidate for our case
study, we have to handle the fact that it requires some prior knowledge, as
it was shown in Figure 3.1 page 16. We need to provide the initiator and
responder with a shared secret K0, which will be the initial key of their key
chain. Additionally, we need to provide the initiator with the public key gy0

of the responder, where y0 is the private of the responder. We cannot use
the DH Ratchet without this prior knowledge, which requires us to add an
initial key agreement to the protocol.

4.1.2 Initial key agreement and chosen protocol

Similarly to the Diffie-Hellman Ratchet, the Signal protocol starts with an ini-
tial key agreement before running the Double Ratchet algorithm. Signal uses
the X3DH [9] key agreement protocol, which is a state-of-the-art protocol that
provides forward secrecy and cryptographic deniability. Additionally, X3DH
is specifically designed to work asynchronously when one user is offline. To
focus on the ratcheting part of the protocol, we instead pick WireGuard’s
handshake protocol to perform the initial key agreement, which has already
been implemented and verified with the Reusable Verification Library. In
practice, to build our protocol, we start from the existing WireGuard imple-
mentation and change its message transport phase, which currently keeps
using the same session key for all messages, to use key ratcheting instead
such that fresh keys are used for each transport message.

1Note that there is no official Go implementation of Signal, but some unmaintained
inofficial implementations exist.
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WireGuard starts with a handshake based on a Diffie-Hellman key exchange,
called the Noise IKpsk2 [12] handshake from the Noise protocol. This hand-
shake establishes symmetric keys between the initiator and responder, which
is the first part of the prior knowledge required by the DH Ratchet.

Then, it is easy to add a communication step between the initiator and
responder, in which the responder computes a Diffie-Hellman key pair
and sends its public key to the initiator, authenticated with the symmetric
key established by the handshake. Therefore, by combining the IKpsk2
handshake with this additional communication step, we obtain the prior
knowledge required by the DH Ratchet. At this point, we have already
successfully adapted the WireGuard protocol to perform Signal-like key
ratcheting. However, we explain in the following paragraphs how we made
an additional modification to simplify the verification process of this protocol.

Recall the original ratcheting process that we presented in Figure 3.1 (page 16);
when the initiator sends a message encrypted by a key K1 to the responder
together with its new public key gx1 , the responder uses this public key gx1 to
compute the shared secret K1 and decrypt the message. Typically, the public
key gx1 is sent in the associated data of the AEAD encrypted message, so its
integrity is protected, but it remains publicly readable so the responder can
immediately access it to compute K1.

In the existing methodology and its current implementation, the Reusable
Verification Library, the message comes with a (ghost) message invariant. It is
a property, part of the trace invariant, about the content of the message used
for verification purposes. Upon encrypting the message to send, the initiator
has to prove this message invariant, and upon receiving and decrypting the
message, the responder obtains the message invariant unless corruption has
occurred, in which case the message was potentially sent by the attacker.
In our case, for the first message sent by the initiator on Figure 3.1, the
message invariant would contain information about the public key gx1 . In
particular, it would specify that gx1 is a Diffie-Hellman public key with base
generator g and exponent x1, where x1 is a nonce readable by the initiator.
This information can then be used for verification purposes on the responder
side, notably to know that gx1y0 is a Diffie-Hellman shared secret.

However, in our case, the message invariant is obtained only after decrypting
the message. However, we would need to know that gx1y0 is a shared secret
before decrypting to satisfy the preconditions of the decryption function. In
particular, the decryption function requires us to prove that K1 is a valid
AEAD decryption key, which in turn requires us to know that gx1y0 is a
shared secret.

This is why we slightly modified the DH Ratchet protocol to make it verifiable
with our existing methodology and library. We present our modified protocol
in Figure 4.1, and our new first communication round (running after the
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Figure 4.1: Our ratcheting protocol : a modified protocol based on the Diffie-Hellman Ratchet, in
which the decryption key is computed using the previous DH public key instead of the just-received
one. Here, AeadEnc(K, MSG, ad) refers to the AEAD encryption of the message MSG with
the key K and the associated data ad. KDF(a, b) refers to a key derivation function that derives
a new key from two inputs a and b. Green bubbles, which are linked to versioned values, indicate
with their numbers the versions in which the value can be read from the participant’s point of
view. For example, the top-right bubble indicates that y0 can be read in versions 0 and 1 of Bob’s
current session.

IKpsk2 handshake) in Figure 4.2. For the sake of readability, we now refer
in the remainder of the thesis to our modified DH Ratchet protocol as the
ratcheting protocol. Additionally, we will refer to the entire protocol that we
verify, i.e. the IKpsk2 handshake followed by the first communication round
and the ratcheting protocol, as the full ratcheting protocol.

The intuition behind the ratcheting protocol is that we replicate the DH
Ratchet protocol, but instead of using the just-received public key, we use the
public key received in the previous message to compute the shared secret.
This first requires us to modify the prior knowledge of the participants. Now,
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Figure 4.2: First communication round happening after the IKpsk2 handshake. It uses the shared
keys KIR and KRI established by the handshake to authenticate the DH public keys gx0 and gy0 of
the initiator and responder respectively. This exchange of public keys is necessary to initiate the
ratcheting protocol, as it provides the required prior knowledge. AeadEnc(K, MSG, ad) refers
to the AEAD encryption of the message MSG with the key K and the associated data ad. Like in
Figure 4.1, green bubbles, which are linked to versioned values, indicate with their numbers the
versions in which the value can be read from the participant’s point of view.

in addition to the initial shared secret K0, both participants need to know
the other’s DH public key and their (versioned) DH private key. This is the
purpose of the new first communication round shown in Figure 4.2. The
initiator first sends its public key gx0 to the responder, authenticated with
the symmetric key KIR established by the handshake. Then, the responder
replies with its authenticated public key gy0 .

Coming back to the ratcheting protocol shown in Figure 4.1, when comput-
ing the first shared secret K1, the initiator uses its private key x0, whose
associated public key gx0 is already known by the responder, from the first
communication round. This was not the case in the DH Ratchet protocol.
The first message sent by the initiator to the responder is otherwise the same
as in the DH Ratchet protocol and contains the initiator’s new authenticated
public key gx1 in addition to the encrypted message. Upon reception of this
message by the responder, instead of using the public key gx1 to compute
the shared secret K1, the responder uses the previous public key gx0 received
in the first communication round. This allows the responder to obtain K1,
decrypt the message, and obtain the associated message invariant containing
information about the new public key gx1 . Then, gx1 is used just after by the
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responder to compute the next shared secret K2, which is used to encrypt
the next message sent to the initiator. The same observations can be made
upon reception of the second message by the initiator, and all subsequent
messages.

This ratcheting protocol is therefore simpler to verify than the DH Ratchet and
aims to provide similar security properties. Intuitively, forward secrecy still
holds because past communication keys are deleted and cryptographically
not retrievable from long-term secrets and current communication keys.

Additionally, we show that post-compromise security still holds. Similarly to
the original DH Ratchet protocol, we consider that the attacker compromised
Alice’s Kn communication key after her computation of the new Kn+1 key,
and after she and her peer Bob have deleted their DH private key they used
to compute Kn+1. At this point, the attacker is unable to obtain Kn+1 because
they cannot compute the associated DH shared secret. Therefore, in this
restricted compromise scenario, future communication remains secure. The
protocol is therefore healed and achieves post-compromise security.

In the end, we have presented a full ratcheting protocol that draws its security
properties from the frequent renewal of ephemeral keys. This protocol is
mainly based on the Diffie-Hellman Ratchet protocol and has been slightly
adapted to facilitate its verification, but achieves similar security properties.
We will now present how we implemented and verified this protocol using
our methodology and its implementation in the Reusable Verification Library.

4.2 Implementation and verification

This section explains how we implemented and verified the full ratcheting
protocol presented in the previous section. We started the implementation on
top of the existing WireGuard implementation, which already implements
the IKpsk2 handshake. Our focus was on adapting the message transport
phase to use the ratcheting protocol. In particular, the implementation work
shed light on additional challenges related to the verification library. This
section describes these challenges and how we solved them.

We start by explaining how we were able to model key ratcheting with our
methodology. Then, we present how we used usage constraints to distinguish
between different types of messages and their associated message invariants.
Next, we focus on the first communication round and explain its specificities
in terms of verification. Afterward, we describe how we added verification
annotations to comply with the requirements of our deletion mechanism
when verifying the ratcheting protocol. Finally, we explain how corruption is
handled in the methodology and how we can integrate it into our verification
annotations.
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1 trusted
2 requires versionPerm > 0 && acc(guard(currentVersion), versionPerm)
3 ensures acc(receipt(res , currentVersion), versionPerm)
4 func ComputeKDFRatchet(k []byte , dhss []byte , ghost currentVersion
5 uint32 , ghost versionPerm perm @*/) (res []byte) {
6 // ...
7 }

Figure 4.3: Specification of the trusted ComputeKDFRatchet function, taking the previous key
k and Diffie-Hellman shared secret dhss as input, and whose body computes the KDF result
res. This protocol-specific KDF implementation is not part of the library but is written by the
developer as part of the protocol. Preconditions and postconditions that are not relevant to the
deletion mechanism have been omitted.

4.2.1 Ratcheting using a key derivation function

In section 3.3.4, we explained how we designed our methodology to support
key ratcheting, namely the derivation of a new key, versioned with a later
version, from the previous one. However, note that for now, we have not
discussed the concrete specification and implementation of the ratcheting
step. In particular, we have not discussed how we could obtain a (v + 1)-
versioned key from a v-versioned key.

In practice, this ratcheting step is implemented by a key derivation function
(KDF), taking the previous key as one of its inputs and returning the new
key. However, the precise KDF function used and the arguments it takes
depend on the protocol. It is therefore not possible to provide a generic
implementation of it in the library. This is why we have not discussed its
implementation yet. For our case study, the KDF function specification is
given in Figure 4.3.

ComputeKDFRatchet is the concrete implementation of our KDF function, and
as the underlying KDF computations come from a non-verified library, we
have to trust it. As with any function creating a versioned value in our
methodology, it consumes some permission fraction of guard predicate and
returns the same amount of receipt for the created value. This ensures the
soundness of our deletion mechanism.

Now, we want to define the secrecy label of the resulting KDF. The secrecy
label of a term is defined by a function GetLabel in the library. It returns a
static label depending on the properties of the term, or a label depending on
the arguments of the term when the term is a function of other terms, e.g.
the hash of a term. But first, to define a secrecy label for the KDF output, we
need the library to know about our KDF. While we defined it in the protocol,
the KDF function needs to be specified on the term level in the library. We
define it as follows:

1 func KDFRatchet(Term , Term) Term
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We additionally specify some of its properties, like injectivity, through axioms
written in the library. To then bridge the gap between the protocol and the
library definitions, we add to the protocol’s ComputeKDFRatchet function a
postcondition ensuring that the KDF result corresponds to the byte represen-
tation of the term resulting from applying the newly defined KDF function
on the term level.

Now that the library knows about our KDF, we can define its secrecy label.
Intuitively, the only rule about the secrecy of a KDF output is that it is at most
as secure as knowing all of its inputs. Indeed, if you know all the inputs of a
KDF, you can compute its output. However, the KDF output is not necessarily
as secure as its inputs. For example, a hash function behaves similarly to a
KDF function and is generally used to obtain a public output from a secret
input. Therefore, the secrecy label of the output of a KDF should be weaker
or equal to the intersection of the secrecy labels of its inputs.

In our case, we chose to define the secrecy label of the KDF output term
newk := KDFRatchet(k, dhss) as the secrecy label of the Diffie-Hellman shared
secret dhss only. Indeed, considering v the current session’s version, because
the input key k is not (v + 1)-versioned, it is easy to see that newk cannot
obtain a secrecy label containing (p, s, v + 1) from k alone. Instead, we
show that the dhss term has to be (v + 1)-versioned, therefore making newk

(v + 1)-versioned as well.

The shared secret dhss = gxy is obtained by exponentiating the public key
gy of the other participant with our private key x. As x is our key, we get to
define its secrecy label at creation. In our ratcheting protocol, x is meant to be
an ephemeral private used to derive the two next shared communication keys
Kn and Kn+1 (the first one for receiving and the other for sending, where n is
even and odd for Alice and Bob respectively), as shown in Figure 4.1. As we
want to use x to obtain a shared secret for the next round of communication,
we make it readable in version v + 1. Because any value also needs to be
readable in the current version, x is given the label [(p, s, v), (p, s, v + 1)],
where p and s are the respective participant and session creating x. From the
message invariant, we obtain that y is readable by the other participant p′.
Because p does not need to precisely know in which session and version y
is readable by p′, the message invariant only gives us the simplified secrecy
label [(p′)] for y. Then, the labeling rules defined in the existing library state
that the secrecy label of the shared secret gxy is the union of x and y’s secrecy
labels, which is [(p, s, v), (p, s, v + 1), (p′)].

This (v + 1)-versioned secrecy label of dhss is exactly what we wanted for
our newk term. We define the labeling of our KDFRatchet term in the library
by stating the following postcondition for the library’s GetLabel(term Term)

(res SecrecyLabel) function:
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1 ensures forall k, dhss Term ::
2 term == KDFRatchet(k, dhss) ==> res == GetLabel(dhss)

Therefore, we have adapted our labeling rule and shown that following
our ratcheting methodology, we can obtain a (v + 1)-versioned key from a
v-versioned key.

4.2.2 Usages and message invariants

In section 4.1.2, we discussed how message invariants are crucial to the
verification of our ratcheting protocol. Recall that they are a property proven
by the initiator upon AEAD encryption of a message, and obtained by the
responder upon AEAD decryption of the received message. It is important
to note that each kind of message needs its message invariant. In our case,
we have several kinds of messages: a variety of messages used in the IKpsk2
handshake, the messages used in the first communication round, and the
messages used in all subsequent rounds in the ratcheting protocol. For the
handshake messages, we have been able to fully reuse the existing message
invariants from the WireGuard implementation, so we will not discuss them
further. This leaves us with two kinds of messages to consider.

Because of these different kinds of messages and their associated message
invariants, we need to be able to distinguish them in the library. To do so,
the current implementation of the library, similarly to DY* [2], uses usage
constraints. A usage is a way to annotate a term that should be used for a
specific purpose. For example in the case of our ratcheting protocol, we use
usages to distinguish Diffie-Hellman private keys, public keys, shared secrets,
and K versioned communication keys. A usage can initially be defined upon
creation of a value. This is the case when creating a Diffie-Hellman private
key. But then, similarly to secrecy labels, usages of terms are obtained using
a protocol-specific GetUsage function, which can return a usage depending
on the arguments of the term when the term is a function of other terms. For
example, it is in this GetUsage function that we define that the exponentiation
of the generator with a key of usage DH Private Key has usage DH Public Key.
Similarly, the exponentiation of a key of usage DH Public Key with a key of
usage DH Private Key has usage DH Shared Secret.

Coming back to the two kinds of messages in our ratcheting protocol that
we need to distinguish, we use usages to do so. Keys used in the first
communication round already have a specific usage KUsage that they obtained
at the end of the handshake. For subsequent ratcheting keys, we extend the
GetUsage function to return a specific usage KVersUsage for keys resulting
from the KDFRatchet(k, dhss) function, where k is a key of usage KUsage or
KVersUsage, and dhss has a DH Shared Secret usage.
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To be even more specific about the implementation, we found that it makes
verification much easier to distinguish between messages coming from the
initiator and messages coming from the responder, and to use slightly differ-
ent message invariants for each. Usage constraints were the natural way to do
so, by defining a usage KVersIrUsage for keys used to encrypt a message sent
from the initiator to the responder, and a usage KVersRiUsage for keys used
to encrypt a message sent from the responder to the initiator (and similarly
defining KIrUsage and KRiUsage for the first communication round).

Ultimately, using usage constraints, we can distinguish between different
kinds of messages upon AEAD encryption and decryption, and identify
messages coming from the initiator or the responder. This simplifies the
specification of message invariants because we can distinguish between
messages and thus separately specify message invariants for kind of each
message.

4.2.3 First communication round

As shown in Figure 4.2, the first communication round is a little different
from the other rounds. Before it starts, the initiator and responder have
shared secrets KIR and KRI resulting from WireGuard’s handshake. The
goal of this first round is to send authenticated public keys to each other
so that they can start the ratcheting protocol. The ratcheting protocol also
requires a shared secret K0 as prior knowledge, which is defined in the first
communication round as K0 = KIR.

This initial key K0, coming from the WireGuard implementation, is not
versioned so we will not be forced by the methodology to delete it. As it is
only the first key, this will not have a big impact on the security properties of
the protocol. However, by also adapting the handshake and thus increasing
verification efforts further, we could consider implementing a versioned
handshake resulting in a versioned K0.

But because K0 is not versioned, we do not have a receipt for it. This means
that we cannot call the DeleteSafely function on it, as it requires such a
receipt to consume it. This has an impact on the second communication
round, more particularly on the initiator’s first send and the responder’s first
receive of the ratcheting protocol, shown in Figure 4.1. Indeed, these functions
are deleting K0, but they do not use the particular DeleteSafely function that
is meant to delete versioned values. As they do not, the preconditions and
postconditions of these functions may carry different amounts of guard and
receipt permissions compared to all subsequent rounds. This has to be kept in
mind when working on verifying the protocol implementation in compliance
with the requirements of the deletion mechanism. This work is explained in
the next subsection.
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4.2.4 Using the deletion mechanism

In this section, we explain how we practically comply with the requirements
of the deletion mechanism to verify the protocol implementation. The first
step in this process is to reason about the adequate times to increment the
protocol session’s version, at which point previous keys must be deleted. This
choice will directly impact the resulting security properties of the protocol.
Indeed, the more frequently we increment the session’s version, the more
we can reason about the temporal existence of keys with a fine granularity,
which could lead to tighter security properties. Of course, there is no point in
incrementing the version too frequently. If no data has been deleted between
two versions, the last version increment is unnecessary and only results in
added verification complexity without benefits.

In the case of our ratcheting protocol, we notice that with the notations of the
Figure 4.1, for n > 0, the initiator’s private key xn is used in the computation
of the communication keys K2n and K2n+1. We can obtain a similar result for
the responder. We also notice that we delete a key K2n just after we derive
the next key K2n+1. As a first intuition, it would seem natural to increment
the session’s version just after we derive K2n+1 so that we force the deletion
of K2n at this point. However, doing so is not possible. Indeed, at each
round, a participant first derives a receiving key K2n and then a sending
key K2n+1, using the ComputeKDFRatchet function. While they use a different
Diffie-Hellman shared secret to derive each key, both shared secrets use the
same private key xn. Recalling the explanations about the labeling of the
KDF result given in section 4.2.1, we see that the secrecy label of xn defines
the secrecy label of the KDF results K2n and K2n+1 for the calling participant.
Because the part of the secrecy label about the other participant p′ is always
the same, (p′), the secrecy label of K2n and K2n+1 is the same. Therefore, as
we give xn the label [(p, s, n), (p, s, n + 1)], the secrecy label of K2n and K2n+1
is [(p, s, n), (p, s, n + 1), (p′)]. Because of this, forcing the deletion of K2n after
deriving K2n+1 would require to increment the session’s version to n + 2,
which would also force the deletion of K2n+1.

Therefore, we have to use a coarser granularity for our versioning. We saw
that the secrecy label of a K2n communication key is fully determined by the
label given to the Diffie-Hellman private key xn used to derive it. We would
then achieve the best possible granularity by incrementing the session’s
version between the computation of two private keys xn and xn+1. This
way, supposing having xn with secrecy label [(p, s, n), (p, s, n + 1)], we aim to
obtain xn+1 with secrecy label [(p, s, n + 1), (p, s, n + 2)]. Let’s increment the
session’s version at the end of the receive function, before calling the send
function, and observe what happens.

We look at the initiator p, supposing they are in session s and version n, at
the beginning of their receive function. We suppose having a private key
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1 requires iter == 0 ==>
2 acc(guard(v), p) && acc(guardNext(v+1), p)
3 requires iter == 1 ==>
4 acc(guard(v), 2*p) && acc(guardNext(v+1), p) &&
5 acc(receipt(privKey , v), p)
6 requires iter > 1 ==>
7 acc(guard(v), 2*p) && acc(guardNext(v+1), p) &&
8 acc(receipt(privKey , v), p) && acc(receipt(K, v), p)
9 ensures iter == 0 ==>

10 acc(guard(v), p) && acc(receipt(newPrivKey , v+1), p)
11 ensures iter == 1 ==>
12 acc(guard(v), 2*p) && acc(receipt(newK , v), p) &&
13 acc(receipt(newPrivKey , v+1), p)
14 ensures iter > 1 ==>
15 acc(guard(v), 3*p) && acc(receipt(newK , v), p) &&
16 acc(receipt(newPrivKey , v+1), p)
17 func SendMessage(K []byte , privKey []byte , iter int , ghost v uint32 ,
18 ghost p perm) (newK []byte , newPrivKey []byte) {
19 // ...
20 }

Figure 4.4: Specification of the function SendMessage that sends a message in the ratcheting
protocol. Preconditions, postconditions and arguments that are not relevant to the deletion
mechanism have been omitted.

xn with secrecy label [(p, s, n), (p, s, n + 1)], and a previous communication
key K2n−1 with secrecy label [(p, s, n − 1), (p, s, n), (p′)]. As we explained, we
first compute the key K2n that has a secrecy label [(p, s, n), (p, s, n + 1), (p′)].
We can then delete K2n−1 as it is not needed anymore. Next, we decrypt
the received message using K2n Then we increment the session’s version to
n + 1 and the receive function ends. Doing so, the methodology has forced us
to delete K2n−1 because it does not flow to version n + 1. Now, in the send
function, we start by deriving the next communication key K2n+1, which has
a secrecy label [(p, s, n), (p, s, n + 1), (p′)], like K2n. We then compute the next
private key xn+1, choosing its secrecy label to be [(p, s, n + 1), (p, s, n + 2)].
Next, we delete K2n and xn, as they are not needed anymore. We finish by
sending our message encrypted with K2n+1, and the send function ends. In
this case, we were not forced yet to delete K2n and xn, because we are still in
version n + 1. However, we will be forced to delete these two values at the
end of the next receive, when we will increment the session’s version to n + 2.
This granularity should be sufficient to later express our security properties.

Now that we have decided on the granularity of our versioning, we simply
follow the requirements of the deletion mechanism that we described in
section 3.3. These requirements mostly consist of specifying the “correct”
amount of guard and receipt permissions in function calls. Additionally,
recall the ConvertToNextVersion function introduced in section 3.3.4. The
developer will have to convert values labeled with multiple versions (private
keys x and communication keys K) when necessary, to keep using them in
the next session’s version.

To give a final intuition about the actual reasoning that the developer has
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to do to comply with the deletion mechanism, we give in Figure 4.4 the
preconditions and postconditions related to the guard and receipt predicates
of the initiator’s send function. The case iter == 0 corresponds to the send
operation in the first communication round. Here, a fraction of guard(v),
where v is the current version, is necessary to create the new Diffie-Hellman
private key newPrivKey. As it is created with a label [(p, s, v), (p, s, v + 1)],
we then convert it to the next version v + 1. This consumes the fraction of
guard(v+1) and returns both a fraction of receipt(newPrivKey, v+1) and a
fraction of guard(v). The case iter == 1 corresponds to the second send op-
eration of the initiator, so to the first send operation of the ratcheting protocol.
Compared to previously, we additionally need another guard(v) fraction to
compute the initial KDF, which in turn returns a receipt(newK, v) fraction.
And we delete the previous private key, consuming the receipt(privKey,

v) fraction and returning a guard(v) fraction. Finally, the case iter > 1 is
the same as before but with the additional deletion (using DeleteSafely) of
the previous communication key, consuming the receipt(K, v) fraction and
returning an additional guard(v) fraction.

4.2.5 Corruption

In the existing methodology, an attacker can corrupt a participant’s memory
and obtain the stored secrets. The methodology distinguishes between the
corruption of a participant, leaking all of their long-term secrets, and the
corruption of a particular session, leaking all of the secrets of the session
in addition to the long-term secrets. With our extended methodology, we
add the case of corrupting a version, leaking all of the ephemeral secrets
of the version in addition to the session secrets and the long-term secrets.
Corruption is a crucial notion to consider when verifying a protocol, as we
need it to express strong security properties. In particular, certain security
properties hold even under some cases of corruption. For example, post-
compromise security states that a key remains secret even if the attacker has
corrupted certain versions in the past.

In the Reusable Verification Library, corruption is modeled upon receiving
and decrypting an AEAD encrypted message. Recall from section 4.1.2 that
upon decryption, we obtain a message invariant containing properties about
the message that were proved by the sender, unless the attacker performed
the encryption. In the latter case, the attacker must have computed the
encryption and accessed the encryption key and message, i.e. the secrecy
labels of the encryption key and the message must flow to Public.

Coming back to our ratcheting protocol, we have seen in the previous sec-
tion that an ephemeral communication key has a secrecy label of the form
[(p, s, v), (p, s, v + 1), (p′)], where v is the current version of session s. If we
learn that the message came from the attacker and thus the secrecy label
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of the encryption key flows to Public, we learn that either version (p, s, v),
or version (p, s, v + 1), or the long-term secrets of participant p′ must have
been corrupted2. Indeed, corrupting any of these is the only way for the
attacker to obtain the communication key, as proven in the secrecy lemma of
the existing methodology.

In practice, this results in case distinctions while verifying our protocol
implementation. Upon receiving and decrypting a message, we have to
consider the case where we receive the message invariant and the case where
we know that corruption occurred. In the second case, not obtaining the
message invariant means that we learn nothing about the associated data of
the encrypted message. In our ratcheting protocol, we do not learn that the
associated data is an exponential of the form gy, with a DH Public Key usage,
where y is a private key readable by the other participant.

This has an impact on other verification annotations of the protocol because
these case distinctions propagate to other preconditions and postconditions.
For example, the receive function of the protocol implementation can return
information about the received public key only when the message invariant
is obtained, but not in case of corruption. And the subsequent send operation
is supposed to compute a shared secret using the received public key, to then
derive the next communication key. The preconditions of these functions
must be satisfied in both cases, whether we obtained the message invariant or
not. In practice, we make the receive function of the protocol return a ghost
boolean parameter newCorrupted to inform the caller whether corruption must
have occurred or not. We additionally introduce a ghost boolean parameter
corrupted as input of the receive and send functions of the protocol, and we
use it to express different preconditions and postconditions, and call different
lemmas depending on the particular case we are in.

This work of integrating corruption in the verification annotations of the
protocol implementation turned out to be a tricky and time-consuming task.
In the scope of this thesis, we were not able to fully complete it. We discuss
in detail in the next section the remaining work to be done to fully integrate
corruption into our proof, to complete the verification of the strong security
properties of our ratcheting protocol.

4.3 Remaining work

In this section, we detail how one could finish the verification of our ratch-
eting protocol. We list the missing parts of the verification work and we
provide a clear path to complete them.

2Which is also the case when any session or any version of a session of p′ has been
corrupted.
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First, we need to satisfy the AEAD encryption requirements in the corrupted
case. Upon encryption, the current methodology requires us among others to
prove that the encryption key has an appropriate usage. A usage is defined
as “appropriate” for AEAD encryption by the developer in the GetUsage

function. In our case, the usages KVersIrUsage, KVersRiUsage, KVersIrUsage
and KVersRiUsage defined in section 4.2.2 are defined as being appropriate
for AEAD encryption. However, in the corrupted case, we do not know
the usage of the received associated data, which we expect to be the other
participant’s public key. The current usage rules prevent us from proving
that the shared secret obtained from this public key and our private key has
a DH Shared Secret usage. Hence, we cannot show that the encryption key
obtained with KDFRatchet from the previous key and this shared secret has an
appropriate usage for AEAD encryption. To solve this, we suggest changing
the protocol-specific usage rules defined in GetUsage to make the usage of
KDFRatchet’s output independent of the usage of its shared secret input. Thus,
we would be able to prove that the encryption key has an appropriate usage
for AEAD encryption even in the corrupted case.

To satisfy the AEAD encryption preconditions, we additionally have to show
that there exists a label that flows to the encryption key and to which the
secrecy label of the message flows. In the non-corrupted case, we use the
secrecy label [(p, s, v), (p, s, v + 1), (p′)] of the encryption key, to which the
message secrecy label [(p, s), (p′)] flows. In case of corruption, the secrecy
label of the encryption key is harder to determine because we know nothing
about the received associated data and we cannot assume that it is the other
participant’s public key. We have to make a disjunction on what the received
associated data could be to compute the secrecy label of the encryption key
in each case. By doing so, we can show that in all cases, the secrecy label of
the encryption key flows to the label of the DH secret key used to compute
it, which is [(p, s, v), (p, s, v + 1)]. As the secrecy label of the message flows
to this label, we satisfy the AEAD encryption preconditions.

Overall, verifying our protocol implementation in case of corruption will
require us to make several case distinctions and to call additional lemmas to
complete each case’s proof. While time-consuming, we are confident that it
is completely doable.

Next, the last part of the verification work is to prove the security properties
of our ratcheting protocol. All the verification annotations that we have
introduced before, which model concepts like versions and corruption, were
added to be able to express security properties. Suppose a participant p
executes the ratcheting protocol in session s and version v, with a peer
participant p′. We have shown that the current communication key Kn has a
secrecy label of the type [(p, s, v), (p, s, v + 1), (p′)]. Kn remains secret unless
the attacker compromises the version v or v + 1 of the session s, or the other
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participant p′.

However, our secrecy property is currently weaker than it could be, as the
secrecy label of Kn contains p′, which expresses that Kn can be obtained
by the attacker if they compromise p′ at any time. This property could be
strengthened, as we can intuitively see that Kn is also available in only two
versions of a session s′ of p′. We leave it to future work to show that, when
p is the initiator and for n > 0, the secrecy label of K2n can be strengthened
to [(p, s, n), (p, s, n + 1), (p′, s′, n − 1), (p′, s′, n)] and the secrecy label of K2n+1
can be strengthened to [(p, s, n), (p, s, n+ 1), (p′, s′, n), (p′, s′, n+ 1)]. Showing
this requires tightening the message invariant that we initially introduced in
section 4.2.1.

Then, we can express that the key K2n+1 remains secret unless the previous
key K2n was made public before K2n+1 was computed, or unless the attacker
compromises a version n or n + 1 of the session s of participant p or of
the session s′ of participant p′. Indeed, if the attacker compromises K2n
before K2n+1 is computed, they could impersonate a protocol participant and
eventually obtain K2n+1. Similarly, we express that a key K2n remains secret
unless the previous key K2n−1 was made public before K2n was computed,
or unless the attacker compromises a version n or n + 1 of the session s of
participant p or a version n − 1 or n of the session s′ of participant p′. Overall,
these secrecy properties express both forward secrecy and post-compromise
security for our ratcheting protocol.

To sum up, we have shown the path to complete the verification of our
protocol’s security properties. This will require some modifications to existing
annotations, including strengthening the message invariant and probably
writing additional lemmas.

4.4 Results

We finish this case study by reporting some quantitative results about the
verification of our full ratcheting protocol. Figure 4.5 provides the number
of lines of code (LOC), the number of lines of specification (LOS) and the
verification time for the implementations of the full ratcheting protocol and
the original WireGuard. The number of lines of specification does not count
the lines of the Reusable Verification Library, and the verification time does
not include the time to verify the library. This is justified because the library
is protocol-independent and can be verified once and for all.

Our full ratcheting protocol is composed of 759 lines of code and 6167 lines
of specification, which is around 8.1 times more specification than code.
However, note that the verification of the full ratcheting protocol is not
complete yet and we thus expect a slightly higher ratio of specification to
code once it is. In comparison, the original WireGuard implementation is
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Protocol LOC LOS Verification time [s]

Full ratcheting protocol 759 6167 669.5
WireGuard 550 5411 441.8

Figure 4.5: Lines of code (LOC), lines of specification (LOS) and verification time for the
implementations in Gobra of the full ratcheting protocol and the original WireGuard. The
numbers for the latter are provided for reference because the full ratcheting protocol builds on top
of the original WireGuard protocol. We have measured the verification time by averaging over 3
runs on a 2020 Apple MacBook Pro with a 4-core Intel Core i5 processor and 16 GB of RAM.

composed of around 9.8 times more specification than code, but corruption
has been fully integrated into its specification and its security properties have
been verified.

The verification time of our full ratcheting protocol is 669.5 seconds, which is
around 1.5 times more than the verification time of the original WireGuard
implementation. This can be explained in part because our full ratcheting
protocol contains additional specifications related to our deletion mechanism,
which is not present in the specification of the original WireGuard.





Chapter 5

Conclusion

In conclusion, this thesis has successfully extended the methodology devel-
oped by Arquint et al. [1] for the modular verification of security protocol
implementations, adding support for the specification of time-sensitive data
and enforcing their secure deletion at the end of their lifetime. To the best
of our knowledge, our contributions enable for the first time the verifica-
tion of strong security properties relying on the secure deletion of sensitive
data for real-world protocol implementations. By building upon standard
separation logic predicates, the extended methodology remains agnostic to
programming languages.

The generic extension we introduced is flexible enough to verify various
protocol implementations that use ephemeral data, such as Signal [9] and its
key rotation scheme. Our methodology can be used to prove strong security
properties like forward secrecy and post-compromise security.

Furthermore, we have extended the Reusable Verification Library [1] for
Go to contain our methodology. Using a solution inspired by counting
permissions [15], we provide the library with the ability to track sensitive
values in a protocol implementation and ensure that they are deleted in a
timely manner. By implementing this solution in several functions of the
library, we facilitate the work of the developer by ensuring in a sound way
that the values they create can only exist during the periods of time specified
for these values.

We evaluate our methodology with a case study on a Signal-like protocol
implementation. This case study shows that our extended methodology
is expressive enough to reason about complex mechanisms such as key
ratcheting. While the full security proof could not be completed for time
reasons, we provide a clear path toward its completion in this thesis.

In the next and final section, we propose some ideas for future work that
could improve or extend this thesis.
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5.1 Future work

Finishing the case study. The case study presented in chapter 4 could be
completed by following the path we have outlined in section 4.3, resulting
in the verification of forward secrecy and post-compromise security for this
protocol implementation.

Adding obligation support to Gobra. As discussed in detail in section 3.4,
adding obligations [4] to Gobra [16] would allow us to implement a simpler
and more elegant solution for tracking sensitive values. This may result in a
more intuitive methodology and simpler specification for library functions
that developers can use more easily.

Improving how the methodology handles AEAD. When choosing the pro-
tocol to verify for our case study, in section 4.1.2, we had to slightly adapt
the original Diffie-Hellman ratchet protocol to make it more easily verifi-
able. The reason for this comes from how the current methodology handles
AEAD decryption, which hinders our ability to decrypt the message using
a key that is derived from the associated data we just received. In future
work, we could analyze how ratcheting protocols use associated data before
computing the necessary decryption key. In particular, we should reconsider
the preconditions and postconditions of the AEAD decryption function such
that we can invoke this function in these situations and soundly obtain the
associated message invariant unless the ciphertext has been created by the
attacker.
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