Debugging Symbolic Execution

Master Thesis Description, March 2012
Ivo Colombo, icolombo@student.ethz.ch

Supervisors: Malte Schwerhoff, Prof. Dr. Peter Miiller

Introduction

Symbolicexecution [1] can be used as an approach to automated software verification where code is
evaluated with symbolicinstead of concrete values. The computed symbolicvalues can be proven
(e.g.usingatheorem prover) to satisfy a formal specification of the programin the form of
invariants, pre- and postconditions. If a proof fails, this can have various reasons, e.g. awrong
implementation and wrong specifications or underspecifications. Itis usually left to the programmer
to find the problem usingthe datareported by the verifier.

Chalice [2] isa research language for concurrent programs. Itincludes the implicit dynamicframes [3]
methodology by usinga permission model to restrict read and write access to heap locations, thus
definingan upperbound onthe setof heap locations amethod depends on.

Syxc[4] isan automaticverifierforasubset of the Chalice language that uses the approach of
symbolicexecution. In case of failure, Syxcreports the location and type of the failure. Itisalso able
to outputthe symbolicstate at everylocationin the program that was reached during the
verification.

The symbolicstate of Syxco = (y, h g ) iscomposed of a symbolicstore y of local variables
(mappedto theirsymbolicvalues), two symbolicheaps ~and g(currentand pre-state), both
mapping heap chunks to theirsymbolicvalues, and aset of path conditions = which denote
knowledge about symbolicvalues and their relationships in the form of first-order logicformulae,
assumed during the symbolicexecution of a program.

The symbolicexecution approach togetherwith the above-mentioned framingtechnique allows for
important optimizations: Heap properties (e.g. existence of access permissions to a certain heap
location) can often be established without calling the theorem prover, because the necessary
informationis available directly from the symbolicstate. Also, heap properties are notincluded in the
assumptions senttothe prover, as they are often costly (e.g. quantifications are needed to express
heap updates). In general, these optimizations shift some work from the proverto the verifierand
thusimprove efficiency. However, they introduce incompletenesses, since path conditions can
containinformation aboutthe heap (e.g. objectaliasing), which is then not reflected by the verifier’s
decisions, orthe heap may containinformation thatisindispensable forthe prover(e.g. object
distinctness can be derived from permissions). Syxcsolves these problems using several techniques
to transferinformation between heap and path conditions.

Goals

The goal of this projectis to develop adebuggerfor Syxcthat shows possibilities of how to help
programmersin finding the reason why averification fails. Thisincludes finding a suitable (graphical)
representation of symbolicstate, identifying common debugging situations, identifying helpful
interactions between developer, debuggerand verifier, and implementing a corresponding GUI
prototype.



Scope

The projectis dividedinto acore and extensions. The core isamandatory part of the project,
whereas (asubset of) the extensions are implemented depending on the course of the project.

Core

1. Aconceptfortheresultingdebuggertoolistobe developedinthe form of userstories
describingthe potential features, discussing their use cases and how users can benefitfrom
them and showing (using Ul mockups) how the corresponding GUl elements could look and
how the interaction with the user could work.

The concept contains at least the documentation of one feature of each of the following
categories:
e Heapvisualization

State manipulation
e Stepping
e Answeringthe questions “Why do/don’t | have permissions here”

2. Atoolisimplemented ontop of Syxcsupporting asubset of the proposed features. The
selection of the features to be implemented is made by the supervisors and depends on the
time they require to be implemented and how promising each of themisinterms of the
benefitforthe usersto successfully verify theirsoftware.

The tool supports the same subset of Chalice as Syxc. Itisimplementedin Scala [5]. Itis
designed with extensibility in mind and well-documented.

Extensions

e Adding more featurestothe concept, e.g. of the following categories: State diffs, state
querying

e Implementation of more of the proposed features

e Integration of the GUIl intoan IDE (e.g. Eclipse or VisualStudio)

Deliverables

1. Master'sThesis Report

Includesthe conceptforall features proposedinthe first part of the core (notjustthe
implemented ones)

2. Projectsourceincludingdocumented code, test cases and information about dependencies
and how to build and run the project

References

[1] J. Smans, B. Jacobs and F. Piessens, "Symbolic Execution for Implicit Dynamic Frames," 2009.

[2] K. R. M. Leinoand P. Miiller, "A Basis for Verifying Multi-threaded Programs," ESOP, vol. 5502.
Lecture Notesin ComputerScience, pp. 378-393, 2009.

[3] J. Smans, B. Jacobs and F. Piessens, "Implicit Dynamic Frames: Combining Dynamic Frames and
Separation Logic," ECOOP, vol. 5653. Lecture Notes in ComputerScience, pp. 148-172, 2009.

[4] M. Schwerhoff, "Symbolic Execution for Chalice," 2011.
[5] M. Odersky, "The Scala Language Specification," 2011.



	Introduction
	Goals
	Scope
	Core
	Extensions

	Deliverables
	References

