Project Description

Verifying Safe Clients of Unsafe Code
and Trait Implementations in Rust

Jakob Beckmann
ETH Ziirich
April 21,2020
Supervisors:
Federico Polj,
Christoph Matheja,

Prof. Peter Miiller

1 Introduction

Rust is a modern system programming language with a strong focus
on speed, safety, and concurrency. One of its main features is that the
compiler is able to automatically detect memory-related bugs such as
dangling pointers [1]. This is performed using an ownership based
type system, where each instance of a type has a unique direct owner.

Inbuilt mutability rules also allow Rust programmers to avoid prob-
lems related to unexpected side effects through aliased references. On
a high level, the compiler enforces the existence of a unique reference if
the reference allows for changes on the instance (mutable borrow), or
enforces the immutability of all references (immutable borrows) at any
point in the source code.

Another major feature of Rust are traits. They serve as interfaces
defining shared behaviour across types, with potentially distinct imple-
mentation of the behaviour for each type implementing the trait. They
are ubiquitous in Rust, reducing code duplication and providing better
abtraction. Most importantly, traits are an enabler to use generics in a
statically safe way:.

The Rust type system enforced by the compiler is quite conservative.
In fact, it can be too restrictive to perform a lot of work required by sys-
tem software. The underlying computer hardware that system software



relies on, the operating system that needs to be directly interacted with,
among other things, are inherintly unsafe. Mozilla introduced unsafe
Rust to cope with these issues. Rust blocks or functions can be marked
unsafe to loosen compiler checks and allow some illegal actions in safe
Rust such as dereferencing raw pointers [2].

Unsafe Rust comes in several flavours, such as unsafe code blocks,
unsafe functions, or unsafe traits. In all cases, marking something as
unsafe declares the existence of contracts the compiler can’t check, and
that the programmer should ensure that these contracts are upheld. In
this context, contracts refer to code safety, and not correctness.

A common practice in Rust is to isolate the usage of unsafe Rust as
much as possible and provide safe external interfaces to the isolated
code. This has the advantage to provide all guarantees of the Rust
compiler in the entire program, with only the small separated unsafe
code to be manually verified for functional correctness. Particularly,
it allows to design safe clients for libraries making use of unsafe code
internally. This practice is extensively seen in the Rust standard library,
where many internals rely on unsafe code.

The high degree of guarantees provided by the Rust compiler for
safe code can be leveraged to make formal verification of software
simpler. More concretely, one can mostly focus on verifying functional
properties while fully relying on the compiler’s guarantees. This is the
goal of Prusti [3].

Prusti provides a set of directives that can be added to Rust pro-
grams as annotations to specify desired functional properties. Prusti
then uses the annotations to prove the correctness of the program. In-
ternally this is achieved by translating the Rust program into the Viper
intermediate verification language [4].

As unsafe code relaxes some guarantees of safe Rust code that
Prusti relies upon, it’s not supported. The main goal of this project is to
enable sound verification of safe code using libraries that create safe
abstractions over unsafe code. Moreover, support for usage of unsafe
traits should be added to Prusti. This involves improving current
support for traits and considering the implications of marking traits as
unsafe.

2 Unsafe Code Problematics

One implication of unsafe Rust is that it allows for interior mutability.
In other words, it is possible to change the contents pointed to by
an immutable reference. In practice, this is used for various reasons
such as reference counted variables, implementation details of logically
immutable methods, and more. This is problematic for Prusti, as it



relies on immutable references to not be used to modify the content
they point to. However, using a safe abstraction of unsafe code, this
can’t be garanteed in general.

For instance, the std: :cell: :Cell struct [5] is an example of a safe
abstraction of an object that uses interior mutibility:

1 use std::cell::Cell;

5 fn main() {

4 let cell = Cell::new(0);
assert_eq! (cell.get(), 0);

7 foo(&cell);

9 assert_eq! (cell.get(), 0);

» fn foo(cell: &Cell<i32>) {

14 cell.set(5) 5

Listing 1: Interior Mutability

In listing 1, no code is marked as unsafe, as the abstraction is per-
fectly safe. However, due to usage of unsafe code in the implementation
of std::cell::Cell, it’s possible to change its contents by holding an
immutable reference of the Ce11. More specifically, the set method uses
an immutable reference, but mutates the Cell. This makes reasoning
about references fundamentally flawed, should one assume immutable
references to never mutate. The main goal of this project is to find an
approach to make the verification of code such as this listing possible.

Another major use case of unsafe Rust code are unsafe traits. A
trait is declared as unsafe if implementors should read the trait’s docu-
mentation to ensure their implementation maintains a contract the trait
requires to run safely [6].

An common example of unsafe traits is the std: :iter: :TrustedLen
trait [7]. This trait is a “Marker Trait” meaning it contains no implemen-
tation, but modifies the behavioural meaning of another trait (namely its
supertrait). Concretely std: :iter: :TrustedLen modifies the meaning
of the size_hint method of the std: :iter::Iterator trait [8]. Should
a developer implement this trait on a custom iterator without adhering
to the contract specified in std: :iter: :TrustedLen’s documentation,
it might result in undefined behaviour when using some functions on
the iterator.



The challenge for Prusti in this case is threefold. First, Prusti only
supports annotations on functions, methods, and structures, hence
not allowing any functional specification on marker traits (traits with-
out function declarations). This project aims at introducing a solu-
tion to this, potentially in the form of trait level annotations. Second,
some form of specification inheritence needs to be considered for traits
whose contract depends on their supertrait. In this case, std::iter
. :TrustedLen needs to be aware of std: :iter::Iterator’s functional
specification in order to specify restrictions on the size_hint method.
Such trait contract refinement isn’t supported by Prusti. Third, Prusti’s
specification language is not expressive enough to express some restric-
tions on implementations of unsafe traits. In the case of std::iter::
TrustedLen, Prusti offers no way to refer to the contract of a method
contained in another trait. Therefore, it would currently be impossible
to change its contract, such as strengthening the postcondition in this
case. This project also aims at solving this problem.

3 Core Goals

3.1 Investigation

The first task is to collect interesting examples of Rust programs that
should be verified by Prusti as an outcome of the thesis. The challenge
here is to find a set of examples that both reflects the usage of unsafe
code across Rust projects, and contains enough variety to meaningfully
evaluate the final result of the thesis.

3.2 Analysis

During the analysis, the reasoning about unsafe Rust code is described.
This includes cases of unsafe code that can’t be abstracted as fully safe
Rust code. Listing 1 is an example of such a case. Unsafe traits exposed
to client code such as std: :iter::TrustedLen are another example of
this.

The aim of this goal is to fully understand the problem and solu-
tions to it. The outcome of the analysis should be a full theoretical
understanding of the formal problems created by the set of examples
collected during the investigation.

3.3 Design

This task aims at designing a technique solving the project’s main
vision using the theoretical understanding from the analysis step. The
technique should allow to verify common cases of safe clients that
use libraries implemented with unsafe code and trait implementations.



For the TrustedLen trait example, this would probably involve the
developer defining the trait (library developer) to provide annotations
on the trait itself in order to define the functional properties of the
trait for Prusti. Such directives on traits are currently not supported by
Prusti and would need to be added.

The challenges for this task is to maintain the “ease of use” ideology
of Prusti. In particular, designing a solution that covers as many use
cases as possible while not being invasive for the developer. More-
over, it will require to be familiar with Viper to determine how some
predicates can be expressed in it.

3.4 Implementation

The prototype implementation of the designed technique.
This task requires to be familiar with the Prusti infrastructure.

3.5 Evaluation

Ideally using the examples from the investigation, evaluate the imple-
mented solution. The set of examples from the investigation might get
complemented with new ones as use cases emerge during analysis or
design.

4 Extensions

4.1 Soundness for Unsupported Types

Many types are currently not supported by Prusti and potentially un-
sound. A possible extension goal would be to determine what types are
unsound and modify their encoding in Prusti to force soundness in case
they are not directly used. In other words, some types internally rely
on unsupported types that are not exposed publicly and represent an
implementation detail. The goal of this extension would be to modify
the encoding of these unsupported “hidden” types to ensure the sound
verification of clients making use of the wrapper type.

The challenge in this task is to get intimately familiar with type
encodings in Prusti, and explore how modifications in said encoding
can make it sound.

4.2 Clone Trait

The Rust compiler can derive trait implementations under certain con-
ditions. An example of this is the std: :clone: :Clone trait [9]. An
interesting goal would be to not only automatically infer the imple-
mentation of the trait, but also the corresponding contract that the trait



is defining. In order to investigate this approach, the extension goal
would focus only on the Clone trait.

4.3 Library Annotations

In order to verify programs making use of libraries, Prusti typically re-
quires a lot of glue code wrapping library functions with local functions
just to provide Prusti annotations. This process is tedious and bad for
code maintenance. The goal of this extension would be to define, design,
and implement a prototype to provide contract annotations for external
library functions without requiring glue code. For instance, this could
be achieved by defining a semantic for an external file declaring all
contracts for externally exposed functions of the library.

5 Schedule

The schedule presented below will be used for guidance. It assumes a
start date towards end of March or beginning of April. The timespans
provided are only approximate. The cumulative time is around 20
weeks, leaving ample time should some section be more work than
expected.

Investigation 2 weeks

Analysis 3 weeks (5 cumulative)
Design 2 weeks (7 cumulative)
Implementation 3 weeks (10 cumulative)
Evaluation 1 week (11 cumulative)
Extensions 5 weeks (16 cumulative)
Writing Report and Presentation | 4 weeks (20 cumulative)

References

1. Rust Programming Language. https://www.rust-lang.org/. [On-
line; accessed 23-March-2020].

2. Steve Klabnik and Carol Nichols with contributions from the
Rust Community. The Rust Programming Language. https://doc.
rust-lang.org/book/ch19-01-unsafe-rust.html, 1 edition. [On-
line; accessed 23-March-2020].

3. V. Astrauskas, P. Miiller, F. Poli, and A. J. Summers. Leveraging
Rust types for modular specification and verification. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA),
volume 3, pages 147:1-147:30. ACM, 2019.


https://www.rust-lang.org/
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

. P. Miiller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 9583 of LNCS, pages 41-62. Springer-
Verlag, 2016.

. The Rust Standard Library. Struct std::cell::Cell. https://doc.
rust-lang.org/std/cell/struct.Cell.html. [Online; accessed 23-
March-2020].

. Alexis Beingessner with contributions from the Rust Community. The
Rustonomicon. https://doc.rust-lang.org/nomicon/index.html,
1 edition. [Online; accessed 23-March-2020].

. The Rust Standard Library. Trait std::iter::TrustedLen. https://
doc.rust-lang.org/std/iter/trait.TrustedLen.html. [Online;
accessed 23-March-2020].

. The Rust Standard Library. Trait std:iter:Iterator. https://
doc.rust-lang.org/std/iter/trait.Iterator.html. [Online; ac-
cessed 23-March-2020].

. The Rust Standard Library. Trait std::clone::Clone. https://doc.
rust-lang.org/std/clone/trait.Clone.html. [Online; accessed
23-March-2020].


https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/nomicon/index.html
https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/clone/trait.Clone.html

	Introduction
	Unsafe Code Problematics
	Core Goals
	Investigation
	Analysis
	Design
	Implementation
	Evaluation

	Extensions
	Soundness for Unsupported Types
	Clone Trait
	Library Annotations

	Schedule

