
Verifying Safe Clients of Unsafe Code
and Trait Implementations in Rust

Master’s Thesis

Jakob Beckmann

bjakob@student.ethz.ch

Programming Methodology Group
Institute for Programming Languages and Systems

ETH Zürich

Supervisors:
Federico Poli, Dr. Christoph Matheja

Prof. Dr. Peter Müller

September 28, 2020

ii

Acknowledgements

I would like to thank my supervisors, Federico Poli and Dr. Christoph Matheja, for
their support and guidance. Their patience during our dicussions and the feedback
they provided are truly appreciated. I would also like to thank Prof. Peter Müller,
both for the opportunity to work on this thesis, but also for his support in my
decision leading up to it. Finally I would like to express my gratitude towards the
entire Programming Methodology group, for their constructive questions during
my presentations, and the ensuing discussions helping me obtain a clearer view of
the path my thesis should take. Thank you.

iii

iv

Contents

Acknowledgements iii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Overview . 3

1.4 Conventions . 4

2 Background 7

2.1 Rust Programming Language . 7

2.1.1 Borrows . 8

2.1.2 Traits . 9

2.1.3 Unsafe Rust . 10

2.2 Formal Verification . 11

2.3 Prusti . 12

2.4 Viper . 15

3 Traits 19

3.1 Background . 19

3.2 Use-case Analysis . 21

3.3 Traits with Method-Dependent Unsafety 23

3.4 Marker Traits . 24

3.4.1 Invariants . 25

3.4.2 Contract Refinement . 30

3.5 Evaluation . 32

3.5.1 Non-marker Traits . 33

3.5.2 Marker Traits . 33

3.6 Summary and Shortcomings . 36

v

vi Contents

4 Interior Mutability 37

4.1 Background . 37

4.2 Problem statement . 39

4.3 Approaches . 40

4.3.1 Simple Mutex . 42

4.3.2 Rust Specification . 56

4.3.3 Rely/Guarantee . 57

4.3.4 RwLock . 63

4.3.5 RefCell . 63

4.3.6 Cell . 72

4.4 Implementation Challenges . 72

5 Contract Derivation 75

5.1 Background . 75

5.2 Problem Statement . 76

5.3 Approaches . 78

5.3.1 Operator Overloading . 78

5.3.2 PartialEq<Rhs> . 82

5.3.3 Eq . 84

5.3.4 PartialOrd<Rhs> . 84

5.3.5 Ord . 84

5.3.6 Default . 86

5.3.7 Clone . 86

5.3.8 Copy . 88

5.3.9 Hash . 89

5.4 Summary and Shortcomings . 89

6 Conclusion 91

6.1 Future Work . 91

6.1.1 Atomic Types and Other Wrappers 91

6.1.2 Proper Concurrency Support 92

6.1.3 Improved Support for Universal Quantification in Invariants
for Hyperproperties . 92

Contents vii

6.1.4 Unsafe Code . 93

Bibliography 95

A Unmodified Listings for Prusti Example A-1

B Encoding of Dummy B-1

C Full Encoding of Stateful RefCell C-1

D Encoding of read() function D-1

viii Contents

Chapter 1

Introduction

Rust [Williams and Rust Team, 2020] is a relatively new programming language
with a type system and ownership model which guarantees memory and thread
safety. Rust has become very popular over the last years. In fact, the 2019 Stack
Overflow developer survey ranked Rust as the most loved programming language
among respondents for the fourth year in a row1.

Thanks to some of its guarantees and its rise in popularity, Rust has become a
very interesting target for verification. For instance, verification can benefit from
Rust intrinsic rules preventing mutable aliasing. Prusti [Astrauskas et al., 2019],
a verification frontend, is a plug-in to the Rust compiler, allowing a programmer
to annotate functions with specifications directly in the Rust source code. Prusti
is highly reliant on some language properties of Rust, allowing it to keep the
specifications very simple.

However, in order to allow some low level operations, a second language,
Unsafe Rust, is embedded into Rust. This other language is more permissive than
standard Rust, at the expense of safety guarantees. Code needs to be declared
unsafe when it relies on a property that the compiler cannot check. Indeed, unsafe
Rust relaxes some guarantees on which Prusti relies, making Prusti unsound for
verifying some programs containing unsafe code.

1.1 Problem Statement

The goal of this thesis is to enable sound verification of clients using libraries that
use unsafe Rust code. The two main focuses are unsafe traits (Chapter 3) and
code exhibiting interior mutability (Chapter 4).

Rust traits are similar to Java interfaces. Listing 1.1 shows the declaration of
an unsafe trait from the standard library. Prusti returns an error when verifying
this trait as it has no way of reasoning about marker traits, and does not consider
the additional implications of the trait being unsafe. Marker traits are traits

1https://insights.stackoverflow.com/survey/2019

1

https://insights.stackoverflow.com/survey/2019

2 Contents

used to declare a property or even hyperproperty on the type that implements
them [Blandy and Orendorff, 2017]. This hyperproperty is usually defined in the
documentation, thus resulting in empty bodies in the trait declaration.

1 pub unsafe trait TrustedLen: Iterator {}

Listing 1.1 [rust] declaration of TrustedLen trait taken from the standard library.

In regards to interior mutability, Prusti allows verification, but it is unsound.
Listing 1.2 shows a small program verifying without issues even though the
assertion on line 16 is guaranteed to fail at runtime. Such unsoundness makes it
difficult to trust Prusti in its verification task. Listing 1.2 will be further discussed
in Chapter 4.

1 #[pure]
2 #[trusted]
3 fn getter(cell: &Cell<i32>) -> i32 {
4 cell.get()
5 }
6

7 fn foo(cell: &Cell<i32>) {
8 cell.set(5);
9 }

10

11 fn main() {
12 let cell = Cell::new(4);
13 let v1 = getter(&cell);
14 foo(&cell);
15 let v2 = getter(&cell);
16 assert!(v1 == v2);
17 }

Listing 1.2 [rust] example unsoundness of Prusti. This program verifies but panics
at runtime.

1.2 Contributions

This thesis presents a solution for reasoning about marker traits, and adds support
for unsafe traits to Prusti. Moreover, it presents solutions to soundly handle
interior mutability in Rust. On top of that, it discusses how contracts for certain
traits can be derived directly by Prusti, and how operator overloading can be

1.3. Overview 3

handled in a more consistent way. More specifically, the thesis contributes the
following:

1. Trait annotations allow to attach verifiable meaning to marker traits, in-
cluding a new strategy to enable more flexible invariants throughout Prusti.
This enables Prusti to reason about marker traits, which was completely
impossible before. A fully featured working prototype including two new
annotation types is added to Prusti.

2. Added support for traits marked unsafe. This includes normal and marker
unsafe traits. Full support for this is added to Prusti.

3. Complete solutions able to handle various common cases of interior muta-
bility. These proposals include a Rust annotation specification, property
typechecking, and a full Viper encoding. This was achieved for:

• Mutex, a mutually exclusive lock. Two Viper encodings are presented,
one backed by a state machine ensuring simple invariants, the other
uses a rely/guarantee mechanism to support more detailed verification,
at the cost of complexity.

• RwLock, a read/write lock. Similar solutions to Mutex are presented.
• Cell and RefCell, simple wrappers exhibiting interior mutability. For
both these types, a solution using a user defined state machine is
illustrated, which allows to verify arbitrarily fine grained properties
about the contents of the wrapper. An additional approach is presented
which allows to omit some annotations, making it easier to use, at the
cost of implementation complexity.

4. An extension to operator overloading in Prusti, allowing to encode operators
on custom types in a consistent way.

5. An approach to allow deriving contracts for derivable traits. This enables
to attach meaning to Rust #[derive] clauses. To complement this solution,
a discussion on Rust’s move and copy semantics helps to understand the
implications for Prusti when deriving traits such as Copy.

6. An investigation on how higher level properties such as reflexivity of opera-
tors, or even consistent implementations between different traits (such as
PartialOrd and Ord) can be automatically ensured by encoding them into
type “snapshots” in Viper.

1.3 Overview

First, Chapter 2 will introduce the required background knowledge to understand
the remainder of the thesis. Then, Chapter 3 discusses unsafe traits in more
detail, with a strong focus on marker traits. Chapter 4 introduces interior
mutability and several solutions that apply to standard library wrappers exhibiting
interior mutability. It first discusses interior mutability in general, moving on

4 Contents

to describe the solutions for each wrapper individually. Chapter 5 presents a
theoretical solution to derive trait contracts for some standard traits, which also
improves Prusti’s handling of operator overloading. Finally, the work is concluded
with Chapter 6, which focuses on how these solutions can be extended, or how
complementary Prusti features could improve their usability.

1.4 Conventions

Throughout this thesis, the “current” Prusti version refers to tag rustc-2018-06-07
on the master branch of the official repository2.

The following typographical conventions are used for the remainder of this
thesis.

Constant width
is used for inline code listings referring to program elements, such as variables,
functions, constants, keywords, or data types. It is also used to denote
external programs such as the Rust compiler or Prusti executable.

Italic font
is used to introduce new concepts.

Bold font
is used to heavily emphasize aspects of the text.

Block quotes

Used for text taken from Rust documentation.

Block listings such as Figure 1.1 are used to show larger snippets of code. In
general, code listings with a red background are used for listings that either don’t
compile, or are rejected by prusti. Code listings with a green background are
used to explicitly indicate they are correct with some respect. This can mean they
are accepted by rustc, verify with prusti, or run without panicking. Moreover,
most code snippets are simplified, on order to provide more clarity. For instance,
crate import statements and empty main() functions tend to be omitted.

2https://github.com/viperproject/prusti-dev/tree/rustc-2018-06-07

https://github.com/viperproject/prusti-dev/tree/rustc-2018-06-07

1.4. Conventions 5

1 fn main() {
2 println!("hello world!");
3 }

1 fn main() {
2 println!(undefined_var);
3 }

1 fn main() {
2 assert!(1 == 1);
3 }

Figure 1.1 [rust] sample code listings.

6 Contents

Chapter 2

Background

This chapter presents the Rust programming language, with all aspects necessary
for the understanding of this thesis. It then briefly introduces formal verification
and explains how Prusti performs its verification task for a sample Rust program.
This introduction provides the reader with adequate background to properly
understand the remaining chapters. Background relevant to only small parts of
the thesis will be presented in later sections as required.

2.1 Rust Programming Language

Rust [Williams and Rust Team, 2020] is a modern system programming lan-
guage with a strong focus on speed, safety, and concurrency. Since memory
safety is a primary goal of the language, the compiler enforces it on several lev-
els [Blandy and Orendorff, 2017]. For instance, Rust prevents common software
bugs such as access errors via dangling pointers or buffer over-reads, memory leaks
due to improper memory management or corruption, and common concurrency
issues such as data races. Indeed, the language design guarantees both memory
and thread safety at compile time using a rich type system and an ownership
model.

This section briefly discusses those features of Rust that are most relevant for
this thesis, namely ownership, moves, and borrows. A comprehensive introduction
to Rust can be found in [Blandy and Orendorff, 2017].

The Rust ownership system establishes that every memory location is owned
by exactly one variable. When the owning variable goes out of scope (exceeds its
lifetime), the memory is disposed of. This makes garbage collection unnecessary
without the effort of manual memory management. Moves transfer ownership
from one owner to another. Lastly, borrows allow code to temporarily reference
a value without affecting its ownership [Klabnik and Nichols, 2020]. As borrows
are primordial to this thesis, they will be discussed in further detail in the next
section.

7

8 Contents

2.1.1 Borrows

Borrows come in two distinct forms: shared borrows and mutable borrows. Shared
borrows are used to pass a reference to some code that does not allow the modifica-
tion of the referenced entity, while mutable borrows allow such modifications. The
borrow checker enforces strict rules on the usage of borrows to prevent unexpected
side effects through aliased or dangling references. On a basic level, the borrow
checker enforces the following two properties for every reference:

1. A reference cannot outlive its referent.
2. A mutable reference cannot be aliased. In other words, any mutable reference

has to be unique, while shared borrows can coexist.

The principle of a reference outliving its referent is an example of a dangling
pointer. A simple instance illustrating the problems this can produce is a function
returning a reference to one of its local variables:

1 fn foo() -> &i32{
2 let a = 5;
3 &a
4 }

Listing 2.1 [7 rust] example of borrow checker restriction: the code snippet returns
a reference to a memory location that no longer exists after the call terminates.

Function foo() in Listing 2.1 assigns a local variable. This variable is allocated
on the stack and will no longer be valid after the call to foo() terminates.
Therefore returning a reference to it should be prevented, as the reference points
to a location on the stack no longer representing the desired value. The borrow
checker is able to understand that the lifetime of the reference is not contained in
the lifetime of the referent, hence outliving it and producing a dangling reference.
Thus rustc rejects the code.

Mutability of references is another subject the borrow checker worries about.
Listing 2.2 shows a code snippet rejected by rustc as it tries to alias a mutable
reference. self.queue.iter() in line 7 borrows self immutably to get an
iterator over its internal queue. The iter() method performs no data copies,
hence requiring that the underlying data structure does not change during the
iteration. The calls to process_message jeopardize this assumption, as they
could, in theory, modify the queue. The borrow checker is able to catch this
and rejects this code at compile time. This listing is a simple example of the
guarantees provided by the Rust type system, namely that self will not change
for the duration the iterator provides shared references to the (transitively held)
contents of self.

2.1. Rust Programming Language 9

1 struct Server {
2 queue: Vec<i32>
3 }
4

5 impl Server {
6 fn process(&mut self) {
7 for message in self.queue.iter() {
8 // message is a shared borrow
9 self.process_message(message);

10 }
11 }
12

13 fn process_message(&mut self, msg: i32) {
14 ...
15 }
16 }

Listing 2.2 [7 rust] example of borrow checker restriction: the code snippet tries
to borrow self both mutably and immutably.

2.1.2 Traits

Traits are comparable to Java interfaces, in that they allow to define shared
behavior across types. They are ubiquitous in Rust, reducing code duplication
and providing better abstraction. Most importantly, traits enable using generics
in a statically safe way.

Listing 2.3 illustrates two ways to use traits: as bounds for generic type
parameters, and as trait objects. At the top of the code, a trait Drawable is
declared. Any type implementing this trait has to provide an implementation of
the draw() method declared in line 2. If desired, traits can also define a default
implementation on the methods they declare. In such a case the implementing
type is not required to provide an implementation for the method, but can choose
to overwrite the default.

The trait can then be used as a bound for a generic parameter such as the
function draw_all_same_type() in line 5. This function can be called on a
vector containing elements of any single type implementing the trait. This is
slightly different from the function draw_all_diff_type() in line 11. The latter
function uses trait objects, allowing it to be called with a vector containing
potentially different types, all implementing Drawable. Note that actually only
draw_all_same_type() is polymorphic (parametric polymorphism), whereas the
polymorphic nature of draw_all_diff_type() originates from the vector (dy-
namic binding on item.draw()), not the function signature itself.

10 Contents

1 trait Drawable {
2 fn draw(&self);
3 }
4

5 fn draw_all_same_type<T: Drawable>(items: &Vec<T>) {
6 for item in items.iter() {
7 item.draw();
8 }
9 }

10

11 fn draw_all_diff_type(items: &Vec<Box<Drawable>>) {
12 for item in items.iter() {
13 item.draw();
14 }
15 }

Listing 2.3 [rust] example of traits used as a generic bound, and as a trait object,
for polymorphism.

2.1.3 Unsafe Rust

The Rust language ensures that programs are memory safe and free of data
races, via types, lifetimes, bound checks. It is referred to as safe Rust. Unsafe
Rust, a second language embedded into safe Rust, allows to perform additional
actions normally prohibited by the compiler to provide the programmer more
freedom [Klabnik and Beingessner, 2020a]. This freedom is required for some of
Rust’s use cases. For instance, system software regularly requires to perform raw
pointer arithmetic and dereferencing, such as for memory mapped registers of
devices. However, due to the lack of formal definition of unsafe code and the small
amount of official use-case examples, unsafe Rust is very difficult to use properly.
In fact, in a survey from [Evans et al., 2020], 15% of developers use unsafe Rust
simply because they needed to make the code compile or because it was faster to
write code with unsafe Rust. Nonetheless, unsafe Rust is commonly used, with
nearly a third of major crates using unsafe code directly, and over half having
dependencies containing unsafe code [Evans et al., 2020].

In general, unsafe marks any Rust code whose adherence to the type system
the compiler cannot check, and thus needs to be ensured by the programmer.
The unsafe keyword can mark blocks, functions, and traits as unsafe. Marking a
block or function as unsafe allows the programmer to perform, amongst others,

2.2. Formal Verification 11

the following listed actions within the block or function:

1. dereference raw pointers,
2. call functions or methods that are marked as unsafe, and
3. implement unsafe traits.

Listing 2.4 illustrates how a block (in this case an expression), can be marked
unsafe to dereference a raw pointer.

1 let val = 5;
2 let val_ptr = &val as *const i32;
3 let deref = unsafe {
4 *val_ptr
5 };

Listing 2.4 [rust] example of an unsafe block used to dereference a raw pointer.

unsafe can also mark trait declarations and implementations as unsafe. In such
cases, the semantics of unsafe are slightly different. Marking a trait declaration
unsafe means that its implementation needs to ensure some properties not
verifiable by the compiler to uphold Rust’s type system. When implementing a
trait whose declaration is marked unsafe, the implementation block also needs
to be marked unsafe. In this case, unsafe only serves as a safeguard to ensure
the implementer took notice that the trait is marked unsafe and all previously
mentioned properties are correctly applied in the code. One possible approach to
automatically check that this is the case is via formal verification.

2.2 Formal Verification

Formal verification of software allows to mathematically prove that the meaning
of a program satisfies its specification [Loeckx and Sieber, 1987]. In other words,
it aims at proving the correctness of a program. As stated in [Apt et al., 2009],
correctness in this context means the programs behave according to some desirable
properties, such as the delivery of correct and intended results, but also higher
level properties such as deadlock freedom of concurrent programs.

This type of correctness verification is infamous due to its complex specifica-
tions and logic required to reason about mutable memory in programs. This is
especially true when the language semantics include pointers, referencing, heap
memory, and aliasing of mutable state [Bornat, 2000, O’Hearn et al., 2001].

The verification is performed on abstract mathematical models of the system.
An alternative approach to model-based verification is Hoare Logic [Hoare, 1969].

12 Contents

The system revolves around Hoare triples {P}Q{R}, stating the connection
between a precondition P , a program Q, and a postcondition R satisfied by the
result of Q’s execution on a state satisfying P . In other words, a Hoare triple
essentially represents a program with a contract.

An example verifier using Hoare triples for verification is the Viper infrastruc-
ture, on which Prusti is based.

2.3 Prusti

Prusti [Astrauskas et al., 2019] leverages the Rust type system to enable formal
verification of programs without the need for overly complex specifications. Prusti
serves as a plug-in to the Rust compiler, allowing behavioral contracts to be
specified directly in Rust source files.

Programmers annotate their code with specifications and compile it with the
rustc extended compiler, which verifies the provided contracts. The vast majority
of annotations, e.g. preconditions, invariants, and postconditions, are put on
function or method level.

Listing 2.5 shows a small program annotated with such specifications. On
line 4, a pure function is declared with no precondition and two #[ensures="..."
] attributes. A function is considered pure if its result is fully deterministic on
input, and if it is side-effect free. Moreover, the postcondition is given by the
conjunction of all contracts provided in #[ensures="..."] attributes. Such a
postcondition declares a promise made by the callee regarding its internal behavior
and return values, which the caller can rely on. Analogously, Prusti allows to
specify preconditions via #[requires="..."] attributes to define conditions under
which a function or method can be called. Therefore, the precondition is a contract
that the caller should fulfill at every call-site, on which the callee can rely.

Line 13 defines the Dummy type with a type invariant declaring its two internal
fields should always be equal. Such an invariant is a condition that should hold in
all visible states, that is, any client using the type can assume its invariant before
and after a function call. The remaining code is standard Rust.

As most attributes used for contract specification in Prusti are Rust expressions,
they need to be checked for correct typing. Prusti achieves this by generating
ghost code during the parsing of the input program. This ghost code is then
typechecked as part of the modified program by the Rust compiler. The program
resulting from the modification of Listing 2.5 can be seen in Listing 2.6. For
instance, with Listing 2.5 it is crucial to verify that self.d1 and self.d2 can be
compared with the equal sign. Technically, this would be equivalent to checking
that the type of self.d1 implements the PartialEq<T>1 trait, where T is the

1https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

2.3. Prusti 13

1 #[pure]
2 #[ensures="result >= a && result >= b"]
3 #[ensures="result == a || result == b"]
4 fn max(a: i32, b: i32) -> i32 {
5 if a < b {
6 b
7 } else {
8 a
9 }

10 }
11

12 #[invariant="self.d1 == self.d2"]
13 struct Dummy {
14 d1: i32,
15 d2: i32,
16 }
17

18 fn test(d: &Dummy) {
19 let val = max(d.d1, d.d2);
20 assert!(val == d.d1);
21 }

Listing 2.5 [rust] example Rust program to verify.

type of self.d2, and that the trait is in scope. More specifically it means that
PartialEq<i32> is implemented on i32, which is the case via the standard library.
Prusti takes advantage of the fact that the Rust compiler already does this for
normal expressions.

A lot of code generated by Prusti is not directly relevant to understand the
verification process. As a consequence, most of the code presented in Listing 2.6
as well as later in Listing 2.7 is heavily simplified via redactions, and potentially
modified. Appendix A offers the full, unmodified, code listings for reference.

Once the program extended by the ghost code successfully typechecks, the
verification can be performed. To achieve this, Prusti translates the required
parts of the extended program to Viper code and uses the Viper infrastructure to
attempt a verification.

14 Contents

1 #[pure]
2 #[ensures = "result >= a && result >= b"]
3 #[ensures = "result == a || result == b"]
4 fn max(a: i32, b: i32) -> i32 {
5 if a < b {
6 b
7 } else {
8 a
9 }

10 }
11

12 fn max__spec() -> () {
13 fn max__spec__pre(a: i32, b: i32) -> () { }
14 fn max__spec__post(a: i32, b: i32, result: i32) -> () {
15 || -> bool { result >= a };
16 || -> bool { result >= b };
17 || -> bool { result == a || result == b };
18 }
19 }
20

21 #[invariant = "self.d1 == self.d2"]
22 struct Dummy {
23 d1: i32,
24 d2: i32,
25 }
26

27 impl Dummy {
28 fn Dummy__spec(self) -> () {
29 || -> bool { self.d1 == self.d2 };
30 }
31 }
32

33 fn test(d: &Dummy) {
34 let val = max(d.d1, d.d2);
35 assert!(val == d . d1);
36 }

Listing 2.6 [rust] simplified Rust program generated by Prusti for spec generation
and type checking.

2.4. Viper 15

2.4 Viper

Viper [Müller et al., 2016] is a verification infrastructure including an intermediate
verification language called Silver. For simplicity, Viper will henceforth be used
for both the verification infrastructure and the intermediate language. Viper
is used as a backend for many verification tools, including Prusti. It supports
verification of concurrent, heap manipulating programs, using implicit dynamic
frames [Smans et al., 2009]. For a comprehensive introduction consult the Viper
paper [Müller et al., 2016] or the online tutorial2. On an abstract level, Viper can
be seen as a language providing a way to write an extension of Hoare triples and
to verify their validity (see Section 4.3.1.1 on Hoare logic).

Listing 2.7 shows a modified snippet of the Viper code generated by Prusti
from Listing 2.5, illustrating only the relevant parts of the code. The field
declarations in lines 1 to 3 define fields potentially accessible from any object in
the program. Viper does not have any notion of classes, and thus every reference
can, in theory, access every declared field. This access is controlled via permissions.

Viper represents permissions by a tuple consisting of a heap location and
a permission amount. The permission amount is a fraction between zero and
one inclusive, denoting the exclusivity of the permission. A full, or exclusive,
permission consisting of a permission amount of one, allows the program state
holding the permission to read and modify the associated heap location. Such a
permission can be seen in line 10. In contrast, any non-zero permission amount
less than one only allows reading, while one of zero allows no access at all. A
permission allowing only for reading can be seen in line 19, where the permission
is guaranteed to be between none (zero) and write (one).

Prusti encodes Rust types as Viper predicates representing access to the
type’s fields. This is also the case for Rust’s primitive types as seen in line 9 for
i32. Predicates provide a name to a parametrized assertion, representing it by a
resource, and can thus also be equipped with a permission. Predicates are not
directly equivalent to their body, but the resource and assertion can be freely
exchanged via the fold and unfold statements. In line 21, the Dummy predicate is
unfolded in the expression following the in keyword using unfolding. unfolding
allows to temporarily unfold a predicate for a single expression.

Finally, the type invariant for Dummy is encoded as a function in line 18 which
performs the equality check between the two fields. This function can be called
and asserted whenever the invariant for type Dummy should be checked.

Contracts on methods and functions in Rust do not need to be translated to
Viper functions like the type invariant, as Viper can express functional contracts
natively. This is illustrated in line 27 for the max() function. Viper defines the
requires and ensures keywords, which the semantics of Prusti’s #[requires

2http://viper.ethz.ch/tutorial/

http://viper.ethz.ch/tutorial/

16 Contents

="..."] and #[ensures="..."] are based on, respectively. These contracts are
verified automatically by Viper, in contrast to type invariants that need to be
explicitly asserted at relevant points in the Viper code.

The primary way permissions are passed from caller to callee, and potentially
returned, is via requires or ensures statements as in lines 19 and 29 (line 29
does not contain permissions, but ensures can return permissions to the caller).
However, permissions can also be explicitly inhaled and exhaled. inhale A adds
the permissions denoted by A to the program state and assumes that all value
constraints from A hold. exhale A asserts that all permissions denoted by A are
currently held, that the value constraints in A hold, and removes the permissions.

Viper allows the declaration of both methods and functions. Functions differ
from methods in that they define side-effect free expressions. Thus they are
functions in the mathematical sense. Functions can also be abstract, in which case
they have no body. The read() function in line 5 of Listing 2.7 is an example of
this.

The translation of test() is omitted, as it requires a lot of predicate handling,
and its conceptual understanding is not vital to this thesis.

2.4. Viper 17

1 field f_d1: Ref
2 field f_d2: Ref
3 field val_int: Int
4

5 function read(): Perm
6 ensures result > none
7 ensures result < write
8

9 predicate i32(self: Ref) {
10 acc(self.val_int, write)
11 }
12

13 predicate Dummy(self: Ref) {
14 acc(self.f_d1, write) && (acc(i32(self.f_d1), write) &&
15 (acc(self.f_d2, write) && acc(i32(self.f_d2), write)))
16 }
17

18 function Dummy__spec(self: Ref): Bool
19 requires acc(Dummy(self), read())
20 {
21 (unfolding acc(Dummy(self), read()) in
22 (unfolding acc(i32(self.f_d2), read()) in
23 (unfolding acc(i32(self.f_d1), read()) in
24 self.f_d1.val_int == self.f_d2.val_int)))
25 }
26

27 function max(_pure_1: Int, _pure_2: Int): Int
28 requires true
29 ensures result >= _pure_1 && result >= _pure_2 &&
30 (result == _pure_1 || result == _pure_2)
31 {
32 (!(_pure_1 < _pure_2) ? _pure_1 : _pure_2)
33 }

Listing 2.7 [viper] simplified Viper program generated by Prusti for verification.

18 Contents

Chapter 3

Traits

This chapter presents the necessary background on unsafe traits, followed by
an analysis of use-cases for unsafe traits, as well as the design of a solution to
these use-cases. The analysis is based on publicly available data from commonly
used crates on both GitHub1 and crates.io2. For each analyzed use-case, this
thesis discusses both a possible design and technical challenges, which had to
be addressed when implementing the design in Prusti. Finally, an evaluation
aggregates the new capabilities of Prusti.

3.1 Background

A common idiom for Rust libraries is to expose functions taking generic parameters
bound by traits such as the declaration in Listing 3.1. The trait bound used in
this snippet is std::str::pattern::Searcher3, an experimental trait from the
Rust standard library.

1 fn lib_print_next<T: Searcher>(searcher: &mut T) { ... }

Listing 3.1 [rust] function declaration using a trait bound on its generic parameter
to allow users to pass custom types to it.

Such code allows users of the library to both implement the trait on their own
type and use the library function on it. However, it can result in the invalidation
of Rust’s strong guarantees, when the function implementation relies on some
behavior from the trait methods in order to adhere to Rust’s type system. This
is usually the case when the library function internally uses unsafe code and
makes assumptions on return values from the trait methods. For instance, the
documentation of Searcher used as the generic bound in Listing 3.1, states that:

1https://github.com/
2https://crates.io/
3https://doc.rust-lang.org/std/str/pattern/trait.Searcher.html

19

https://github.com/
https://crates.io/
https://doc.rust-lang.org/std/str/pattern/trait.Searcher.html

20 Contents

The trait is marked unsafe because the indices returned by the next()
methods are required to lie on valid utf8 boundaries in the haystack. This
enables consumers of this trait to slice the haystack without additional
runtime checks.

Listing 3.2 exemplifies this issue due to an assumption on the return value
of next(). If the indices contained in the SearchStep::Match object do not
lie on UTF–8 boundaries, the unsafe call to hs.get_unchecked(start..end) in
line 5 returns a string sliced at invalid boundaries. Rust considers this undefined
behavior, and hence cannot provide any guarantees.

1 fn lib_print_next<T: Searcher>(searcher: &mut T) {
2 let hs = searcher.haystack();
3 let slice = match searcher.next() {
4 SearchStep::Match(start, end) => {
5 unsafe { hs.get_unchecked(start..end) }
6 },
7 _ => unreachable!()
8 };
9 println!("{}", slice);

10 }

Listing 3.2 [rust] library function relying on trait behavior that might cause incon-
sistencies in the type system.

Thus, the implementation of lib_print_next() is only safe if the Searcher
trait adheres to always returning valid UTF–8 boundaries for the haystack. For
the sake of static safety, Rust recommends marking the declaration of a trait used
in such a way as unsafe [Klabnik and Beingessner, 2020b]. The assumptions
upon which safety depends, i.e. the contract of the trait, should also be clearly
documented. As a consequence, when a trait declaration is marked unsafe, any
implementer of the trait needs to mark the implementation as unsafe as well,
signaling that the implementation adheres to the documented contract. This is
desired due to the lack of a standard language to document the contract, and the
resulting lack of capabilities of the compiler to verify the code’s adherence to the
documented contract. One goal of this thesis is to provide the first steps towards
formally checking such contracts on trait level.

The code in Listing 3.3 shows an implementation of the Searcher trait that
does not respect the contract provided in the trait’s documentation. This snippet
is still accepted by rustc, but breaks the type system and exhibits undefined
behavior when used in conjunction with Listing 3.2.

3.2. Use-case Analysis 21

1 unsafe impl Searcher for WrongSearch {
2 ...
3 fn next(&mut self) -> SearchStep {
4 SearchStep::Match(0, 1)
5 }
6 ...
7 }

Listing 3.3 [rust] Searcher implementation on custom type WrongSearch breaking
the type system when used with Listing 3.2.

3.2 Use-case Analysis

The goal of this analysis is not to gain a comprehensive overview of the usages of
unsafe traits. [Evans et al., 2020], [Qin et al., 2020], and [Astrauskas et al., 2020]
present analyses on the prevalence and usage of unsafe code and investigate the
usage of unsafe traits as well. The purpose of the analysis in this thesis is to get
an informal overview of examples unsafe traits. The analysis is warranted due
to the very small number of unsafe trait declarations in Rust code. In fact only
1.2% of crates on crates.io even declares an unsafe trait [Evans et al., 2020].

The intention underlying this analysis is to detect and evaluate trade-offs
faced in the design of a solution. This section mainly focuses on presenting the
general methodology of the analysis. Moreover, it gives a short overview of the
outcome, while the details are presented in succeeding sections when relevant.

The data collection was performed by selecting the fifteen most starred GitHub
repositories filtered by language. As this project focuses on how unsafe code is
abstracted in libraries, the dependencies of these repositories were used as data
input, instead of the repositories themselves. In fact, the dependencies were
filtered according to their prevalence, with seven remaining. The set of combined
dependencies was then supplemented with the fifteen most downloaded crates
from crates.io4 to form the main input for the analysis. The same dataset is
used as a base for the interior mutability use-case analysis presented in the next
chapter.

Investigating the prevalence of unsafe trait implementations and safe abstrac-
tions of unsafe code, we noticed that around half the libraries use unsafe code.
However, the majority of use-cases are memory transmutation5, calls to external
C libraries, and raw pointer dereferencing. Of the analyzed crates, only three
implemented unsafe traits6 declared in the standard library, and none declared

4as of 10 Apr 2020 at 13:14
5https://doc.rust-lang.org/std/mem/fn.transmute.html
6lazy-static, regex, and syn

https://doc.rust-lang.org/std/mem/fn.transmute.html

22 Contents

publicly exposed unsafe traits. Indeed, this seems to indicate that public unsafe
traits are not commonly used in these libraries. Additional use-cases for unsafe
traits are gathered from Grep.app7, both to understand how these are used in
practice and why none of these cases appeared in the original dataset.

The data from Grep.app illustrates that unsafe traits are used with two main
ideas in mind:

1. Performance, e.g. to avoid bound checks on slices, as can be observed in
the Searcher trait. While performance optimization using unsafe code is
quite a niche, some libraries heavily rely on unsafe code to achieve better
performance [Astrauskas et al., 2020].

2. Tight coupling with other languages. This also aligns with a statement
from [Evans et al., 2020] mentioning 45% of developers use the unsafe
keyword for non-syscall external C functions. Using unsafe to interact with
external functions does not imply that a trait needs to be marked unsafe,
but shows the extent to which unsafe code in general is used for interacting
with other languages. These other languages tend to rely on other internal
properties than Rust, which can be asserted via traits. However, these
properties cannot be checked by the compiler, and thus the traits need to
be marked unsafe. An example is the PyBorrowFlagLayout trait from the
PyO3 crate, which requires all types implementing the trait to have a specific
layout in memory.

In both cases, the use of unsafe traits is encapsulated within the crate as much
as possible, in order to expose little unsafety to the user of the crate. This is
especially true when using unsafe traits for tight coupling with other languages,
as the correct usage of such traits can require intricate knowledge of the external
language. Moreover, it appears that many uses of unsafe traits result from
improper understanding of them, such as marking the trait unsafe when it
declares an unsafe function8, or marking it unsafe to help prevent accidental
implementations9.

The additional dataset from Grep.app provides insight in the kind of properties
making traits unsafe. Generalizing, unsafety characteristics can be clustered into
two categories:

1. General correctness requirements of the trait’s own declared behavior, in-
cluding hyperproperties that go beyond the behavior of an individual trait
method.

7https://grep.app/
8https://github.com/phaazon/luminance-rs/blob/2bdab0a7f3ac27f20c020d812a3f7d0818ad0086/

luminance/src/backend/tess.rs#L9
9https://github.com/rustyscreeps/screeps-game-api/blob/

00069a3f6336bf92024b9525182278ac40f6bf4b/src/objects.rs#L5

https://grep.app/
https://github.com/phaazon/luminance-rs/blob/2bdab0a7f3ac27f20c020d812a3f7d0818ad0086/luminance/src/backend/tess.rs#L9
https://github.com/phaazon/luminance-rs/blob/2bdab0a7f3ac27f20c020d812a3f7d0818ad0086/luminance/src/backend/tess.rs#L9
https://github.com/rustyscreeps/screeps-game-api/blob/00069a3f6336bf92024b9525182278ac40f6bf4b/src/objects.rs#L5
https://github.com/rustyscreeps/screeps-game-api/blob/00069a3f6336bf92024b9525182278ac40f6bf4b/src/objects.rs#L5

3.3. Traits with Method-Dependent Unsafety 23

2. Requirements external to the trait itself. These requirements can refer
to correctness, restricted usage, structural memory requirements, among
many others. In such cases, the trait is used to mark a type fulfilling these
requirements, without necessarily providing additional behavior.

These two categories will be discussed individually in Sections 3.3 and 3.4.

3.3 Traits with Method-Dependent Unsafety

Section 3.1 already introduced the Searcher trait and illustrated its unsafe
characteristics. Interestingly, its unsafety comes from a need for correctness in
the implementation of its declared methods. In other words, the contract making
the trait unsafe is solely linked to the behavior of a single method declared by
the trait. This is the case in the vast majority of unsafe traits. Fortunately, this
makes verification of unsafe trait implementations with Prusti quite simple, as
the main goal of Prusti is to verify pre- and postconditions. Thus, the only real
challenge for verification of unsafe trait implementations falling in this category
is to allow specifying the required correctness condition of the trait. In the case
of Searcher, this essentially comes down to formulating a postcondition to its
next() method (see Listing 3.4). Unfortunately, this is not so simple in many
cases, and a lot of Rust code needs to be added to enable defining the contract.

1 #[ensures="match result {
2 SearchStep::Match(start, end) => {
3 let haystack = self.haystack();
4 is_on_utf8_boundary(haystack, start) &&
5 is_on_utf8_boundary(haystack, end)
6 },
7 _ => true
8 }"]
9 fn next(&mut self) -> SearchStep;

Listing 3.4 [rust] the specified contract ensures the method is used in a safe way,
assuming there is a static pure function is_on_utf8_boundary() returning whether
an index is on a valid UTF–8 boundary for some haystack.

On a technical level, adding support for such specifications in Prusti is simply
a question of adding unsafe traits to the list of supported features and treating
them like regular traits. Small additional technicalities are also introduced with
the additions from the succeeding sections. These will be discussed where relevant.

Still, many unsafe trait contracts are not directly related to the behavior of
the methods the trait declares. In such cases, the traits are used to mark a type

24 Contents

implementing them as having some behavior external to the trait itself, hence the
name “marker traits”.

3.4 Marker Traits

Marker traits are traits used to restrict a type in useful ways according to the
type’s intrinsic properties. These traits rarely have bodies, in which case their sole
purpose is to mark a type. However, marker traits can also define some methods,
in which case they serve both as a marker and as a regular trait.

Marker traits are a key part of idiomatic Rust to enable programmers to
convey additional meaning to existing code. For example, consider the PartialEq
<T>10 trait discussed in a preceding section. It allows a programmer to define a
partial equivalence relation between any two entities via the eq() method. The
i32 primitive type implements this trait with itself as the associated type (i.e.
PartialEq<i32>). However, equality between integers is in fact a total equivalence
as any integer is equal to itself. Thus the code within eq() conveys more meaning
than partial equality. As a consequence, the Eq11 marker trait is also implemented
on the type. This trait defines no functionality other than adding the semantic
meaning that PartialEq<i32>::eq() is, in fact, an equivalence relation.

Confusion easily arises when discussing marker traits in conjunction with
unsafe code. For instance, it can be difficult to recognize why the Eq trait is
not marked unsafe, considering it defines behavior which is not verifiable by
the compiler. While it is true that programmers cannot rely on the correct
implementation of a total order on any type implementing Eq, the type system’s
safety does not rely on this correctness. Hence, no undefined behavior arises from
an incorrect implementation. Therefore the trait does not need to be marked
unsafe.

Nevertheless, in some cases, the compiler does depends on the implicit contract
expressed by a marker trait, hence making it unsafe. The standard library’s
TrustedLen trait is an example of such a case, and portrayed later in this chapter.

Marker traits provide flexibility without requiring code duplication. However,
they increase the difficulty of verification as the additional meaning provided by
them should be considered in the verification process. Examine Listing 3.5 that
should verify because the marker trait Eq guarantees that == is an equivalence
relation and thus, in particular, reflexive.

Prior to this thesis, Prusti did not take marker traits into account. Therefore
their entire purpose, which is typically only stated informally in the trait’s
documentation, is lost in the verification process. Extending Prusti to allow

10https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
11https://doc.rust-lang.org/std/cmp/trait.Eq.html

https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.Eq.html

3.4. Marker Traits 25

1 fn should_verify<T>(a: &T) where T: Eq {
2 assert!(a == a); // equivalent to a.eq(&a)
3 }

Listing 3.5 [rust] any value that implements Eq should be equal to itself, and
therefore this property should be verifiable.

annotations on trait level, such that meaning can be attached to traits that define
no visible behavior on Rust level would have the following three advantages:

1. Allow reliance on their informally stated contract during verification. This
enables the verification of a larger set of programs, as previously lost semantic
meaning is then considered.

2. Ensure only types actually adhering to the contract of the trait can imple-
ment them. This would allow to remove unsafety from traits for which the
unsafety contract can be expressed in Prusti.

3. Help promote the proper usage and understanding of (unsafe) marker traits,
as they are no longer a pure documentation feature, but can automatically
be checked for correctness.

This thesis proposes two additional features to be added to support the
annotation of marker traits with behavioral specifications: trait invariants and
contract refinement.

3.4.1 Invariants

The design and implementation of invariants on attached to traits is discussed
first.

3.4.1.1 Design

As seen in Section 2.3, Prusti already supports invariants on types. These
determine properties that hold in every visible state for some instance of a type.
This thesis proposes to extend the idea of invariants and make them applicable
to traits. In other words, trait invariants would provide a type invariant to any
type implementing the trait. This is different from supporting the same type
of invariant on the type itself, as trait invariants allow for far more flexibility
in their expressions, such as referencing private fields on the implementing type,
and referencing methods unknown to exist at the trait level. These additional
features lead to substantial technical challenges, which will be explained later in
the chapter. For instance, consider Listing 3.6 as a way to annotate a trait with
such an invariant.

26 Contents

1 #[invariant="self.eq(&self)"]
2 pub trait Eq: PartialEq<Self> {}

Listing 3.6 [rust] example definition of a trait invariant for the Eq trait.

With this declaration, any type implementing the trait obtains the invariant.
On a first glance, this seems equivalent to having the invariant on the type itself.
However, traits are only applicable when in scope. To illustrate this, consider the
two modules shown in Listing 3.7, defining a trait and a type implementing the
trait.

1 mod trait_mod {
2 // references private fields of implementing type
3 #[invariant="self.i1 == self.i2"]
4 pub trait Equal {}
5 }
6

7 mod struct_mod {
8 use super::trait_mod::Equal;
9

10 pub struct Dummy {
11 pub i1: i32,
12 pub i2: i32
13 }
14

15 // invariant applies
16 impl Equal for Dummy {}
17 }

Listing 3.7 [rust] two modules defining a trait and a type implementing the trait.

When using the type from a different module such as in Listing 3.8, the
invariant from Equal is not applicable, as the trait is not in scope. Thus the
verification should fail. This could be desirable because a function that is unaware
of the trait should not be able to rely on the trait’s properties. However, in
practice, it can lead to significant problems discussed shortly.

Yet, simply bringing the trait into scope via a use statement makes the
invariant applicable, hence allowing the verification of the snippet as shown in
Listing 3.9.

Moreover, one needs to consider the expected behavior at call-site for functions
taking arguments of types implementing a trait. For instance, consider a function

3.4. Marker Traits 27

1 use struct_mod::Dummy;
2

3 fn tester(d: &Dummy) {
4 assert!(d.i1 == d.i2);
5 }

Listing 3.8 [7 rust] verification cannot access out of scope trait invariants, even
when a type implements the trait.

1 use trait_mod::Equal;
2 use struct_mod::Dummy;
3

4 fn tester(d: &Dummy) {
5 assert!(d.i1 == d.i2);
6 }

Listing 3.9 [3 rust] when a trait is in scope, all its invariants apply to all types
that implement the trait.

taking a parameter of type Dummy, where the Equal trait is not in scope. Such a
function should be allowed to have an implementation which breaks the invariant,
as it is out of scope. However, on the call side, the trait might be in scope, hence
the call should be illegal as it would jeopardize the invariant. Prusti does not
verify invariants in every visible state. In fact, it only verifies the invariants on
(most) function boundaries. Therefore it can occur that invariants cannot be relied
on, or can even be violated without throwing an error. Listing 3.10 illustrates
this.

Since Prusti is not stringent in how invariants are checked, this needs to
be taken into consideration for the trait invariant implementation, ensuring the
invariant is checked at the call-site. This check needs to be performed after the
postcondition check, as a call to a method guaranteeing the invariant via its
postcondition should be allowed. It’s very complex to ensure this is implemented
consistently and thus sound. Due to this challenge, scoping is not implemented in
the prototype.

Finally, one needs to consider how invariants are joined. Normal type invariants
are trivially joined via conjunction, which is also the chosen approach for trait
invariants. This keeps Prusti’s behavior predictable. Moreover, the error reporting
for trait invariants needs to be of high quality, as trait invariants can also render
some type impossible to implement, if two implemented trait invariants are in
direct opposition to one another. Situations such as these need to properly refer
to the invariants that are violated, and to the code violating them, in order to

28 Contents

1 extern crate prusti_contracts;
2

3 #[invariant="self.0 >= 0"]
4 struct MyTuple(i32);
5

6 fn main() {
7 let mut s = MyTuple(-1);
8 // no error is raised
9 s.0 = -200;

10 // still no error raised
11 assert!(s.0 >= 0);
12 // error: "asserted expression might not hold"
13 }

Listing 3.10 [rust] Prusti rejects this due to the assertion in line 11, even though
this is the only line that makes sense given the invariant. The two lines violating the
invariants are not treated as problematic by Prusti.

make the problem apparent to the programmer in a simple way.

3.4.1.2 Implementation

The implementation of invariant support for traits has two major visions: (1) ease
of use, to align with Prusti’s general vision, and (2) flexibility, to provide as much
functionality as possible via the feature.

In order to provide ease of use, trait invariants will be usable exactly like type
invariants from the user’s perspective. This makes its usage fully uniform and
thus the feature is easy to pick up.

As seen in the use-case analysis, many unsafe trait implementations refer to
type internals in their behavioral specification. Moreover, some unsafe marker
traits do not have super-traits, and hence have no defined behavior they can
rely on. To maximize flexibility, contracts on such traits should be supported
in a safe way. On a technical level, this means that contracts should be able
to refer to type internals that are not necessarily known to exist when the trait
is declared. The names of the fields are assumed to be known at trait level
for simplicity. The solution is easily extended to allow renaming of fields using
additional annotations. As an example of this, consider Listing 3.7. The contract
defined on the trait in line 3 refers to two fields on self that are not guaranteed
to exist on the implementing type. Moreover, even if both fields exist, they might
not be comparable. On top of that, invariants also allow function calls, in order
to not fully rely on fields. In order to safely allow such invariants, one must

3.4. Marker Traits 29

thoroughly type-check them on the individual types implementing the trait.

To allow type checking for each type implementing the trait, the parser
generates code on the type itself, representing the invariant. For instance for
Listing 3.7, the following code shown in Listing 3.11 is generated during the
parsing stage.

1 impl Dummy {
2 fn Dummy__Equal__spec(self) -> () {
3 || -> { self.i1 == self.i2 };
4 }
5 }

Listing 3.11 [3 rust] generated code for trait invariant type checking for Listing 3.7.

Generating the code directly on the type instead of on the trait has several
advantages:

• One can use private fields and methods in the invariant declaration, as these
are guaranteed to be available in implementation blocks of the type.

• Allow incremental compilation when the trait is in another crate or module.
If the code was generated in the trait declaration, the implementation of a
trait for some type would require recompilation of both the module defining
the trait and the module implementing the trait.

• One can pass an implicit Self type by value without requiring the Sized
trait bound on the trait itself. This is an implementation detail, which
would, however, heavily impact the ease of use of trait invariants. The
generated code in Listing 3.11 uses a parameter self passed by value. In
order to allow this, Rust needs to ensure self has a known size at compile
time. This is simple to ensure when self has a concrete type as in the
presented listing. However, if the same function would be defined on a trait,
the compiler would not be able to ensure that the implementing type has a
known size at compile time. Therefore an additional trait bound would be
necessary on the trait (namely Sized) to make sure this is actually the case.

However, generating this code also has several technical challenges. First and
foremost, generating such code depends on, at least, the parser having fully run.
This follows from the fact that a link between a trait implementation and its
declaration is required to obtain the declared trait invariant for some type. In
fact, for traits declared in another module, this would require a large part of
type-checking to have already run. However, the code also needs to be generated
during a parser run, in order to be checked for type errors. To solve this, Prusti is
modified to perform two full parser runs. During the first one, no code is generated,
but a register is built containing relevant information such as trait attributes,

30 Contents

links between trait implementations and declarations, and more. The second
parser run can then generate code using information from this register allowing
it to access information technically only available after its own completion. The
second parser run does not affect overall performance of Prusti, as Rust’s parsing
is essentially instantaneous, and the observed time spent parsing Rust in Prusti
is negligible compared to the time required to generate and verify Viper code.

Ideally the register would in fact use both a parsing and analysis run from
the compiler, as it would allow for more robust type information, as well as
inter-module type information. However, as this would require an even larger
restructuring of Prusti’s codebase and the limited time available to implement
the solution, that approach was not chosen. Moreover, the selected design is
conceptually easily extensible to support such behavior.

Second, as these invariants are dependent on the set of traits currently in
scope, Prusti needs to encode them separately in Viper. Then, in every place
the invariant for a type needs to be checked or assumed, the invariants of all
implemented traits in scope are conjoined. In order to perform this conjunction,
the register from the first parser pass is used. The actual encoding of the assertions
in Viper is identical to the encoding of regular type invariants.

3.4.2 Contract Refinement

Another needed feature to properly support unsafe traits is contract refinement.
Consider the TrustedLen [Rust Team, 2020d] trait from the Rust standard library.
TrustedLen is a marker trait placing additional requirements on a method of its
super-trait (Iterator [Rust Team, 2020c]). Its unsafety comes from the fact that
the refined behavior is relied upon by the compiler, hence potentially creating
undefined behavior when implemented on a type which does not uphold the
contract defined in the trait’s documentation.

Specifically, the trait’s documentation states:

An iterator that reports an accurate length using size_hint.

The iterator reports a size hint where it is either exact (lower bound
is equal to upper bound), or the upper bound is None. The upper
bound must only be None if the actual iterator length is larger than
usize::MAX. In that case, the lower bound must be usize::MAX, resulting
in a .size_hint of (usize::MAX, None).

The iterator must produce exactly the number of elements it reported or
diverge before reaching the end.

3.4. Marker Traits 31

Unsafety This trait must only be implemented when the contract is
upheld. Consumers of this trait must inspect .size_hint’s upper bound.

Therefore the unsafety originates from a change in the contract of a function
not declared in the trait itself, but one of its super-traits.

3.4.2.1 Design

The preceding example clearly illustrates the need for contract refinement on
trait level. In other words, it shows the need for some form of contract definition
allowing to modify the behavioral specifications of some method in the super-traits.
To achieve this, this thesis proposes the introduction of two new attributes: #[
refine_requires] and #[refine_ensures]. The attributes allow to modify the
pre- and postconditions of some method in the trait’s bound. Thus, in contracts
to ordinary #[requires] and #[ensures] attributes, these attributes change the
contract of a method that is not part of the given trait.

For instance, consider Listing 3.12, allowing to provide an additional postcon-
dition to Iterator::size_hint.

1 #[refine_ensures(Iterator::size_hint="
2 if let Some(upper) = result.1 {
3 result.0 == upper
4 } else {
5 result.0 == usize::MAX
6 }")]
7 pub trait TrustedLen: Iterator {}

Listing 3.12 [rust] standard library definition of TrustedLen with annotation for
contact refinement. It might be worth noting that the here defined contract for
TrustedLen does not remove the unsafety from the trait implementation, as the
provided contract does not ensure the returned size hint is correct.

The design is kept robust by following subtyping rules: annotations can only
make preconditions weaker and postconditions stronger. This is achieved by
only allowing additions to the original contracts. In other words, any refinement
is joined with the original contract via implication for preconditions, and con-
junction for postconditions. This makes the behavior from trait level contract
refinement very similar to normal trait contract refinement, and thus simple to
grasp [Erdin, 2019].

32 Contents

3.4.2.2 Implementation

The described design presents several challenges in its implementation. First
and foremost, Prusti needs to typecheck all specifications on the method level
in the super-trait. However, the link to the super-trait is not available at parse
time. This is solved similarly as for the invariants, with two full parser passes.
During the second pass, the specification can be typechecked directly on the trait
originally declaring the method whose specification is refined. Verifying the refined
contract directly on the declaring method has several advantages: it coincides
with existing specification typechecking, hence allowing reuse of existing code,
improving maintainability and extensibility. Moreover, it allows to aggregate all
specifications related to a method in a single place, rather than having them
scattered across the code space.

The second challenge in this implementation is trait scoping. This refers to
the same challenge as for invariants. Despite the problem seeming very similar,
the technical aspect is drastically different. Prusti’s general design allows to
annotate every AST item (type declaration, function definition, etc.) with a
single specification. This specification can then be retrieved during the compiler’s
analysis stage via some unique ID. Unfortunately, as a single trait declaration can
in theory declare specification refinements for several independent methods, these
would require unique specification IDs. This makes a solution such as declaring a
single specification ID on trait declaration level (as is done for invariants) infeasible
to solve scoping semantics. Such a solution would require the trait declaration to
have a set of IDs, one for each contract refinement, which would be filtered for
the relevant ones wherever the specification predicate is used and the trait is in
scope. While such a solution is theoretically possible, it would require a major
design change in Prusti’s code generation and specification handling.

On top of that, it should be considered that marker traits define hyperprop-
erties on the type they implement. Thus disrespecting scope actually has the
advantage of providing stronger guarantees, without generating false positives in
the verification process. To illustrate this, consider some synthetic type Dummy im-
plementing TrustedLen with full contract refinement. In Listing 3.13 TrustedLen
is not in scope. However, having the type implement the trait anywhere in
the code base essentially guarantees the meta behavior on the type. Therefore
verifying the snippet is perfectly sound.

Finally, as scoping was not fully implemented for invariants, this makes general
trait level specifications uniform in behavior.

3.5 Evaluation

This section presents a short evaluation of the designed and implemented solutions
for the handling of unsafe traits on simple examples.

3.5. Evaluation 33

1 use std::iter::Iterator;
2

3 #[ensure="result"]
4 fn test_dummy(d: &Dummy) -> bool {
5 let (lower, upper) = d.size_hint();
6 if upper.is_some() {
7 lower == upper.unwrap()
8 } else {
9 lower == usize::MAX

10 }
11 }

Listing 3.13 [3 rust] verifies even though TrustedLen is not in scope.

3.5.1 Non-marker Traits

Regular unsafe traits not serving as marker traits are treated like normal traits.
Therefore all supported features from normal traits are supported for unsafe
traits, implying that every contract expressible in Prusti’s specification language
can be appended to unsafe traits. As a consequence, traits such as Searcher can
be fully verified with a contract similar to the one presented in Listing 3.4. This
type of trait is rarely used in practice. However, due to the general nature of the
proposed solution, it is evident that most such traits can be devoid of unsafety
with carefully crafted functional specifications on the methods rendering them
unsafe. Unfortunately, it does require a lot of additional Rust code to enable the
contract definition in many cases.

3.5.2 Marker Traits

The verification of marker traits can be seen as unrelated to trait unsafety. Every
contract ensuring correctness on a safe marker trait can also ensure safety and
correctness on an unsafe marker trait, as the unsafety originates from a reliance
on the correctness of the trait’s usage.

3.5.2.1 Invariants

Invariants are not a feature exclusive to marker traits, but tend to be more useful
when handling traits used as markers. This comes from the fact that marker
traits usually assert some intrinsic property on their implemented types, and that
the asserted property typically translates to some invariant on the type itself.

An example found during the analysis that would require such an invariant is

34 Contents

the PyBorrowFlagLayout12 trait from the PyO3 crate. This trait requires all types
implementing it to have some specific layout in memory. This is verifiable, but
requires a lot of additional Rust code to enable verification. For instance, in order
to capture the structure and annotations of a Rust type, macros can be used, which
would need to be applied to every type implementing the PyBorrowFlagLayout
trait. The information provided from the macros could then be used to verify
that every type does indeed adhere to the contract, using trait invariants. This
will not be shown due to its complexity and invasiveness, while it is possible.

The standard’s library Eq is an example of a safe marker trait which benefits
from invariants. It allows to define that every instance of the implementing type
is equal to itself. Defining an invariant on the trait not only allows to verify code
such as the previously shown Listing 3.5, but also ensures implementing Eq on
types that do not implement a total order on PartialEq<Self>::eq() will be
rejected as soon as an instance is used that does not respect reflexivity.

To illustrate the capabilities of trait invariants, they are also evaluated on a
set of synthetic trait declarations. For instance, consider the std::ops::Add13

trait from the standard library allowing to overload the addition operator. This
trait sets no restrictions on the behavior of the addition operator. Assume a
mathematics library allows to restrict the behavior of types that adhere to some
properties of group theory by using marker traits. For instance, consider additive
identities. An additive identity is a value that, when added to any value of the
set, results in the same value it was added to. Listing 3.14 shows a marker trait
declaration indicating that the default value can be used as an additive identity.

1 trait DefaultIsIdentity: std::ops::Add + Default {}

Listing 3.14 [rust] example declaration of a trait declaring the default value of a
type as an additive identity.

The use-case of such traits is that some types define sensible defaults that
all adhere to some property. These types can then be used while relying on
this property. However, without trait invariants, the marker trait can also be
implemented on any type not adhering to the property, causing incorrectness in
the codebase. An invariant such as shown in Listing 3.15 allows to ensure the
marker trait is only implemented on types which actually follow this property.

12https://github.com/PyO3/pyo3/blob/51171f7475cdc671693c5c6f48350569e6dfac62/
src/type_object.rs#L46

13https://doc.rust-lang.org/std/ops/trait.Add.html

https://github.com/PyO3/pyo3/blob/51171f7475cdc671693c5c6f48350569e6dfac62/src/type_object.rs#L46
https://github.com/PyO3/pyo3/blob/51171f7475cdc671693c5c6f48350569e6dfac62/src/type_object.rs#L46
https://doc.rust-lang.org/std/ops/trait.Add.html

3.5. Evaluation 35

1 #[invariant="self + Self::default() == self &&
2 Self::default() + self == self"]
3 trait DefaultIsIdentity: std::ops::Add + Default {}

Listing 3.15 [rust] example contract for marker trait declaring the default as an
additive identity.

3.5.2.2 Contract Refinement

Likewise to invariants, contract refinement is not a feature only useful to unsafe
traits. Some normal marker traits also restrict the behavior of their super-traits,
such as the ExactSizeIterator14 trait, which restricts the result of Iterator
::size_hint to return the exact size of the iterator. ExactSizeIterator is
an interesting trait, not only due to its contract, but also because it does not
conform to the general definition of a marker trait, in the sense that it does define
additional methods. However, all of these methods have sensible implementations
based on the intrinsic property the trait defines for its implementing types. Thus
it is still considered a marker trait.

Similar to ExactSizeIterator, TrustedLen15 defines an unsafe alternative
to traits whose size is known if they have bounded size. With the implemented
feature of contract refinement, as long as a contract for Iterator::size_hint
can be formulated, both the contracts of ExactSizeIterator and TrustedLen
can be defined and used for verification.

Another example from the standard library is FusedIterator16. The docu-
mentation of this trait states that is should be implemented on an iterator that
always continues to return None when exhausted. A sample contract for this can
be seen in Listing 3.16.

1 #[refine_ensures(Iterator::next="
2 old(self.peek()) == None ==> self.peek() == None
3 ")]
4 pub trait FusedIterator: Iterator + std::iter::Peekable {}

Listing 3.16 [rust] example contract for FuzedIterator trait.

Note that an additional trait bound was added to allow specifying the contract.
Using the next() method would not have been valid, as it is not pure and modifies
the iterator.

14https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html
15https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
16https://doc.rust-lang.org/std/iter/trait.FusedIterator.html

https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html
https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
https://doc.rust-lang.org/std/iter/trait.FusedIterator.html

36 Contents

3.6 Summary and Shortcomings

This chapter discussed a prototype implementation of a feature enabling to reason
about marker traits, and remove unsafety from traits on a conceptional level. With
the automatic verification of unsafe trait contracts, the Prusti-enabled compiler
can indeed check the properties of unsafe traits, rendering them “safe”. However,
many properties that are easily expressed in plain text in the documentation can
be quite hard to state as Rust expressions. This limits the applicability of the
implemented solutions to translate the documentation of unsafe traits into Prusti
contracts. This thesis did not investigate on a quantitative level how often such
contracts occur, but from the authors experience, it affects a significant share of
unsafe traits. Several improvements to Prusti expressions will be discussed in
the conclusion, as ideas for future work.

Chapter 4

Interior Mutability

This chapter first presents another use case of unsafe code, interior mutability,
and the problems it can cause to Prusti. It then provides an analysis of the main
usages of interior mutability, which enabled the design for soundly supporting
most use-cases of interior mutability in Prusti, explained thereafter. Finally, while
the author did not implement the approach, technical challenges one will likely
face when incorporating these designs to Prusti will be discussed.

4.1 Background

Sometimes, a program entity needs to be modified even when having multiple
aliases. Implementations of smart pointers, such as reference counted shared
pointers, are an example of this. Another are complex data structures that use
caching on logically immutable operations. Such modifications go against Rust’s
referencing rules presented in Section 2.1. Rust supports interior mutability to
deal with such scenarios, allowing changes on immutable variables or shared
references. Listing 4.1 exhibits interior mutability in line 6.

Rust’s std::cell::UnsafeCell1 is the only type allowing safe modification
via shared references [Jasper et al., 2020]. Of course, since unsafe blocks are
allowed to dereference raw pointers, it is also possible to modify an immutable
object in such a way. However, this is not considered safe by Rust, as rustc
assumes all referenced objects containing no UnsafeCell do not change over
the lifetime of the reference. Listing 4.1 illustrates interior mutability using the
std::cell::Cell2 wrapper for UnsafeCell.

In Listing 4.1, function foo() modifies the cell using a shared reference by
calling the set() method. Thus the assertion in line 14 will cause a runtime panic.
This voids the common assumption that arguments passed by shared reference
remain unchanged by the function call. Notice that any code using UnsafeCell
still needs to respect the referencing rules introduced in Section 2.1. Concretely,

1https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
2https://doc.rust-lang.org/std/cell/struct.Cell.html

37

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html

38 Contents

1 fn getter(cell: &Cell<i32>) -> i32 {
2 cell.get()
3 }
4

5 fn foo(cell: &Cell<i32>) {
6 cell.set(5);
7 }
8

9 fn main() {
10 let cell = Cell::new(4);
11 let v1 = getter(&cell);
12 foo(&cell);
13 let v2 = getter(&cell);
14 assert!(v1 == v2); // Panics at runtime
15 }

Listing 4.1 [7 rust] example of interior mutability.

the code wrapping the UnsafeCell still needs to ensure that any mutable borrow
to the contents of the UnsafeCell is unique, and that any reference (both shared
or mutable), cannot outlive the contents of the UnsafeCell. Listing 4.2 shows how
std::cell::RefCell3, another safe wrapper of UnsafeCell providing references
to its contents, will panic if one tries to create two coexisting mutable references
to the UnsafeCell’s contents. This example illustrates how Rust’s type safety
checks are moved from compile time to runtime when using UnsafeCells.

1 struct Dummy { }
2

3 fn main() {
4 let cell = RefCell::new(Dummy {});
5 let mut_ref_1 = cell.borrow_mut();
6 let mut_ref_2 = cell.borrow_mut(); // Panics at runtime
7 }

Listing 4.2 [7 rust] example usage of std::cell::RefCell.

Not all safe abstractions of UnsafeCell cause runtime errors in critical situa-
tions. The mutual exclusion primitive std::sync::Mutex4, for instance, ensures
the referencing rules to the contents of its internal UnsafeCell via blocking.

3https://doc.rust-lang.org/std/cell/struct.RefCell.html
4https://doc.rust-lang.org/std/sync/struct.Mutex.html

https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html

4.2. Problem statement 39

Moreover, RwLock5, another type of lock, is also a safe abstraction of interior
mutability using blocking to avoid panics at runtime.

4.2 Problem statement

Interior mutability is problematic for Prusti, as Prusti treats UnsafeCell as any
other type, and assumes its contents do not change when referenced immutably.
However, this is unsound: it allows to successfully verify false assertions. Listing 4.3
shows a slight modification of Listing 4.1, declaring the function getter() as pure.
As it returns the wrapped value, it is fully deterministic on input and has no
side-effects, therefore it is reasonable to declare the method as pure. #[trusted]
is required as cell.get() is not declared as pure in the standard library, and its
call would thus be illegal in a pure function body. Therefore Prusti is forced to
trust the developer that the function getter() is indeed pure, without actually
verifying its body. Unsurprisingly, the listing still panics at runtime (in line 16)
as the value inside the cell is modified during the call to foo(). However, Prusti
verifies the snippet: it assumes the shared reference passed to foo() cannot
be used to modify the underlying data. As a consequence, it concludes both
getter() calls to take the same argument, and thus to return the same value.

1 #[pure]
2 #[trusted]
3 fn getter(cell: &Cell<i32>) -> i32 {
4 cell.get()
5 }
6

7 fn foo(cell: &Cell<i32>) {
8 cell.set(5);
9 }

10

11 fn main() {
12 let cell = Cell::new(4);
13 let v1 = getter(&cell);
14 foo(&cell);
15 let v2 = getter(&cell);
16 assert!(v1 == v2); // Panics but verifies
17 }

Listing 4.3 [3 rust] example of interior mutability with Prusti annotations.

Similar phenomena are exhibited for all other wrappers of UnsafeCell. This
5https://doc.rust-lang.org/std/sync/struct.RwLock.html

https://doc.rust-lang.org/std/sync/struct.RwLock.html

40 Contents

chapter discusses approaches for fixing this unsoundness when dealing with
wrappers of UnsafeCell while providing as many guarantees as possible about
the underlying mutable data.

4.3 Approaches

Direct handling of UnsafeCell uses unsafe code; its verification is out of scope for
this thesis. Instead, our goal is the client side verification of safe abstractions using
unsafe code. When considering interior mutability, this implies the verification of
safe wrappers of UnsafeCell. In this chapter we will focus on the four wrappers
presented so far:

1. std::cell::Cell,
2. std::cell::RefCell,
3. std::sync::Mutex, and
4. std::sync::RwLock.

We first justify our choice to focus on these wrappers. In order to ensure it
makes sense to focus on these wrappers defined in the standard library, rather
than any custom user-defined ones, an analysis was conducted on the data from
Section 3.2 to understand the most common usages of interior mutability and
the abstractions used. Our analysis indicates that interior mutability is, nearly
exclusively, used via the above safe wrappers provided by the Rust standard
library. UnsafeCells tend to not be used directly. In fact, only a single analyzed
crate6 made use of UnsafeCell without passing through a wrapper. Even in this
case, the developers first used a RefCell to achieve their implementation goals,
and later switched to UnsafeCell only for performance reasons.

Rust’s safe wrappers to UnsafeCell all provide some form of interior mutability.
Nevertheless, the high level reasoning that can be applied to them can differ
significantly. For instance, RefCell can be thought of in a fundamentally different
way than Mutex, due to the fact that RefCell cannot be used in multi-threaded
contexts. This allows more fine-grained reasoning on the contents of RefCell
compared to Mutex.

Consider Listing 4.4, defining a function taking a shared reference to a RefCell
, and declaring a precondition on the contents of the cell. While not formally
defined in the example, reading the value from a RefCell in the precondition
is always safe when the function safely uses the cell. If the function borrows,
mutably or immutably, from the cell in its body without panicking at runtime,
then replacing the body with the borrow from the precondition at the call-site also
does not panic. Moreover, since reading the contents of the cell solely depends

6rand

4.3. Approaches 41

on the cell itself, it becomes apparent that this action can be modelled as a pure
function.

The first major feature of RefCell visible in this listing that does not apply
to Mutex is in the precondition. Declaring a precondition based on the contents of
a Mutex, even if possible, makes little sense, as another thread holding the same
mutex might void the hypothesis set up by the precondition before executing the
first statement in the function body. Some forms of reasoning can accommodate
for this (see Section 4.3.3), but in any case, an assertion such as in line 6 should
not verify. In the context of the RefCell however, it should.

The same issue leads to another weaker guarantee for Mutex. Namely, if one
considers a borrow from a cell to be the equivalent to a lock of a mutex, then
the assertion in line 11 would not hold for a mutex unless strong assumptions
about other threads are imposed, for the same reason stated for the precondition,
as another thread might have interfered. On the other hand, in the scenario
illustrated by the listing, the assertion can be verified, as no interference can
occur between the write in line 7 and the read in line 11, as long as the cell is
not passed as an argument to some function call between the drop and the new
borrow in line 10.

1 struct Dummy { inner: i32 }
2

3 #[requires="<cell contents>.inner == 42"]
4 fn foobar(cell: &RefCell<Dummy>) {
5 let mut dummy = cell.borrow_mut();
6 assert!(dummy.inner == 42);
7 dummy.inner = 1042;
8 drop(dummy);
9

10 let dummy = cell.borrow();
11 assert!(dummy.inner == 1042);
12 }

Listing 4.4 [rust] possible reasoning for RefCell, in contrast to Mutex.

As illustrated with the preceding comparison, Rust’s wrappers for UnsafeCell
allow for different types of reasoning, for instance due to concurrency consider-
ations (cells versus locks). Moreover, copy semantics (Cell versus RefCell), or
permission based concurrent reads (Mutex versus RwLock) can also play a role. As
a consequence of these differences, the thesis will present distinct handling and
encodings for the wrappers. It starts by presenting the encoding for Mutex, then
moving to the other wrapper. The presented solutions are easily extensible to any
other wrappers exhibiting interior mutability.

42 Contents

The following sections will strongly focus on Mutex as the analogy to the
abstraction used to encode interior mutability is easier to understand with a
lock-like data-structure. First, Hoare Logic is briefly introduced in slightly more
detail. This is followed by the first approach encoding a small state machine
inspired by a solution to concurrent data accesses to shared memory. Then, a
second approach illustrates how modifications to the first one can bring more
consistency to the encoding. Finally, a rely/guarantee mechanism complementing
the second solution is described.

4.3.1 Simple Mutex

When considering locks, reasoning on a formal level can be tricky, as interference
from other threads tend to make guarantees on the protected data very difficult to
uphold. More commonly, formal verification tries to ensure a program is deadlock
free, since Rust explicitly does not guarantee deadlock freedom. As this section
presents an encoding for locks, it is important to directly declare the exact goals
that a solution should aim for, including whether a state encoding a deadlock
should be considered invalid or not. Hoare logic shall be used to formalize an
approach to solve this problem.

4.3.1.1 Hoare Logic

Hoare logic was already briefly introduced in Section 2.2. As our formalization
uses Hoare logic notation, this section will briefly introduce some more aspects of
it.

Definition 4.1 provides a more formal description of Hoare triples. Indeed it
includes the fact that Hoare logic allows to prove partial correctness, thus only
providing correctness if termination is guaranteed.

Definition 4.1. A Hoare triple {P}Q{R} is “valid” if a program Q executing on
a state s results in a state s′, and if s � P (s satisfies P), then s′ � Q (s′ satisfies
Q).

Furthermore, Hoare logic defines rules on triples to provide a proof system.
For instance, the rule of consequence states

P1 → P2 , {P2}Q{R2} , R2 → R1

{P1}Q{R1}
(4.1)

Equation 4.1 states that it is possible to strengthen the precondition and/or to
weaken the postcondition. Informally, this means a function can be called in states
providing stronner guarantees than the ones required in its precondition, and
weaker guarantees can be asserted than the ones provided by its postcondition.

4.3. Approaches 43

Viper encodes an extension of Hoare logic to reason modularly about methods,
and how their contracts relate to one another. In fact, Listing 4.5 is essentially
nothing else than a declaration of the Hoare triple {P} foo() {R}.

1 method foo()
2 requires P
3 ensures R
4 {
5 // ...
6 }

Listing 4.5 [viper] example method declaration to showcase its relation to Hoare
triples.

4.3.1.2 Deadlocks

The notion of a deadlock is non-trivial to reason about in Hoare logic, as it does
not truly represent a program state. Consider Listing 4.6, in which the state
after the second lock() in line 3 will never be reached, thus by Definition 4.1,
the triple is technically valid. This is directly visible from the fact that asserting
false in line 4 should indeed verify, as the assertion would never be reached.

1 assume P
2 lock(x) // acquires some lock x
3 lock(x) // deadlock: x is already held by this thread
4 assert R

Listing 4.6 [viper] Viper encoding of a Hoare triple representing a deadlock. In
Viper, an assume statement assumes the properties stated in the expression. An
assert statement checks the permissions and value properties expressed in the
assertion, throwing an error if they are not guaranteed to hold.

However, even if an assertion with expression false should verify after the
deadlock, it can be argued that the deadlock itself represents a state, specifically
a state where no other action is allowed, nor providing any guarantees. Using
this argumentation, the deadlock is allowed to occur, but no action is allowed to
follow due to the very nature of the deadlock. Thus Listing 4.6 should verify only
if R does not rely on the program state at all.

For simplicity, any deadlock state can be considered invalid, as programs
causing deadlocks as an intended final step of computation are not a realistic
use-case. The approach handling deadlock states as undesirable is supported by

44 Contents

literature such as [Leino et al., 2009]. Moreover, in a study from [Qin et al., 2020],
nearly 80% of bugs related to the failure to acquire a Mutex come from a double
lock. An example of such a bug can be seen in Listing 4.7. In the listing, before
the patch was applied, the lifetime of the temporary reference returned by client
.read() in line 3 spans the entire match block. Thus the write in line 7 creates a
double lock. After the patch, the lifetime of the temporary reference only lives
until result is created, releasing the lock directly in line 4. This implies the write
in line 7 can safely occur.

1 fn do_request() {
2 // client: Arc<RwLock<Inner>>
3 - match connect(client.read().unwrap().m) {
4 + let result = connect(client.read().unwrap().m);
5 + match result {
6 Ok(_) => {
7 let mutinner = client.write().unwrap();
8 inner.m = mbrs;
9 }

10 Err(_) => {}
11 };
12 }

Listing 4.7 [rust] patch fixing a bug related to a double-lock from TiKW, taken
from [Qin et al., 2020]

The change characterizing a deadlock as an invalid state modifies the definition
of a valid Hoare triple to the one stated in Definition 4.2.

Definition 4.2. A Hoare triple {P}Q{R} is said “valid” if a program Q executing
on a state s results in a state s′ where s′ is not a deadlock state, and if s � P (s
satisfies P), then s′ � Q (s′ satisfies Q).

In the following subsection, we present two encodings of Mutex to account for
interior mutability in (a simplified version of) Prusti’s Viper encoding.

4.3.1.3 First Viper Encoding

While interior mutability differs a lot from normal Rust behavior, it is similar to
concurrent accesses of shared data structures in languages not using ownership-
based type systems. At any time, another thread can modify data, so long at the
data was shared with the thread in the first place. Similarly, any function call
can modify data, so long as the data was passed to the function in the first place.
In both cases, the thread or client can only rule out a modification when reading

4.3. Approaches 45

the data. This makes reasoning about such data difficult, as changes can occur
constantly, and the data can rarely guarantee to remain identical between two
states.

Our goal is to exploit this analogy between interior mutability and concur-
rent accesses to shared data to derive a solution for the sound verification of
interior mutable data. Many such solutions exist, especially attached to Con-
current Sepration Logic [Brookes and O’Hearn, 2016], a version of separation
logic used to reason about concurrent programs. A flexible approach to reason
about concurrent accesses to shared data are “Concurrent Abstract Predicates
(CAP)” [Dinsdale-Young et al., 2010]. This approach formally defines Hoare
triples with abstract predicates in their prestates and poststates to reason about
actions on a concurrent data structure. Moreover, it defines the possible actions
that can be performed on the data structure itself while a specific predicate holds.
For instance, for a simple lock, the LOCK and UNLOCK actions can be defined as
shown in Equations 4.2 and 4.3. Equation 4.2 states that given a prestate where
it is known that x is a lock, the lock method can be called, which will result
in x being Locked. The knowledge that x is a lock is not lost during the call.
Equation 4.3 states that given that x is Locked, it can be unlocked by the current
thread.

{isLock(x)} lock(x) {isLock(x) ∗ Locked(x)} (4.2)
{Locked(x)} unlock(x) {emp} (4.3)

Equation 4.2 uses the separating conjunction ∗ in its poststate. The separating
conjunction A ∗B is a feature of separation logic [Reynolds, 2002]. It’s intuitive
meaning is that A ∗ B indicates that the program heap can be split into two
disjoint parts in which A and B hold respectively.

As an example use-case for the separating conjunction, Equation 4.4 states that
for two programs relying on disjoint prestates in the heap, and resulting in disjoint
poststates, their independent sequential execution has the same outcome as their
parallel execution (|| operator). In fact, this equation describes the proof rule for
disjoint concurrency used for Concurrent Separation Logic [O’Hearn, 2007].

{P1}Q1{R1} {P2}Q2{R2}
{P1 ∗ P2}Q1||Q2 {R1 ∗R2}

(4.4)

Returning to the analogy, the abstract predicates from Equations 4.2 and 4.3
can be used to define an axiomatic base for reasoning. For instance, the fact that
x is a lock should be freely sharable (Equation 4.5), while no two disjoint heaps
should be allowed to simultaneously claim to hold the lock (Equation 4.6).

46 Contents

isLock(x) ⇐⇒ isLock(x) ∗ isLock(x) (4.5)
Locked(x) ∗ Locked(x) ⇐⇒ false (4.6)

The predicates introduced in Equations 4.2 to 4.3 can be interpreted concretely.
In [Dinsdale-Young et al., 2010], the concrete interpretation is for a compare-and-
swap lock using a semaphore. Thus, in the paper, isLock(x) is interpreted as
representing a permission to acquire the lock, as well as an expression stating that
either the lock is currently held by a thread (semaphore is set to 1), or it is not
and can be released if acquired (semaphore is set to 0 and permission to unlock
can be acquired). Thus, any program state in which isLock(x) holds can call
lock(), and the lock’s invariant holds (it is either locked, or can be acquired). The
second predicate, Locked(x), is interpreted as the insurance that the lock is held
(semaphore is set to 1) and that the lock can be released (permission to UNLOCK is
held by the current thread). On top of that, the paper gives concrete definitions
to the LOCK and UNLOCK actions. The LOCK action is understood as a transition of
the semaphore’s value from 0 to 1 and the acquisition of the permission to UNLOCK.
Similarly, the UNLOCK action is defined as a transition of the semaphore’s value
from 1 to 0 and the loss of permission to UNLOCK. This can essentially be seen as
a state machine with two states and transitions between them. This abstraction
can be used to encode a finite state machine in Viper to reason about interior
mutability.

4.3.1.4 State Machine Encoding

A finite-state machine is a computational model representing an abstract machine
that is in exactly one of a finite number of states at any given time. The machine
can change states via so called “state transitions” in response to some event or
inputs. The definition of such a machine is comprised of the set of possible states,
the initial state the machine starts in, and the possible transitions between states
and their triggers.

Figure 4.1 shows a graphical representation of a state machine with two states
as from [Dinsdale-Young et al., 2010]. Its initial state has either the semaphore
set to zero and a permission to UNLOCK, or the semaphore set to one. Moreover,
the permission to LOCK is held. From this state, the LOCK action can be performed,
bringing the state machine into a state where the semaphore is guaranteed to
be one, and the permission to UNLOCK is held by the current thread. The former
state can be reinstated by performing the UNLOCK action.

Before being able to encode this state machine to handle interior mutability in
Viper, one has to understand a major difference between Rust and C-style locks.
Rust locks, such as Mutex, protect data rather than critical regions. Therefore,
instead of providing a lock() and unlock() method to ensure no two threads

4.3. Approaches 47

LOCK

x = 0 and permission to
UNLOCK available; or x = 1
Permission to LOCK held by
thread.

UNLOCK
x = 1
Permission to UNLOCK held
by thread.
Permission to LOCK held by
thread.

LOCK

Figure 4.1 Graphical representation of the state machine for a compare-and-swap
lock with semaphore x from [Dinsdale-Young et al., 2010].

can enter a set of critical regions at the same time, Rust locks provide only a
lock() method returning a reference to the protected data. In order to ensure
the reference no longer exists upon release of the lock, a Resource Acquisition Is
Initialisation (RAII)7 guard is used wrapping the returned reference. This goes
hand in hand with Rust’s ownership model and ensures that once the guard is
dropped by the thread, the lock is automatically released. As a consequence, just
as it is assumed the semaphore can only be changed by one thread at a time using
an atomic compare-and-swap operation, the protected data from an Mutex can
only be modified by a single thread at a time. Thus, for a Mutex, one can set an
invariant on the data it protects and modify the state machine from Figure 4.1
into the one shown in Figure 4.2. Note the difference in the transformation from
the state of the semaphore in the former figure to the access of the protected data,
and its state, in the latter one.

State machines can be encoded in Viper by providing abstract predicates for
each state, and modeling state transitions using abstract methods taking the
permissions of the active state as a precondition, and ensuring the permissions
to the target state in the postcondition. A Rust method can then be linked to
a state transition of one of its arguments by adding the required source state in

7https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

48 Contents

LOCK
Permission to LOCK held by
thread.

UNLOCK

Permission to UNLOCK held by
thread.
Permission to LOCK held by thread.
Invariant asserted.
Permission to write to protected
data.

LOCK

Figure 4.2 Graphical representation of the state machine for Mutex.

the encoded method’s precondition, and the target state in the postcondition.
Thus the “call event” of the Rust function defines the transition trigger of the
state machine. Finally, the initial state of the machine can be set by inhaling the
predicate encoding the initial state, or using an encoded abstract method for the
creation of the lock which sets the initial state. An example of the encoding of a
simple state machine can be seen in Listing 4.8.

4.3. Approaches 49

1 predicate Positive(machine: Ref)
2

3 predicate Negative(machine: Ref)
4

5 method to_pos(machine: Ref)
6 requires Negative(machine)
7 ensures Positive(machine)
8

9 method to_neg(machine: Ref)
10 requires Positive(machine)
11 ensures Negative(machine)
12

13 method create_machine() returns
14 (machine: Ref)
15 ensures Positive(machine)

Listing 4.8 [viper] example state machine with
two states, Positive and Negative, with defined
transitions between both states and an initial state
of Positive.

to_neg

Positive

to_pos

Negative

In Listing 4.8, assume the Viper source encodes a Rust snippet containing two
functions to_pos() and to_neg(). Then the state transition is encoded directly
in the pre- and postconditions of their respective Viper encodings in the listing.
Listing 4.9 shows a sample client, creating the state machine in its initial state,
and calling one of the encoded Rust functions. The new state of the machine
can then be asserted in line 9 to verify that the transition took place. Moreover,
note that calling a function that would require a source state that is not the
current one will fail during verification, as not enough permissions to the abstract
predicate are present to uphold the precondition of the called abstract method.

The encoding presented thus far provides states and transitions, but lacks
the capabilities of attaching meaning to each state. For instance, the current
state Positive in Listing 4.8 has no meaning attached to it, therefore the Viper
program cannot reason about what it means for the machine to be in a Positive
state.

In order to attach meaning to a state, each state is associated with an invariant.
For instance, suppose the state machine from Listing 4.8 tracks the state of some
integer value. In such a case, the value can be asserted to be val > 0 or val
< 0 for Positive and Negative states respectively. The exact moments these
expressions should be assumed and asserted depends on the use case of the state
machine. As an example, in the Mutex case, this needs to be done at lock and
release time.

50 Contents

1 method client() {
2 var machine: Ref
3 machine := create_machine()
4

5 // to_pos(machine) --> fails as the source state
6 // is not correct
7

8 to_neg(machine)
9 assert(Negative(machine))

10 }

Listing 4.9 [viper] client side example of a method call triggering a state transition
for the underlying state machine.

Now that it is clear how state machines can be encoded in Viper, we return
to the state machine defined in Figure 4.2. Assuming a Mutex wrapping a Dummy
(see Appendix B), the Viper encoding can be represented as in Listing 4.10. The
chosen invariant is that the inner field of the Dummy should be positive. In the
listing, the invariant can be seen as part of the Locked(x) predicate. This is due
to the fact that the concrete interpretation of the Locked(x) predicate for Mutex
is an access to the protected data, and the establishing of the invariant.

Note that Listing 4.10 implicitly considers the interpretations of the predicates
as declared in the Equations 4.5 and 4.6. The fact that several threads can have
knowledge of the Mutex simultaneously is implicit from the non-exclusive read
permissions to the Mutex abstract predicate. Simultaneously, this read permission
is also used as the encoding for the permission to lock, since the Mutex needs
to be referenced to allow locking it. Therefore the lock() method states this
permission in its precondition. The lock() encoding is simplified in this example,
as it does not take into account that the Rust lock() function actually returns a
LockResult, instead of a reference to the wrapped data directly. However, as the
handling of Result types is already solved in Prusti, this is a small detail that
does not affect the validity of the presented solution.

Moreover, the fact that the Mutex can only be locked once at a time (Equa-
tion 4.6) is seen from the exclusive permission to Locked returned from the lock()
method, and consumed by the unlock() method. However, in contrast to the
formalization in the CAP paper, Viper is very permissive with permissions inhaled
on call-site via postconditions. In fact, it allows to inhale more than a single full
permission to a predicate. Therefore, even though, via the exact definition of
exclusive permission, the encoding is correct, it will still verify Listing 4.11. As a
consequence, the encoding allows to verify an invalid Hoare triple as defined in
Definition 4.2.

4.3. Approaches 51

1 predicate Mutex(x: Ref)
2

3 predicate Locked(x: Ref) {
4 // write access to data && invariant
5 acc(Dummy(x), write) && unfolding Dummy(x) in x.inner > 0
6 }
7

8 method lock(mutex: Ref)
9 requires acc(Mutex(mutex), read())

10 ensures acc(Mutex(mutex), read())
11 ensures acc(Locked(mutex), write)
12

13 method unlock(mutex: Ref)
14 requires acc(Locked(mutex), write)

Listing 4.10 [viper] encoding of Mutex with simple state machine and state
invariant. Note that the Mutex and the data itself (Dummy) is encoded as the same
object in Viper. This is achievable due to the strong possibility for abstraction enabled
by the Viper object model. For encodings of Dummy and read() see Appendices B
and D.

The prevention of a double lock such as in Listing 4.11 can be achieved by
adding an assertion after the lock at call-site to verify that the permission held
to the Locked predicate is less or equal to one. Even so, the encoding would be
inelegant and quite abstract with respect to the Rust code, as, for instance, the
conceptual behavior of the lock() Viper method is significantly different to Rust’s
lock() function. It is even moreso visible by the need for encoding an unlock()
method, without having such a function in Rust. The second approach presented
below tries to accommodate to this, by reasoning about Mutex as a simple wrapper
returning a reference to the enclosing data. This has the advantage that the
permission handling to the wrapped data is directly handled by the lock encoding
as opposed to the Locked predicate.

4.3.1.5 Second Viper Encoding

The second approach attempts to model the Viper encoding to resemble more
the behavior of the Rust code for Mutex. Concretely, it reasons about locking as
returning a temporary reference to the wrapped data from the lock. The returning
of temporary references is typically encoded in Viper using magic wands.

52 Contents

1 method client()
2 requires Mutex(x)
3 {
4 lock(x)
5 lock(x)
6 }

Listing 4.11 [3 viper] encoding allows to “double lock” and therefore does not
catch obvious deadlock situations.

Magic Wands Rust functions that return temporary references to parts of their
arguments are encoded to Viper using magic wands. The separating implication,
or “magic wand” is a connective from separation logic that can be understood as
follows: a separating conjunction, or “magic wand” A−−∗B encodes that if a given
heap is extended with a disjoint heap satisfying A, the resulting heap satisfies B.

The magic wand connective is also part of the Viper verification language,
where its semantic meaning is identical. However, Viper magic wands A --* B
actually represent a resource. This resource needs to be combined with the
resource in its left hand side (argument A), which exchanges it with its right hand
side (argument B). Informally, when considering permissions, this means the right
hand side permission can be obtained by giving up the left hand side permission
(which needs to be held previously). To illustrate its meaning within an example,
consider Listing 4.12. In the snippet, a predicate A and a magic wand connective
A --* B are inhaled. In line 4, using the apply statement, these resources are
exchanged for B. Hence the assert in line 5 succeeds. If the assert had been
placed before the apply, it would have failed.

1 inhale A
2 inhale A --* B
3 // assert B --> would fail here
4 apply A --* B
5 assert B

Listing 4.12 [viper] example of a magic wand used in Viper.

Such wands are extensively used to encode temporary references returned by
Rust functions, borrowing from their arguments. For instance, Figure 4.3 shows
such a Rust function and its (simplified) Viper encoding.

In a similar fashion to the example from Figure 4.3, a magic wand can encode
the write permission to the inner data provided from locking the Mutex, and can
return a lock capability when revoking this permission. A “lock capability” can be

4.3. Approaches 53

1 struct Dummy { inner: i32 }
2

3 fn foo(d: &mut Dummy) -> &mut i32 {
4 &mut d.inner
5 }

1 method foo(x: Ref)
2 requires Dummy(x)
3 ensures i32(result)
4 && (i32(result) --* Dummy(x))

Figure 4.3 Sample Viper encoding of a function returning a reference to a field of its
argument. Rust code at the top and its Viper encoding below. The encoding used for
Dummy can be seen in Appendix B.

modelled using a predicate, that is required to be true to call a function. In Viper
this is encoded as an abstract predicate used in the precondition of the method
that requires the capability (the lock() method in this case).

Listing 4.13 shows two abstract predicate declarations, one encoding the fact
that a reference is a Mutex, while the other encodes the lock capability. The LOCK
action can then be encoded as shown in line 5 in the listing. Moreover, the listing
encodes Mutex<Dummy>, and couples the wrapped data inside the lock with the
lock itself, as is done in Rust. Finally, using a lock capability (CanLock) rather
than a Locked predicate automatically ensures no deadlocks can occur, as the lock
can only be called when the CanLock capability is returned upon release of the
previous lock. It is worth noting that the lock() method has lost its polymorphic
nature, and now requires an encoding for every concrete type T in Mutex<T>.
However, the CanLock encoding is now polymorphic, versus its non-polymorphic
counterpart encoding Locked.

With this modified encoding, the required Viper code to model the call-site is
a call to lock(), while the call-site encoding of the release of the lock is simply
an application of the magic wand, as illustrated in Listing 4.14.

The above approaches only encode the lock and release actions on the Mutex.
This is equivalent to the encoding of the Mutex::lock() function, and the dropping
of the MutexGuard to release the lock. The construction of the lock is encoded by
simply inhaling the two predicates encoding the fact that a reference is a Mutex
and the lock capability. Finally, Mutex::try_lock() can be encoded nearly
identically to Mutex::lock, while Mutex::into_inner() and Mutex::get_mut()
are straightforward to encode, as they do not make use of interior mutability,
and require a full permission to the Mutex. Mutex::is_poisoned() can only be

54 Contents

1 predicate Mutex(mutex: Ref)
2

3 predicate CanLock(mutex: Ref)
4

5 method lock(mutex: Ref) returns (data: Ref)
6 requires acc(Mutex(mutex), read()) &&
7 acc(CanLock(mutex), write)
8 ensures acc(Mutex(mutex), read()) &&
9 acc(Dummy(data), write) &&

10 (acc(Dummy(data), write) --*
11 acc(CanLock(mutex), write))

Listing 4.13 [viper] abstract predicates for Mutex and lock capability, and the
lock action encoded as a Viper abstract method. The Viper encoding of Dummy can
be seen in Appendix B.

1 apply (acc(Dummy(data), write) --* acc(CanLock(mutex), write))

Listing 4.14 [viper] call-site encoding of the lock release. The Viper encoding of
Dummy can be seen in Appendix B.

assumed to return a havocked boolean, as it is runtime dependent whether another
thread could have potentially panicked while holding the lock.

It is worth noting that while the encoding favors detection of deadlocks, it
does not indeed perform a verification on whether the program is deadlock free.
This is mainly due to the fact that when a Mutex is passed to another thread, a
CanLock predicate is passsed along to ensure the other thread can acquire the
lock. Thus two threads can enter a deadlock by sharing two locks and trying to
acquire both locks in opposite order.

Finally, the invariant can be directly encoded as part of the lock() method.
This approach is opposed to encoding the invariant as part of the Dummy predicate.
However, as lock() is already dependent on the type inside the Mutex, encoding
it directly in the method enables Dummy to remain agnostic on whether it is used
inside a lock or not. This results in an encoding of lock() as shown in Listing 4.15.

Using this state machine approach in conjunction with the invariant on the
acquired state, code snippets such as Listing 4.16 can be verified. The specification
syntax of the invariant in line 1 and how it is typechecked will be explained in
Section 4.3.2. The listing verifies successfuly, as it is guaranteed that the value
of the inner field is strictly positive when locking in line 5. This leads to the
assertion in line 7 to be guaranteed to pass. Finally, the field value can be modified,

4.3. Approaches 55

1 method lock(cell: Ref) returns (data: Ref)
2 requires acc(Mutex(cell), read()) &&
3 acc(CanLock(cell), write)
4 ensures acc(Mutex(cell), read()) &&
5 acc(Dummy(data), write) &&
6 unfolding Dummy(data) in data.inner > 0
7 ensures ((acc(Dummy(data), write) &&
8 unfolding Dummy(data) in data.inner > 0) --*
9 acc(CanLock(cell), write))

Listing 4.15 [viper] encoding of lock() method with an invariant of
data.inner > 0.

even breaking the invariant in line 8, but satisfies the invariant upon release. Since
the invariant is upheld upon release, the code verifies.

1 #[invariant="data.inner > 0"]
2 type MyMutex = Mutex<Dummy>;
3

4 fn client(mutex: &MyMutex) {
5 let mut dummy = mutex.lock().unwrap();
6 let val = 42 * dummy.inner;
7 assert!(val > 0);
8 dummy.inner = -10;
9 // ...

10 dummy.inner = 42;
11 }

Listing 4.16 [3 rust] example of Mutex usage that can be verified using the first
Viper encoding.

4.3.1.6 Other Mutex Methods

The previous sections only discussed the encoding of the Mutex::lock() method,
and the encoding of the dropping of the MutexGuard returned from said method.
However, Mutex defines other functions as well.

The try_lock() function can be encoded in a very similar fashion as lock(),
as the two functions essentially perform the same action, blocking being the only
difference. However, the blocking behavior is not visible from a static perspective.

The new() function is encoded by an inhale of the two predicates encoding the

56 Contents

Mutex. The invariant would also need to be established after construction, similar
to how type invariants can be established. The two functions into_inner() and
get_mut() do not exhibit interior mutability, and thus can be encoded nearly as
they would be for regular types. Of course, get_mut(), which returns a temporary
mutable reference to the wrapped data, would also need to assume the invariant
upon return of the reference, and assert it when dropping the reference. However,
since the function takes a mutable reference to the Mutex, this is not interior
mutability and thus Prusti already handled it correctly. The encoding only needs
to be adapted to the new encoding of the Mutex type and be able to handle the
invariant.

Lastly, the is_poisoned() function checks whether the Mutex is poisoned. A
lock is considered poisoned when a thread holding the lock panics. Reasoning
about the value returned from is_poisoned() is very difficult, even at runtime.
Even if the function returns that Mutex is not poisoned, the value cannot be
trusted as the lock can become poisoned between the retrieval of this value
and its usage. Moreover, reasoning statically about potential panics together
with possible thread interleaving is a tremendous challenge. As a consequence,
is_poisoned() is encoded as a function returning a havocked boolean value,
providing no guarantee.

4.3.2 Rust Specification

In order to declare the specification for a stateful Mutex, which can be encoded
in the way described previously, a programmer needs to declare the invariant
that holds when the Mutex is acquired. As the invariant refers the data protected
by the Mutex, it needs to be possible to express this in the invariant. In order
to achieve this, the new data keyword is added to the Rust expressions used
in invariants. How this keyword affects typechecking by the Rust parser and
its translation to Viper will be explained shortly. Moreover, as a Mutex<T> is a
type defined in the standard library, the invariant cannot be declared at type
declaration level. Therefore the invariant to attached to a type alias declared in
Rust. Listing 4.17 shows an example of this.

1 struct Dummy { inner: i32 }
2

3 #[invariant="data.inner > 0"]
4 type MyMutex = Mutex<Dummy>;

Listing 4.17 [rust] Rust definition of a stateful Mutex.

Having declared such a specification, the invariant can be translated into a
static function by the parser. The result of this translation is seen in Listing 4.18.

4.3. Approaches 57

Note this differs from normal invariants on types and traits, as the invariant is not
part of an implementation block, the type of the parameter to the spec__MyMutex
() is provided explicitly, and the closure expressing the invariant contains more
code than simply the expression defined in the #[invariant="..."] attribute.
Neither of these changes is especially problematic on the implementation level.
First, the fact that the ghost code is generated outside an impl block actually
makes the generation simpler. Second, the exact type of the parameter to the
typechecking function is known, as the invariant is defined on a type alias, which
can be used for the parameter type. The fact that the argument is passed by value
does not restrict the usage of the invariant, as Mutex is always Sized, even when
its type parameter is not. Finally, the additional code needed within the closure
is always the same thanks to the newly introduced data keyword. Moreover, this
code is guaranteed to not create other problems, as unwrap() can only cause
runtime panics, and the typechecking function will never be called within the
codebase (ghost code).

1 struct Dummy { inner: i32 }
2

3 type MyMutex = Mutex<Dummy>;
4

5 fn spec__MyMutex(mutex: MyMutex) -> () {
6 || -> bool {
7 let data = mutex.lock().unwrap();
8 data.inner > 0
9 };

10 }

Listing 4.18 [rust] code generated by the parser for the invariant listed in 4.17.

The encoding presented so far only allows to append an invariant to the
wrapped data inside the Mutex. This can be useful in some cases but does not
provide strong enough guarantees to verify most use cases. Therefore the encoding
is strengthened via a rely/guarantee mechanism.

4.3.3 Rely/Guarantee

Rely/guarantee is a compositional verification method for shared memory con-
currency [Owicki and Gries, 1976] [Vafeiadis, 2008]. The specification consists of
four components (R,G, P,Q).

• The predicates P and Q are the precondition and postcondition of the entire
execution of a thread. These have the same interpretation as in Hoare Logic.

58 Contents

• R (rely) and G (guarantee) encode the properties of all atomic operations
that can be performed by an interfering thread (environment), and the
thread itself, respectively. Both are two-state predicates relating the state
before an atomic operation to the state after the operation has completed.
Thus the rely condition models the interference the program can tolerate
from its environment, and the guarantee condition models the interference
the program imposes on its environment.

In order for a rely/guarantee specification to be well formed, P and Q need
to be stable under the rely condition. Here, Q is said to be stable under R if
(Q;R)⇒ Q. In other words, applying a change from the rely condition R on a
state satisfying Q results in another state satisfying Q.

In the case of a lock, any execution between an acquisition and its corresponding
release is considered atomic. Thus the rely condition encodes the possible changes
to the protected data from interfering threads, whereas the guarantee condition
encodes the changes the thread itself is allowed to impose on the protected data.
Figure 4.4 shows a graphical representation of the rely/guarantee mechanism.

Figure 4.4 Graphical representation of a program (method) using rely/guarantee to
enable verification. Note that this diagram only shows two possible thread interleavings
for interference. Rely/guarantee enables to reason about the program no matter what
the thread interleaving is.

To illustrate this for Mutex we will use a shared counter as an example. The
counter n has the constraint that it is monotonically increasing. Thus the rely
condition can be encoded as n n+ 1, where denotes the application of an

4.3. Approaches 59

atomic operation, in this case by an interfering thread. Thus a stable, verifiable
method could be one assuming that n ≥ 42 in its precondition, asserting that
n ≥ 32 in its postcondition, and performing the operation n n − 10 during
an acquisition of the lock protecting the counter, hence defining the guarantee
condition. Listing 4.19 show an example program which performs n n − 10.
The Rust specification for the pre- and postconditions are temporary placeholders
and the rely condition is not specified.

1 #[requires="<mutex data>.inner >= 42"]
2 #[ensures="<mutex data>.inner >= 32"]
3 fn client(mutex: &Mutex<Dummy>) {
4 let mut dummy = mutex.lock().unwrap();
5 dummy.inner -= 10;
6 }

Listing 4.19 [rust] sample program with guarantee condition n n− 10. This is
verifiable with a rely condition n n+ 1.

In order to present the Viper encoding of this counter, a Dummy type is used
with its inner field being the counter. First, consider Listing 4.20 showing a
client implementing the proposed guarantee. Interference should be simulated
before the lock acquisition and after release, in in lines 8 and 16, in order to
model the rely condition. Moreover, a way needs to be found to express the pre-
and postconditions on the state of the value wrapped by the Mutex. This can
be challenging as no permissions are held to the wrapped value until the lock is
acquired in line 10. In order to enable the declaration of contracts on the value
protected by the lock, which is required by the rely/guarantee mechanism, a
ghost value is used. This ghost value is a copy of the protected data, to which
the current thread has full write access, and which is used to track the value in
contracts and apply interference.

60 Contents

1 method client(x: Ref)
2 requires acc(Mutex(x), read())
3 requires acc(CanLock(x), write)
4 // precondition: x.inner >= 42
5 ensures acc(Mutex(x), read())
6 // postcondition: x.inner >= 32
7 {
8 // interference
9 var data: Ref

10 data := lock(x)
11

12 data.inner := data.inner - 10
13

14 apply (acc(Dummy(data), write) --*
15 acc(CanLock(mutex), write))
16 // interference
17 }

Listing 4.20 [viper] beginning of an encoding of a client using a rely/guarantee
Mutex. fold and unfold statements are omitted for brevity.

4.3. Approaches 61

Interference from other threads is encoded as shown in Listing 4.21. The
function defined in line 6 is simply a helper function used to access the inner field
of Dummy types. The interesting part of this snippet is line 4. The interference
method encodes any number of executions of the action by interfering threads as
defined in the rely condition. This interference method can then be applied to
the ghost value at any time to model the interference. More specifically, it will be
applied shortly before the lock acquisition, modeling any interference that could
have occurred between the assertion of the precondition and the lock acquisition.
On top of that, it will be applied again shortly after releasing the lock, modelling
any interference between the release and the assertion of the postcondition. Thus
can be seen in Listing 4.22 in lines 10 and 20.

1 method interference(dummy: Ref)
2 requires acc(Dummy(dummy), write)
3 ensures acc(Dummy(dummy), write)
4 ensures old(get_inner(dummy)) <= get_inner(dummy)
5

6 function get_inner(dummy: Ref): Int
7 requires acc(Dummy(dummy), write)
8 ensures unfolding Dummy(dummy) in result == dummy.inner

Listing 4.21 [viper] encoding of the interference method simulating thread
interference and thus the potential effects the rely can have on the value of the Mutex.

The ghost value also enabled to define the pre- and postconditions as shown
in lines 4 and 7. The remaining work is to link the ghost value to the actual
value returned from the lock. This is performed via the assume in line 13 and the
assignment in line 17.

Listing 4.22 finalizes the encoding of methods using rely/guarantee, and shows
how these can verify more complex properties than simple invariants.

Additionally, note that the call-site of client() does not need to be modified,
even though interference can occur between any two calls taking the same Mutex.
However, the body of client() already guarantees stability of the pre- and post-
condition with respect to the rely condition, and therefore applying interference
between any two calls taking the same Mutex will not modify the properties that
can be asserted.

4.3.3.1 Rust Specification

The Rust specification of the introduced rely/guarantee mechanism is very difficult
to formally define on a conceptual level. Consider the previous example with the
counter. In order to specify the example in Prusti, the specification problem can

62 Contents

1 method client(x: Ref, y: Ref)
2 requires acc(Mutex(x), read())
3 requires acc(CanLock(x), write)
4 requires acc(Dummy(y), write) &&
5 unfolding Dummy(y) in y.inner >= 42
6 ensures acc(Mutex(x), read())
7 ensures acc(Dummy(y), write) &&
8 unfolding Dummy(y) in y.inner >= 32
9 {

10 interference(y)
11 var data: Ref
12 data := lock(x)
13 assume data.inner == y.inner
14

15 data.inner := data.inner - 10
16

17 y.inner := data.inner
18 apply (acc(Dummy(data), write) --*
19 acc(CanLock(mutex), write))
20 interference(y)
21 }

Listing 4.22 [viper] beginning of an encoding of a client using a rely/guarantee
Mutex. fold and unfold statement are omitted for brevity.

be split into three distinct parts:

1. In the pre- and postcondition, one needs a way to refer to the data contained
a Mutex passed as an arbitrary argument to the function. This can be done
via a new helper function in Prusti specification such as data(arg3) to refer
to the data contained in the Mutex passed as the arg3 parameter. This is
mostly an implementation problem, and conceptually quite trivial.

2. The rely condition needs to be specified somewhere. The first conceptual
issue with this is to ensure that the condition does indeed model the
interference from other threads properly. However, even assuming that
this does not need to be verified, expressing this condition in Prusti is
challenging, as Prusti essentially has no support for concurrency. Therefore,
Prusti does not define how threads should be reasoned about conceptually,
or how one can refer to a specific thread in a contract.

3. Finally, a function encoding a guarantee condition such as the one from the
previous example can only be called by a single thread, as the guarantee
condition is not contained in the rely condition. Thus having two threads

4.3. Approaches 63

being allowed to call the function would intrinsically break the rely condition.
The reason for this can be seen from Listing 4.22. If the method being
encoded into client() is called from two different threads on the same
Mutex, the rely condition cannot be accurate, as at least one other thread
performs the action n n−10. Such a restriction also needs to be specified
somehow in Prusti contracts. Again, this is not possible with a concrete
model on how threading is modelled in Prusti contracts.

Moreover, it is unknown how the Viper encoding for moving values to other
threads via closures will look, and whether this will require new specifications on
Rust level.

4.3.4 RwLock

The only major difference between RwLock and Mutex is that it allows multiple
concurrent reads simultaneously. Therefore, a RwLock can be seen as a concurrent
version of the RefCell (introduced in the next section), which also allows several
borrow() values to coexist. As the remaining behavior of RwLock is the same as
for Mutex, it can be encoded in the same way. The encoding of RwLock::write()
is essentially the same as Mutex::lock(), while the encoding of RwLock::read()
is the same as RwLock::write() but taking only a read permission to the CanLock
capability. Using such a read permission enables the property that several read()
values can coexist, while not allowing a write() value to be obtained.

4.3.5 RefCell

RefCells allow more fine grained reasoning than Mutex. Only a single variable
can mutably reference the contents of a RefCell at any point in the program, or
several variables can reference it immutably. This sounds similar to Mutex, which
ensures mutual exclusion. However, when reasoning about RefCells, one does
not need to consider concurrent accesses to the data, and therefore interference
from other threads is not a possibility. This can be seen in the presented encoding
of Mutex, except that the state machine encoding the Mutex (Figure 4.2) could
not make any assumptions on the state of the wrapped data unless the Mutex was
acquired by the current thread. This is not the case for RefCells, as only the
current thread can hold a reference to it.

The lack of interference, in principle, allows to constantly track the state
of the wrapped value inside a RefCell. However, tracking everything precisely
becomes an issue when considering calls to external libraries. Therefore, while
a similar encoding to the one presented for Mutex in Section 4.3.1 is possible, a
more fine-grained is desirable. In order to achieve more fine grained verification,
the idea of a state machine can be extended.

64 Contents

4.3.5.1 Rust Specification

In order to provide as much flexibility as possible, the presented solution allows to
define a state machine with an arbitrary finite number of states, and an invariant
for each state. This machine is then encoded in a similar fashion than for Mutex to
Viper to enable verification. In order to specify such a state machine in Rust, the
#[state="..."] attribute is presented, with the grammar shown in Figure 4.5.

〈declaration〉 ::= ‘[state="’ 〈body〉 ‘"]’

〈body〉 ::= 〈name〉
| 〈name〉 ‘=>’ 〈invariant〉

〈name〉 ::= 〈identifier〉

〈invariant〉 ::= 〈expression〉

Figure 4.5 BNF for new state attribute.

Using this grammar, all states of the state machine can be defined, with their
corresponding invariant, which provides meaning to the state. For instance, for
a simple RefCell wrapping a Dummy that can take two states (Positive and
Negative), a sample specification is shown in Listing 4.23. The order the states
are declared in has no effect, with the exception that the first state is used as the
initial state upon construction of the RefCell. Thus every constructed RefCell
will need to guarantee the state invariant of the first declared state right after
construction.

1 struct Dummy { inner: i32 }
2

3 #[state="Positive => data.inner > 0"]
4 #[state="Negative => data.inner < 0"]
5 type MyCell = RefCell<Dummy>;

Listing 4.23 [rust] sample declaration of a state machine for a RefCell with two
states, Positive and Negative.

Listing 4.23 shows only two states for the RefCell. However, any number of
states can be defined. Moreover, the invariants for the states need not be disjoint
as is the case in the listing. This choice, both in number of states and precision of

4.3. Approaches 65

their invariants, allows to make the verification arbitrarily fine-grained, as needed
by the use-case.

The invariants provided for each state are typechecked in similar fashion to the
invariant for Mutex. In other words, for every state, a single closure is generated,
which contains both the code borrowing from the RefCell, and the invariant.
Whether all closures are contained within a single static function, or whether
each invariant is placed within a single static function is not relevant. Moreover,
similarly to Mutex, the call to borrow_mut() is guaranteed to not create problems,
at it can only panic at runtime, and the closures are never called.

The second thing, after states, that needs to be specified in Rust are state
transitions. On the cell level, it can only transition between states when it is
mutably borrowed from. On the function level, any function taking a RefCell as
argument, either directly or transitively, can change the state of the RefCell.

On the cell level, every borrow needs to be marked to declare a state transition.
This is performed via a new #[transition="..."] attribute. Its grammar is
very simple and therefore not explicitly stated here. It essentially simply states
the source state and the target state. Listing 4.24 shows an example of such a
transition annotation in line 5. The same listing shows how state transitions are
expressed on function levels, namely in the pre- and postconditions, such as in
lines 1 and 2.

1 #[requires="Positive(cell)"]
2 #[ensures="Negative(cell)"]
3 fn foo(cell: &MyCell) {
4 // ...
5 #[transition="Positive => Negative"]
6 let val = cell.borrow_mut();
7 val.inner = -42;
8 // ...
9 }

Listing 4.24 [rust] state transition declarations both on cell and function level for
RefCell. The transition annotation can be omitted if no transition occurs.

4.3.5.2 Viper Encoding

The Viper encoding of the RefCell itself is extremely similar to the Mutex one,
with only changes in naming. Listing 4.25 shows the two abstract predicates
encoding the RefCell. Note the inclusion of a predicate CanBorrowMut. This
predicate serves the same purpose as CanLock, preventing double mutable borrows
as in Listing 4.2. The actual encoding of the state machine is done the same way as

66 Contents

was shown in the section introducing it (Section 4.3.1.4). Finally, the borrow_mut
() function and the drop of the returned wrapped reference are encoded the same
way as for Mutex. This can also be seen in Listing 4.25.

1 predicate RefCell(cell: Ref)
2

3 predicate CanBorrowMut(cell: Ref)
4

5 method borrow_mut(cell: Ref) returns (data: Ref)
6 requires acc(RefCell(cell), read()) &&
7 acc(CanBorrowMut(cell), write)
8 ensures acc(RefCell(cell), read()) &&
9 acc(Dummy(data), write) &&

10 (acc(Dummy(data), write) --*
11 acc(CanBorrowMut(cell), write))

Listing 4.25 [viper] encoding of RefCell and its borrow_mut() method.

Function level state transitions are encoded as expected, by simply adding
the abstract predicate representing the state in the pre- or postcondition. Cell
level state transitions are more involved as for Mutex. In the Mutex case, the
transition in the state occurred at lock and release time. In the RefCell case,
transitions occur during the borrow, and the state can be preserved until the next
borrow. Moreover, the invariant that needs to be assumed and asserted at the
start and end of the borrow, respectively, is state dependent. Listing 4.26 shows
the encoding of Listing 4.24 into Viper.

First, the function level state transition can be seen in lines 4 and 5. These
will be inhaled and exhaled on call-sites and therefore track the state transitions of
the RefCell on the side of the caller. Moreover, they ensure the state transition(s)
performed within the method’s body reflect the transition presented to the caller.
Next, the call to borrow_mut() can be seen in line 13. The call can be performed
due to permissions passed in the precondition in line 3. Using these “permissions
to borrow mutably” ensures foo() cannot be called while its argument is borrowed
mutably from, catching the runtime panic that would occur at verification time.
Right after the borrow in line 13, the state invariants are assumed. Note that
all state invariants are assumed via implication. Contrary to Mutex, the active
state is known for RefCell as no other thread can interfere with its state. Thus
it would also be an option to have Prusti track the current state of the RefCell
and only assume its specific invariant. Moreover, attributes mark transitions in in
Rust (unless no state transition occurs), making such tracking reasonably simple
to implement. Here all invariants are assumed via implication as it provides a
sound solution which is easier to implemented in Prusti. After the assumptions
from lines 15 and 16, the invariant of the current state can be used. The assertion

4.3. Approaches 67

in line 19 is not part of the encoding of Listing 4.24, but only illustrates that the
invariant from the positive state of the RefCell can be used after the borrow.
Finally, the drop of the reference returned from borrow_mut() is encoded. This
includes the state transition encoding in lines 24 and 25, and the assertions
guaranteeing the state change respected the invariants set by the states (lines 28
and 29). Here, again, only the invariant of the current state could be asserted, if
the solution is implemented in Prusti with state tracking. Once this is performed,
the magic wand from the postcondition of borrow_mut() is applied, giving up
the permissions to the wrapped data of the RefCell, and returning permissions
to borrow mutably.

4.3.5.3 Implicit Transitions

The solution presented so far requires a #[transition="..."] annotation every
time a transition is performed via a mutable borrow. This provides a high level
of control and ensures no accidental transitions are performed, but it is also very
explicit. Since Prusti’s goal is to enable an easy approach to verification, a second
solution will be presented, where state transitions are implicitly tracked by Prusti.

68 Contents

1 method foo(cell: Ref)
2 requires acc(RefCell(cell), read()) &&
3 acc(CanBorrowMut(cell), write)
4 requires Positive(cell)
5 ensures Negative(cell)
6 ensures acc(RefCell(cell), read()) &&
7 acc(CanBorrowMut(cell), write)
8 {
9 // ...

10

11 // borrow_mut and invariant inhales
12 var dummy: Ref
13 dummy := borrow_mut(cell)
14 unfold Dummy(dummy)
15 assume Positive(cell) ==> dummy.inner > 0
16 assume Negative(cell) ==> dummy.inner < 0
17

18 // can use rely
19 assert dummy.inner > 0
20

21 dummy.inner := -42
22

23 // release
24 exhale Positive(cell) // state change
25 inhale Negative(cell)
26

27 // ensure state change is correct
28 assert (perm(Positive(cell)) > none) ==> dummy.inner > 0
29 assert (perm(Negative(cell)) > none) ==> dummy.inner < 0
30

31 fold Dummy(dummy)
32 apply acc(Dummy(dummy), write) --*
33 acc(CanBorrowMut(cell), write)
34

35 // ...
36 }

Listing 4.26 [viper] encoding of RefCell state transitions in Viper.

4.3. Approaches 69

1 #[requires="Positive(cell)"]
2 #[ensures="Negative(cell)"]
3 fn foo(cell: &MyCell) {
4 let val = cell.borrow_mut();
5 val.inner = -42;
6 bar(cell);
7 }
8

9 #[requires="Negative(cell)"]
10 #[ensures="Negative(cell)"]
11 fn bar(cell: &MyCell) { /* ... */ }

Listing 4.27 [rust] sample method body with no #[transition="..."] annota-
tions on each state transition.

Since transitions will no longer be annotated directly at every borrow, a new
mechanism needs to ensure that only allowed transitions can take place. This is
achieved by specifying the set of all legal state transitions right next to the state
declarations. An example of such a declaration can be seen in Listing 4.28. In
the listing, the declared state machine allows transitions from a state to itself,
and from Positive to Negative. However, the transition back from Negative to
Positive is not declared and therefore not allowed.

1 struct Dummy { inner: i32 }
2

3 #[state="Positive => data.inner > 0"]
4 #[state="Negative => data.inner < 0"]
5 #[transition="Positive => Positive"]
6 #[transition="Negative => Negative"]
7 #[transition="Positive => Negative"]
8 type MyCell = RefCell<Dummy>;

Listing 4.28 [rust] sample declaration of a state machine for a RefCell with two
states and three legal transitions.

Using the declared set of legal state transitions, Prusti can keep track of the
set of potential state transitions throughout the verification of a method body.
Concretely, the precondition defines an initial set of states that the finite state
machine can be in. Then the state can be changed via either direct borrows,
or method calls taking the RefCell as an argument. In the former case, Prusti
can assume the invariants of the set of potential states, exhale the set of current
states, and inhale implications for all states reachable from the current set of
potential states. Listing 4.29 shows the encoding for such a transition based

70 Contents

on the Rust method shown in Listing 4.27. Note that in line 1, the invariant
assumption uses an implication with the current state on the left hand side. This
is not required when the set of potential states is a single state. However, for a
larger set, it is required as Prusti is ignorant on which state could actually be
currently active. This is easily seen when considering another borrow after line 9.
If another mutable borrow occurs within the same method, Prusti is unaware
which state (Positive or Negative) the state machine might be in. On the other
hand, thanks to the invariants in the inhale statements from lines 5 and 6, Viper
will only have a Negative resource. At this point, using two implications similar
to the one in line 1 will ensure that only the invariant of Negative is actually
assumed.

1 assume Positive(cell) ==> dummy.inner > 0 // rely on invariant
2 exhale Positive(cell) // exhale set of current potential states
3

4 // both Positive and Negative are reachable from Positive
5 inhale (dummy.inner > 0) ==> Positive(cell)
6 inhale (dummy.inner < 0) ==> Negative(cell)
7

8 fold Dummy(dummy)
9 apply acc(Dummy(dummy), write) --* acc(canBorrowMut(cell), write)

10 // New set of potential states (Positive + Negative)

Listing 4.29 [viper] encoding of RefCell implicit state transition in Viper.

In the latter case, when calling a method taking the RefCell as an argument,
the transition performed by the method is known, and therefore it is sufficient to
verify that the state set declared in the called method’s precondition is in fact in
the set of current potential states at call-time, and exhale all other potential states.
Prusti’s regular contract handling would then take care of exhaling the state from
the called method’s precondition, and inhale the state from the postcondition. In
the example provided by Listing 4.27, this would imply verifying that Negative
is in the set of potential states at call-time of bar(), and exhaling Positive (as
it is also in the set of potential states at call-time).

Finally, when the end of the method body to be verified is reached, it is enough
to check whether the set of states declared in the postcondition is a subset of the
potential states at the end of the method body. In the example Listing 4.27, the
set of potential current states at the end of the method body is only Negative,
which is also the state declared in foo()’s postcondition. Thus the method would
verify.

4.3. Approaches 71

4.3.5.4 Other RefCell Methods

First and foremost, the borrow() function can be encoded similarly to the
borrow_mut() function, with the only difference being the amount of permissions
to CanBorrowMut it takes in the precondition. It takes only a read permission,
thus ensuring more than a single immutable borrow can occur simultaneously.
However, this still safely prevents a mutable borrow to coexist with an immutable
one, which is desired. The fact that a full write permission to the wrapped data
is returned from borrow() is not problematic, as Rust already ensures that all
code that gets encoded as acting on the immutable borrow does not modify the
value. try_borrow() and try_borrow_mut() are encoded similarly.

The new() method is encoded by an inhale of the RefCell and CanBorrowMut
predicates. The functions take(), replace(), and swap() can all be expressed
in terms of borrow_mut(), and therefore are encoded accordingly. get_mut(),
undo_leak(), and into_inner() do not exhibit interior mutability, and therefore,
similarly to Mutex, can be encoded in a similar fashion to normal Rust functions,
with the exception that they need to assume the invariant of the active state.

Finally, the methods as_ptr(), replace_with(), and try_borrow_unguarded
() are unsupported due to use of raw pointers, closures, and unsafe functions
respectively.

4.3.5.5 RefCells in Other Types

Rust functions taking objects that contain a RefCell also have the opportunity
to modify the value contained in the RefCell during the call. Therefore, it should
be possible to refer to the contained RefCell in the pre- and postconditions. This
is performed using the standard dot notation for field dereferencing from Rust.
Listing 4.30 illustrates this with an example, with the pre- and postconditions
referencing the RefCell contained in container in lines 5 and 6.

1 struct Container {
2 cell: MyCell,
3 }
4

5 #[requires="Positive(container.cell)"]
6 #[ensures="Negative(container.cell)"]
7 fn foo(container: &Container) {
8 // ...
9 }

Listing 4.30 [rust] state transition declarations for RefCells contained within
another type.

72 Contents

4.3.6 Cell

One major difference between Cell and RefCell is that the former never returns
references to its inner value. The only two functions returning the value contained
in the cell (get() and update()) use copy semantics to return the value. Thus
the returned value cannot be used to modify the cell it was returned from. This
implies that the encoding of a Cell’s methods is quite straightforward. Every
function that allows to modify the inner value (set(), replace(), and swap())
can be encoded by an exhale of the predicate encoding the source state, and an
inhale of the destination state encoding. Moreover, the state invariants need to be
asserted to ensure the state transition is respected by the set() function. When
such a function call does not trigger a state change, only the assertions need to
appear in the Viper encoding. Functions querying the contents of the cell, and
returning a copy of the data to the caller can be encoded by an inhale of the
state invariants. The actual encoding of the Cell is solely the state machine
presented in the section on RefCells. Figure 4.6 shows an example encoding of a
client method making basic use of a Cell<Dummy> and the corresponding Viper
encoding.

4.4 Implementation Challenges

The implementation of the presented solution is made relatively simple by design.
However, some challenges are bound to emerge. For instance, the invariants
asserted for the first Mutex encoding, or the state invariants for other encodings,
refer to the contents of the wrapper. However, the identifier used for these
contents are provided by Rust code. Therefore, it is required to either modify
the invariants as required by the location they are used in. Another approach
is to not use the Rust identifier in the Viper encoding for returned references
from the lock()/borrow_mut() functions. Instead, predefined identifiers can be
used. However this might restrict the usage of the wrappers to not accept parallel
acquisition of two locks, or other similar situations. No matter the design choice,
it will require a change in the way identifiers are handled, or a change toward
dynamic encoding of invariants based on call-site information.

Another challenge is error reporting. The designed solutions provide great
flexibility in the verification of programs. However, they also increase the com-
plexity in both usage of Prusti and encoding to Viper. Complex Viper encodings
usually tend to make error reporting more complex as well, as failures in the
verification of the Viper code need to be reported back on Rust source code level.
This mapping back to the original source code can be quite difficult for some of
the designed solutions.

Finally, a challenge introduced to the implementation for the proposed so-
lutions is stability. Prusti cannot ensure the developer enters valid and correct

4.4. Implementation Challenges 73

specifications for every Rust source code. However, it tries to make the spec-
ification of incorrect contracts difficult, as an additional safeguard. Examples
of such safeguards include but are not limited to typechecking of contracts, or
verification of self-framing of pre- and postconditions. Such checks help ensure the
programmer does indeed verify the desired properties. Such checks can be difficult
to implement for some solutions such as the rely/guarantee mechanism for Mutex
and RwLock. For instance, referring back to the example in Section 4.3.3, it is
difficult to ensure the developer does indeed provide a definition of interference
(n >= old(n)) that accurately models a repeated application of the rely condition
(n n+1). Should a developer indeed make the mistake to provide a interference
definition which does not properly model this, it could lead to very confusing
errors or verification of a program specifying a broken the rely/guarantee model.
Reducing such situation to a minimum via safeguards can be very challenging,
even if not necessary for the correct implementation of the designed solution.

74 Contents

1 #[state="Positive => data.inner > 0"]
2 #[state="Negative => data.inner > 0"]
3 type MyCell = Cell<Dummy>;
4

5 pub fn main() {
6 let cell = MyCell::new(Dummy { inner: 42 });
7

8 #[transition="Positive => Negative"]
9 cell.set(Dummy { inner: -10 });

10

11 let mut d = cell.get();
12 assert!(d.inner < 0);
13

14 d.inner = 42;
15 }

1 method main() {
2 var cell: Ref
3 inhale Positive(cell) // new
4

5 var tmp: Ref // set
6 inhale Dummy(tmp)
7 unfold Dummy(tmp)
8 tmp.inner := -10
9

10 exhale Positive(cell) // transition
11 inhale Negative(cell)
12 assert (perm(Positive(cell)) > none) ==> tmp.inner > 0
13 assert (perm(Negative(cell)) > none) ==> tmp.inner < 0
14

15 var d: Ref // get
16 inhale Dummy(d)
17 unfold Dummy(d)
18 assume Positive(cell) ==> d.inner > 0
19 assume Negative(cell) ==> d.inner < 0
20

21 assert d.inner < 0 // assert
22

23 d.inner := 42 // assignment
24 }

Figure 4.6 Sample Viper encoding of a Rust function using a Cell. Rust code at the
top and its Viper encoding below. The Viper code is simplified compared to the actual
code generated by Prusti. The encoding used for Dummy can be seen in Appendix B.

Chapter 5

Contract Derivation

Rust allows to derive some traits. In other words, it allows to annotate custom
types with a #[derive] attribute, which tells the compiler to implement a specified
trait in some standard form on the custom type. In such a case, even though
the compiler provides an implementation for the trait, Prusti is not able to
deal with the trait implementation. The goal of this chapter is to showcase a
solution enabling Prusti to derive a contract for the implementation provided by
the compiler. Moreover, the chapter discusses how traits performing operator
overloading can be handled in a generic fashion.

5.1 Background

As mentioned above, #[derive] attributes can be used to tell the compiler to
implement a standard form of a trait on a custom type. Listing 5.1 shows how
such an attribute can be used to derive the implementation for PartialEq and
Eq on the Dummy type.

1 #[derive(PartialEq, Eq)]
2 struct Dummy {
3 inner: i32,
4 }

Listing 5.1 [rust] example of trait derivation on custom type Dummy.

The documentation of PartialEq [Rust Team, 2020b] states that:

This trait can be used with #[derive]. When derived on structs, two
instances are equal if all fields are equal, and not equal if any fields are
not equal. When derived on enums, each variant is equal to itself and not
equal to the other variants.

Thus, by deriving the trait in Listing 5.1, two instances of Dummy are equal

75

76 Contents

if and only if their inner fields contain equal integers. As a consequence, a
structure can only derive PartialEq if all its fields implement PartialEq, and
similarly for Eq. In other words, the compiler will generate an implementation for
PartialEq::eq() that satisfies the contract defined in the documentation. On
the other hand, as the Eq trait is a marker trait, deriving it does not change the
code generated by the compiler for the implementation of Eq.

Trait derivations are very useful to reduce boilerplate code for standard
implementations of common traits from the standard library. Crates can also
define derivable traits. For instance, Rust’s most used serialization crate serde1

defines the derivable traits Serialize and Deserialize. As of the 23rd of August
2020, the following list of standard library traits were derivable2:

• PartialEq,
• Eq,
• PartialOrd,

• Ord,
• Clone,
• Copy,

• Hash,
• Default,
• Debug.

5.2 Problem Statement

As trait implementations can be derived by the compiler, Prusti should be able
to derive trait contracts. The goal of this chapter is to present a solution on how
the contracts for the traits listed in the previous section can be derived, such that
they provide the strongest possible guarantees for verification.

Contract derivation has several advantages. It reduces the specification effort
for standardized contracts. Standard contracts are actually very common, as
program entities tend to represent a single logical entity at some determined
abstraction level. Furthermore, the very purpose of traits is to provide a common
logical interface that is type agnostic. Therefore it makes sense that most trait
contracts can be standardized on the type they are implemented on.

Second, trait derivation is concise in terms of the required syntax, while
adding considerable functionality to Rust programs. Similarly, providing meaning
through contracts to the derived traits would improve verification without any
additional required specification from the user.

Third, as contract derivation would be performed automatically by Prusti, it
should be less prone to specification errors than manually adjoined contracts.

Furthermore, this chapter discusses operator overloading. In Rust, operator
overloading is performed by implementing specific traits on a type that provide a
function representing the operator. This is connected to the derivation of contracts
for derivable traits, as nearly half of derivable traits from the standard library
actually perform operator overloading.

1https://serde.rs/
2https://doc.rust-lang.org/rust-by-example/trait/derive.html

https://serde.rs/
https://doc.rust-lang.org/rust-by-example/trait/derive.html

5.2. Problem Statement 77

For most operators (with the exception of equality), Prusti ignores the overload
and cannot assume anything on the result of applying an operator on a custom
type. Listing 5.2 shows an example with the “less or equal” operator implemented
via the PartialOrd trait. The function definition in line 9 is used to overload all
comparison operators other than equality. It’s manual implementation simply
returns the ordering between the inner fields. Thus an instance of Dummy is less
or equal to another if its inner field is less or equal to the inner field of the other
instance. Thus, the assertion in line 25 is guaranteed to hold. However, Prusti
does not encode the overload and therefore cannot infer anything on the result of
the comparison between m1 and m2, hence why the verification fails.

1 use std::cmp::Ordering;
2

3 #[derive(PartialEq)]
4 struct Dummy {
5 inner: i32,
6 }
7

8 impl PartialOrd<Dummy> for Dummy {
9 fn partial_cmp(&self, other: &Dummy) -> Option<Ordering> {

10 if self.inner < other.inner {
11 Some(Ordering::Less)
12 } else if self.inner > other.inner {
13 Some(Ordering::Greater)
14 } else {
15 Some(Ordering::Equal)
16 }
17 }
18 }
19

20

21 fn main() {
22 let m1 = Dummy { inner: 42 };
23 let m2 = Dummy { inner: 42 };
24

25 assert!(m1 <= m2); // does not verify!
26 }

Listing 5.2 [7 rust] partial ordering not supported by Prusti. The code does not
verify even though the assertion is guaranteed to hold.

This chapter will also discuss how Prusti can handle such overloads.

78 Contents

5.3 Approaches

The section starts by discussing how Prusti could reason about operator overloads,
and then moves on to presenting the approaches chosen to encode the derived
contracts for traits. As traits from the standard library are the most commonly
derived (see list of traits from Section 5.1), the solutions in this thesis will focus
on them. The approaches for the traits are generally quite different, but the
heuristic guiding the reasoning is rather consistent. Therefore the solution could
be extended to other derivable traits if needed.

5.3.1 Operator Overloading

Prusti already performs operator overloading for the PartialEq trait when it is
derived. In order to encode the overload, it uses Viper domains. Domains allow
the declaration of new types with attached functions and axioms. Domains are
fully abstract, in that their functions have no body or preconditions, and their
behavior is only defined via the domain axioms. An example declaration for a
domain is shown in Listing 5.3, taken from the Viper tutorial.

1 domain MyDomain {
2 function foo(): Int
3 function bar(x: Bool): Bool
4

5 axiom axFoo { foo() > 0 }
6 axiom axBar { bar(true) }
7 axiom axFoobar { bar(false) ==> foo() == 3 }
8 }

Listing 5.3 [viper] example declaration for Viper domains, taken from the Viper
tutorial.

Prusti uses such domains in order to express equality between custom types. It
achieves this by creating a bijection between the type’s Viper encoding, and a so
called “snapshot” of the type, expressed as a domain. The snapshots have several
advantages over regular type encodings. First, they can be returned from Viper
functions, allowing for more flexibility in the usage of custom types in relation
to functions. Second, comparing equality of snapshots compares the snapshots
themselves, whereas comparing references checks whether they point to the same
object. Listing 5.4 shows an encoding of a type and its domain.

5.3. Approaches 79

1 field inner: Int
2

3 predicate Dummy(self: Ref) {
4 acc(self.inner, write)
5 }
6

7 domain SnapDummy {
8 function consDummy(i: Int): SnapDummy
9

10 axiom SnapDummyInjectivity {
11 forall i1: Int, i2: Int ::
12 { consDummy(i1), consDummy(i2) }
13 consDummy(i1) == consDummy(i2) ==> (i1 == i2)
14 }
15

16 axiom SnapDummySurjectivity {
17 forall s: SnapDummy :: (
18 (forall i: Int :: {consDummy(i)}
19 s != consDummy(i)) ==> false
20)
21 }
22 }
23

24 function snapDummy(self: Ref): SnapDummy
25 requires acc(Dummy(self), read())
26 {
27 unfolding acc(Dummy(self), read()) in
28 consDummy(self.inner)
29 }

Listing 5.4 [viper] example encoding of a type’s snapshot for a Dummy type with
declaration Dummy { inner: i32 } when PartialEq is derived.

80 Contents

Note that the snippet defines an injective and surjective property between
the snapshot of Dummy and its internal integer in lines 10 and 16. These allow to
create a bijective mapping between the wrapped integer and the wrapping Dummy,
enabling to consider the Dummy equal if the wrapped integers are equal. Finally,
line 24 declares a constructor to build a snapshot from the normal Viper encoding
of Dummy. This allows to create snapshots from an object any time one is needed.

To illustrate our approach to operator overloading, we will use PartialOrd
from Listing 5.2. In said case, a domain function is used to encode the behav-
ior of partial_cmp(). Axioms are used to provide the domain function with
meaning. The axioms’ bodies is determined by the implementation of PartialOrd
::partial_cmp(). Listing 5.5 shows the additional domain function with a set
of axioms.

1 domain SnapDummy {
2 function cmp(a: SnapDummy, b: SnapDummy): Int
3

4 axiom SnapDummyCmpGT {
5 forall i1: Int, i2: Int ::
6 { consDummy(i1),consDummy(i2) }
7 (i1 > i2) ==> (cmp(consDummy(i1), consDummy(i2)) == 1)
8 }
9

10 axiom SnapDummyCmpLT {
11 forall i1: Int, i2: Int ::
12 { consDummy(i1),consDummy(i2) }
13 (i1 < i2) ==> (cmp(consDummy(i1), consDummy(i2)) == -1)
14 }
15

16 axiom SnapDummyCmpEq {
17 forall i1: Int, i2: Int ::
18 { consDummy(i1),consDummy(i2) }
19 (i1 == i2) ==> (cmp(consDummy(i1), consDummy(i2)) == 0)
20 }
21 }

Listing 5.5 [viper] Viper encoding of partial_cmp() function of PartialOrd
trait on Dummy. See Listing 5.4 for consDummy() definition.

For simplicity, the encoding ignores the Option<T> wrapping the result, and
encodes the Ordering as an integer. Concretely, -1, 0, and 1 encode Ordering::
Less, Ordering::Equal, and Ordering::Greater respectively.

It is worth noting that encoding Rust’s operators as abstract domain functions

5.3. Approaches 81

with axioms which reflects the implementations of the operators is nearly identical
to simply implementing a normal Viper function with the same code. While
this is absolutely true in some cases, the domain approach provides a more
flexible encoding for future improvements. For instance, domains can be used
with universal quantifiers (forall), making the expression of properties on the
snapshot much simpler than on Viper predicates. For instance, Section 6.1.3 from
Chapter 6, proposes better support for universal quantification on custom types
to allow expressing invariants such as the one shown in Listing 5.6 below. When
encoding equality in a domain, such an invariant can be expressed by a domain
axiom without much effort. This would not be the case when encoding equality
directly as a standard Viper function.

1 #[invariant="forall a: Self :: {<trigger>} a == a"]
2 pub trait Eq: PartialEq<Self> {}

Listing 5.6 [rust] true contract to express reflexivity of equality relation on Eq trait.
The trigger is left parametrized.

Furthermore, the domain approach allows to consolidate the approach for all
operator overloads. For instance, regular functions cannot return references, but
are allowed to return domain instances. Therefore operators returning custom
types, such as the addition operator, require an encoding based on domains to
enable overloading.

Nevertheless, the presented approach has a couple drawbacks. First and
foremost, axioms are expressed as Viper expressions not reading any program
state. However, not all Rust code can be expressed as such expressions. Therefore,
some implementations of operators might not be directly translatable to an axiom.
For instance, any operator performing some caching for performance could be
problematic. In this case, a workaround would be to not encode the caching in
Viper, as it does not contribute to the externally visible logic of the operator.
However, when considering manual implementations of operators, extracting only
the logic from the implementation can be extremely challenging. Furthermore,
even if the code contains only logic, encoding it can be non-trivial. For instance,
the axioms presented in Listing 5.5 are difficult to automatically infer from the
implementation in Listing 5.2. Secondly, many operators are currently simply not
encoded to Viper by Prusti. Adding an encoding, while allowing more thorough
verification, affects performance. From the few test performed by the author, the
performance impact of adding such encodings is not very significant. However,
this was only tested on synthetic examples, and Rust code making extensive use of
operator overloading might be heavily affected by this added encoding. Moreover,
performance is heavily dependent on the type of operator. Encoding operators
such as addition, which return a new snapshot, seemed to lead to significant
performance drops in verification.

82 Contents

Having covered how operator overloading can be handled soundly in Prusti,
contract derivation is discussed.

5.3.2 PartialEq<Rhs>

As previously mentioned, Prusti currently supports deriving the contract for
PartialEq. However, it is supported only in very specific cases. Indeed, Prusti
can derive the contract for PartialEq only if the implementation is derived, and
all transitively contained types of the structure also implement PartialEq via
derivation. As soon as any (directly or transitively) contained type implements
PartialEq manually, the contract can no longer be derived. This is caused by
the fact that Prusti simply encodes manual implementations of PartialEq as any
regular trait implementation, but does not infer the link between the operator and
the defined eq() function. Moreover, the problem with manual implementations
is that they might not implement a total equality, and therefore a snapshot
instance might not be logically equal to itself. Yet, this is a required to uphold
the mathematical property that x = y implies f(x) = f(y) for a pure function
f . As this property is used in the bijection between domain instances and the
Cartesian product of their fields, equality between snapshots cannot be used to
encode PartialEq for manual implementation. An example of a valid manual
implementation of PartialEq that is not a total equality can be seen in Listing 5.7.
It implements transitivity and symmetry.

1 struct OtherDummy {
2 d1: i32,
3 d2: i32,
4 }
5

6 impl PartialEq<OtherDummy> for OtherDummy {
7 fn eq(&self, other: &OtherDummy) -> bool {
8 self.d1 != self.d2 &&
9 other.d1 != other.d2 &&

10 self.d1 == other.d1
11 }
12 }

Listing 5.7 [rust] partial equality manual implementation.

In order to handle such cases for normal operator overloading, we introduce a
new domain function. This new function encodes equality between two snapshots
as expressed in the manual implementation of PartialEq. In other words, when
PartialEq is not derived but manually implemented, we extract an expression
from the trait method’s body and use it in the domain’s encoding to express the

5.3. Approaches 83

new domain function’s meaning (within an axiom). The encoding of Listing 5.7
can be seen in Listing 5.8. The axiom in line 5 reflects the Rust implementation
of eq() from Listing 5.7. Then, when encoding any == operator as a call to
equalsOtherDummy(), it enables the verification of code whose behavior relies
on a manual implementation of PartialEq. The consOtherDummy() function is
omitted for brevity, but is analogous to the definition of consDummy() in Listing 5.4,
but with two parameters for both wrapped integers.

1 domain SnapOtherDummy {
2 // ...
3 function eq(a: SnapOtherDummy, b: SnapOtherDummy): Bool
4

5 axiom SnapOtherDummyEquality {
6 forall i1: Int, j1: Int, i2: Int, j2: Int ::
7 { consOtherDummy(i1, j1),consOtherDummy(i2, j2) }
8 eq(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) <==> (
9 (i1 != j1) && (i2 != j2) && (i1 == i2))

10 }
11 }
12

13 function equalsOtherDummy(self: Ref, other: Ref): Bool
14 requires acc(OtherDummy(self), read())
15 requires acc(OtherDummy(other), read())
16 {
17 eq(snapOtherDummy(self),snapOtherDummy(other))
18 }

Listing 5.8 [viper] encoding of abstract eq() domain function, including the axiom
giving it meaning, and a regular function to be called on references.

Returning to contract derivation, the current implementation could be changed
to derive a contract making use of the eq() domain function, for consistency. In
this case, the body of the axiom in line 5 would need to be modified to have the
conjunction of calls to eq() between all respective fields on the right hand side
of the biconditional. This is important because using equality between domains
would no longer be sound when deriving a PartialEq trait, as a field might
manually implement a partial equality.

84 Contents

5.3.3 Eq

Contract derivation for Eq3 is straightforward considering the newly introduced
trait invariants. In fact, any marker trait can only be annotated with a trait
invariant, and hence there is never any work to do when deriving the trait. The
trait invariant will always be applied to any type implementing the trait, whether
via normal implementation, derivation, or blanket implementation. This solution
does however assume, that the standard library defines a valid trait invariant on
the Eq trait, or that the contract is somehow injected.

5.3.4 PartialOrd<Rhs>

The PartialOrd documentation4 states:

This trait can be used with #[derive]. When derived on structs, it will
produce a lexicographic ordering based on the top-to-bottom declaration
order of the struct’s members. When derived on enums, variants are
ordered by their top-to-bottom declaration order.

Deriving a contract adhering to the documentation is quite feasible. It essen-
tially comes down to deriving the bodies of the axioms declared in Listing 5.5.
Deriving the bodies for a lexicographic ordering can be done via a naive heuristic.
For instance, the body of the axiom encoding equality is simply the conjunction of
the equalities among all fields. Finally, the other two axiom bodies can be obtained
by a disjunction of comparisons. Listing 5.9 illustrates this for a OtherDummy type
with two integer fields.

It is important to note that Listing 5.9 shows comparisons using operators
in the axiom bodies. This would however be done via the domain functions if a
field would be a non-primitive type. The domain function for the field type is
guaranteed to exist, as the field needs to implement PartialOrd as well, lest the
Rust compiler would reject the trait derivation.

5.3.5 Ord

The standard implementation of PartialOrd provides a total ordering. There-
fore the contract for Ord::cmp()5 is essentially the same as for PartialOrd::
partialcmp(). In fact, removing the Option<T> wrapper from the result is the
only required change to obtain the correct cmp() contract.

However, additional axioms can be added that some additional correctness
properties are upheld. These are not necessary for sound verification, but would

3https://doc.rust-lang.org/std/cmp/trait.Eq.html
4https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#derivable
5https://doc.rust-lang.org/std/cmp/trait.Ord.html

https://doc.rust-lang.org/std/cmp/trait.Eq.html
https://doc.rust-lang.org/std/cmp/trait.PartialOrd.html#derivable
https://doc.rust-lang.org/std/cmp/trait.Ord.html

5.3. Approaches 85

1 axiom SnapOtherDummyCmpGT {
2 forall i1: Int, j1: Int, i2: Int, j2: Int ::
3 { consOtherDummy(i1, j1),consOtherDummy(i2, j2) }
4 (i1 > i2 || (i1 == i2 && j1 > j2)) ==>
5 (cmp(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) == 1)
6 }
7

8 axiom SnapOtherDummyCmpLT {
9 forall i1: Int, j1: Int, i2: Int, j2: Int ::

10 { consOtherDummy(i1, j1),consOtherDummy(i2, j2) }
11 (i1 < i2 || (i1 == i2 && j1 < j2)) ==>
12 (cmp(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) == -1)
13 }
14

15 axiom SnapOtherDummyCmpEq {
16 forall i1: Int, j1: Int, i2: Int, j2: Int ::
17 { consOtherDummy(i1, j1),consOtherDummy(i2, j2) }
18 (i1 == i2 && j1 == j2) ==>
19 (cmp(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) == 0)
20 }

Listing 5.9 [viper] axioms representing the lexicographic ordering for the cmp()
domain function. This is based on the OtherDummy type with two integer fields defined
in Listing 5.7.

help reduce errors on manual implementation of PartialEq, PartialOrd, or Ord.
For instance, the documentation of Ord [Rust Team, 2020a] states that:

Implementations of PartialEq, PartialOrd, and Ord must agree with
each other. That is, a.cmp(b) == Ordering::Equal if and only if a ==
b and Some(a.cmp(b)) == a.partial_cmp(b) for all a and b. It’s easy

to accidentally make them disagree by deriving some of the traits and
manually implementing others.

This can be ensured using additional axioms relating the cmp() and eq()
domain functions. For instance, Listing 5.10 presents an axiom ensuring a.cmp(b)
== Ordering::Equal if and only if a == b. Again, for simplicity the Option<T>

is omitted, therefore cmp() actually Ord::cmp() quite accurately, instead of
PartialOrd::partial_cmp(). Note that such axioms have nothing to do with
contract derivation of Ord itself. They simply ensure their proper usage when
some of the comparison traits are manually implemented.

86 Contents

1 axiom SnapOtherDummyEqCmpConform {
2 forall i1: Int, j1: Int, i2: Int, j2: Int ::
3 { consOtherDummy(i1, j1),consOtherDummy(i2, j2) }
4 eq(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) <==>
5 (cmp(consOtherDummy(i1, j1), consOtherDummy(i2, j2)) == 0)
6 }

Listing 5.10 [viper] example axiom ensuring conformity between implementations
of PartialEq, PartialOrd, and Ord.

5.3.6 Default

The derived contract for Default6 can be built recursively from the Default
contracts of the fields. Any standard library type implementing Default can have
a properly defined contract on what value is returned, as the implementation is
known. Moreover, custom types that manually implemented Default can choose
to define a contract. Thus, by using the combination of these contracts in the
derived contract, no guarantees are provided on custom types without a contract,
but every other field of the type deriving Default is known to guarantee their own
Default contract. Whether the standard library contracts are injected directly
via the derivation mechanism via some lookup, or via a separate process handling
the injection of contracts to non-annotated code is implementation specific.

For instance consider Listing 5.11. It declares a DummyWrapper with two fields,
a f32 floating pointer number, which defaults to zero, and a Dummy, which defines
a custom contract.

Using the contract from the standard library and the custom contract, a very
precise contract can be provided for Default. The derived contract for Listing 5.11
is illustrated in Listing 5.12.

5.3.7 Clone

Defining a contract for Clone7 can be more complex than expected. It is commonly
understood for a clone to be a duplicated object, hence having a different raw
address in memory, that is equal to the original object. The former property is
guaranteed by Rust and is easily verifiable. Rust guarantees that even empty
types effectively point to different memory locations when cloned. The latter
property is problematic, as there is no guarantee that fields of a clonable type are
comparable. This makes reasoning about cloning on a formal level quite difficult,
as the only property that can be assumed about the type is that its every field

6https://doc.rust-lang.org/std/default/trait.Default.html
7https://doc.rust-lang.org/std/clone/trait.Clone.html

https://doc.rust-lang.org/std/default/trait.Default.html
https://doc.rust-lang.org/std/clone/trait.Clone.html

5.3. Approaches 87

1 struct Dummy {
2 inner: i32,
3 }
4

5 impl Default for Dummy {
6 #[ensures="result.inner == 1"]
7 fn default() -> Dummy {
8 Dummy { inner: 1 }
9 }

10 }
11

12 #[derive(Default)]
13 struct DummyWrapper {
14 field1: f32,
15 dummy: Dummy
16 }

Listing 5.11 [rust] example for contract generation for Default trait.

1 impl Default for DummyWrapper {
2 #[ensures="result.field1 == 0.0"]
3 #[ensures="result.dummy.inner == 1"]
4 fn default() -> DummyWrapper { ... }
5 }

Listing 5.12 [rust] sample contract for derived Default trait from Listing 5.11.

defines a clone() method.

In order to argue about equality of fields for the type implementing Clone, Eq
will need to be considered. The different cases are:

1. If the type itself implements Eq, then it becomes trivial to ensure that the
cloned object is equal to the original one in clone()’s postcondition. This
postcondition is type agnostic (i.e. its formulation does not depend on
the structure of the type implementing Clone), and thus a static contract
expressing that the result must be equal to the argument can be used and
automatically added.

2. If the type itself does not implement Eq, it might still be derivable. This
would allow to ensure that all fields of a cloned instance are equal to the
original instance. However, it is worth noting that this will not imply that
the cloned instance itself would be equal to the original, PartialEq might

88 Contents

have been manually implemented on the type with a partial equality.
3. Finally, consider the fields individually. The field’s type implements Clone

either via the standard library, via a #[derive] clause, or via manual
implementation. In this case, the same reasoning as for Default from
Section 5.3.6 can be applied. In other words, for each field, if the field
implements Clone in the standard library, a predetermined contract for it is
used. In the case the field derived Clone, the derived contract for the field
is used. Finally, if the field implements Clone manually, the given contract
is used if it was provided, otherwise no contract is used for the field. If no
contract is used there is simply no guarantee on the state of the field is
provided by the derived contract for the type under consideration.

A sound approach would thus be to check which of these scenarios applies
in order. On the first matching scenario, a contract for Clone::clone() could
be derived as explained. As the last scenario is always applicable, every custom
type would get a derived contract. Nonetheless, the strength of the guarantees
provided by the contract is dependent on what additional properties the type or
its fields provide (such as implementing Eq).

5.3.8 Copy

The Copy8 trait is a marker trait signifying that instances can be duplicated by
simply copying bits. This has important implications for Rust, as it determines
whether move or copy semantics apply to a type. It also affects verification in that
functions taking an object by value consume that object unless the object’s type
is Copy. Thus, unless Copy is implemented, they have a side-effect and cannot be
considered pure. Whether allowing such functions to be declared as pure actually
creates problems within Prusti is uncertain. Indeed, Prusti typechecks contracts
in a way that already guarantees that the pre- and postconditions as a whole
behave according to Rust’s type system. This includes that an object cannot
be captured twice in a single postcondition for example. In fact, the author did
not find a single way to use object capturing to break verification. However,
this is likely partially due to the currently limited support for concurrency in
Prusti. Therefore, as no formal proof is defined to demonstrate that allowing pure
function to capture objects is safe, it should be disallowed.

Prusti can be adapted to prohibit pure functions taking arguments by value,
if the types of these arguments don’t all implement Copy. Note that this is fully
unrelated to the derivation of the Copy trait itself. In fact, as Copy is a marker
trait, its contract would be defined by a trait invariant, thus making it trivial to
derive, and similar to Eq.

8https://doc.rust-lang.org/std/marker/trait.Copy.html

https://doc.rust-lang.org/std/marker/trait.Copy.html

5.4. Summary and Shortcomings 89

5.3.9 Hash

A solution for the Hash9 trait will not be presented in this thesis. This is due
to the nature of Rust’s hash() function. Said function takes a reference to the
receiver object which is to be hashed, and a mutable reference to a stateful hasher
which will aggregate all hashes it was used to generate. Ideally, one would like
to reason about the fact that a hash is a function which is fully deterministic on
input. However, this is made difficult by Rust’s design for hashing. Concretely,
one would need to somehow express that the state change of the hasher is the same
for two hash() calls taking the same state of the receiver object and the same
state of the hasher. The issue about reasoning in such a way is twofold. First,
reasoning abstractly about state changes is difficult, unless the type is handled in
a special way by Prusti. Second, the actual type of the hasher is unknown when
deriving the Hash trait, as the hash() function takes a generic parameter bound
by the Hasher trait instead of a concrete type.

Moreover, the main benefit of using the information about how hashes behave
is to verify more properties about data structures using hashing such as hashmaps.
It is however much simpler to directly treat standard library data structures using
hashing internally in a special way by Prusti. For instance, getting the value for
equal keys on an immutable hashmap should always return the same value. Such
a property is easier to directly encode on the HashMap::get()10 function. In fact,
it is enough to treat get() as a pure function to ensure this property. Thus, the
most common use-cases of hash() can be covered using more elegant solutions
then by providing a complex new mechanism to reason about hash().

5.4 Summary and Shortcomings

This chapter presented a new way to encode operator overloads and how contracts
can be derived for derivable traits. The section on operator overloading focused
on very few traits, but its heuristic can be applied to any additional operators.
The solution was designed with flexibility for extension in mind. This comes at
the cost of a restriction on the implementation of operators, and performance.
Indeed, due to the domain encoding of operators, their implementation needs to
be “pure”, in that it is deterministic and side-effect free.

The section focusing of contract derivation introduced different approaches to
derive contracts for most derivable standard library traits. Such contract derivation
provides significant advantage to the simplicity and verification strength of Prusti.

9https://doc.rust-lang.org/std/collections/struct.HashMap.html
10https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.get

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.get

90 Contents

Chapter 6

Conclusion

This thesis has addressed the handling of unsafe traits and interior mutability.
It has provided a way to reason about marker traits, provide specifications for
intrinsic properties of traits, or implicit properties of types implementing the
traits. Moreover, it presented a way to reduce the unsafety from using unsafe
traits. Thus it contributed to making unsafe Rust safe.

On top of that, it provided a way to reason modularly about interior mutable
objects. Using a rely/guarantee mechanism, it showed how concurrent data
accesses in Rust can be represented and modelled in Viper. Furthermore, the
state machine backed encoding for thread-unsafe wrappers to UnsafeCell allows
for arbitrarily fine-grained specification of both state and transitions of the
wrapper. This improves the verification capabilities of Prusti for any program
using these data structures, in spite of their interior mutable nature.

Finally, the thesis also presented how operator overloading can be handled
via Viper domain encodings, and how those domain encodings can be used to
express additional hyperproperties on the type snapshots they encode. Moreover,
solutions were presented on how contracts can be derived for the majority of
Rust’s standard library derivable traits.

6.1 Future Work

This section presents opportunities for future work.

6.1.1 Atomic Types and Other Wrappers

This thesis did not address all interior mutable types. The Rust standard library
defines a few more, less used, types which exhibit interior mutability. For instance,
most primitive Rust types (such as usize1) have atomic counterparts (such as
AtomicUsize2). These atomic types all exhibit interior mutability. They are less

1https://doc.rust-lang.org/std/primitive.usize.html
2https://doc.rust-lang.org/std/sync/atomic/struct.AtomicUsize.html

91

https://doc.rust-lang.org/std/primitive.usize.html
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicUsize.html

92 Contents

used than the wrappers subject to this thesis, but are used in many other types
internally (e.g. Arc3). Whether types using the atomic type should be handled
separately in Prusti is subject to further discussion, but being able to handle
atomic types by themselves is surely useful to enable additional verification of
user defined types containing atomics. The verification of these types is made
complex due to the control over the memory ordering4 the developer has when
using these types. Therefore the verification, in all likelihood, would need to
consider different orderings to make the verification sound.

6.1.2 Proper Concurrency Support

The solutions presented in this thesis have some shortcomings, due to the lack
of support for some features in Prusti. One of these deficiencies in Prusti is the
lack of support for useful concurrency. This includes support for closures, and
fork/join semantics. As of now, this missing support makes the presented solution
for Mutex and RwLock not very useful in practice, simply because their use in
sequential code is extremely limited. However, both support for closures and
concurrency are currently being implemented.

6.1.3 Improved Support for Universal Quantification in Invari-
ants for Hyperproperties

Many invariants, both on traits and types, use quantified expressions. Currently,
only primitive Rust types that have a direct mapping to Viper types (such
as usize) can be used in quantified expressions. This drastically restricts the
expressiveness of Prusti contracts, as it makes the verbalization of relations
between instances of custom types nearly impossible. For instance, the trait
invariant for Eq presented in Listing 3.6 is valid, yet a quantified expression such
as the one shown in Listing 6.1 would be more adequate.

1 #[invariant="forall a: Self :: {<trigger>} a == a"]
2 pub trait Eq: PartialEq<Self> {}

Listing 6.1 [rust] true contract to express reflexivity of equality relation on Eq trait.
The trigger is left parametrized.

Similarly, some contracts cannot be expressed without the support for such
quantified invariants. An example is the intrinsic relation between the eq() and
ne() methods of the PartialEq<T> trait. The documentation states that:

3https://doc.rust-lang.org/std/?search=Arc
4https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html

https://doc.rust-lang.org/std/?search=Arc
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html

6.1. Future Work 93

Any manual implementation of ne must respect the rule that eq is a strict
inverse of ne; that is, !(a == b) if and only if a != b.

Trait invariants would support the specification of such properties to ensure
the manual implementation of the ne() method matches the documented behavior.
However, this is not expressible without broader support for quantified expressions.
Listing 6.2 illustrates the simplicity of the contracts, should this support be added.

1 #[invariant="
2 forall a: Self, b: Rhs :: {<trigger>} !(a == b) == (a != b)
3 "]
4 pub trait PartialEq<Rhs: ?Sized = Self> {
5 fn eq(&self, other: &Rhs) -> bool;
6

7 fn ne(&self, other: &Rhs) -> bool {
8 !self.eq(other)
9 }

10 }

Listing 6.2 [rust] contract to express intrinsic relation between eq() and ne()
methods of the PartialEq<T> trait. The trigger is left parametrized.

Similarly, symmetry and transitivity could be defined for the PartialEq<T>
trait.

Viper domains, as mentioned in previous chapters, would be a great fit to
encode such properties, as they can be used in universal quantification in Viper. A
precursor to this work was already shown in Section 5.3.5 with the introduction of
axioms to ensure consistent implementations of PartialEq, PartialOrd, and Ord.
However, the extent to which this approach is useful with respect to the variety
of properties that can be encoded with axioms using such universal quantification
over the domain was not investigated in this thesis and would present a great
opportunity for future work.

6.1.4 Unsafe Code

The ultimate goal for the verification of Rust would be the complete support for
verification of unsafe Rust code. Unsafe Rust is generally difficult to reason about,
and very prone to complex errors. Software verification is mostly useful in places
where bugs are likely to occur, as it is relatively costly to perform, and therefore
overkill for parts of the code that are very simple, or where extensive testing
can easily be performed. This makes verification of unsafe Rust very desirable.
However, as the guarantees provided by unsafe Rust are approximately equivalent

94 Contents

to regular C++, such verification is extremely difficult. Nevertheless, there are
bound to be ways to encapsulate unsafe Rust to a larger extent, and reduce the
risk attached to it. For instance, unsafe blocks not performing pointer arithmetic
and dereferencing still have quite strong safety guarantees. Moreover, many
unsafe code blocks are simply used to call standard library unsafe functions,
which can potentially be abstractly modelled in such a way to make reasoning
about their behavior somewhat useful for verification.

Bibliography

[Apt et al., 2009] Apt, K. R., de Boer, F. S., and Olderog, E.-R. (2009). Verifi-
cation of Sequential and Concurrent Programs, page 3. Springer-Verlag, third
edition. Citation on page 11

[Astrauskas et al., 2020] Astrauskas, V., Matheja, C., Poli, F., Müller, P., and
Summers, A. J. (2020). How do programmers use unsafe rust? Preprint.
Citation on page 21, 22

[Astrauskas et al., 2019] Astrauskas, V., Müller, P., Poli, F., and Summers, A. J.
(2019). Leveraging rust types for modular specification and verification. In
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), volume 3, pages 147:1–147:30. ACM. Citation on page 1, 12

[Blandy and Orendorff, 2017] Blandy, J. and Orendorff, J. (2017). Programming
Rust: Fast, Safe Systems Development. O’Reilly Media, first edition. Citation
on page 2, 7

[Bornat, 2000] Bornat, R. (2000). Proving pointer programs in hoare logic. In
Backhouse, R. and Oliveira, J. N., editors, Mathematics of Program Construc-
tion, pages 102–126, Berlin, Heidelberg. Springer. Citation on page 11

[Brookes and O’Hearn, 2016] Brookes, S. and O’Hearn, P. W. (2016). Concurrent
separation logic. ACM SIGLOG News, 3(3):47–65. Citation on page 45

[Dinsdale-Young et al., 2010] Dinsdale-Young, T., Dodds, M., Gardner, P.,
Parkinson, M. J., and Vafeiadis, V. (2010). Concurrent abstract predicates.
In D’Hondt, T., editor, ECOOP 2010 - Object-Oriented Programming, 24th
European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, volume
6183 of Lecture Notes in Computer Science, pages 504–528. Springer. Citation
on page 45, 46, 47

[Erdin, 2019] Erdin, M. (2019). Verification of rust generics, typestates, and
traits. Master’s thesis, Federal Institute of Technology (ETH) Zürich, Zürich,
Switzerland. Citation on page 31

[Evans et al., 2020] Evans, A. N., Campbell, B., and Soffa, M. L. (2020). Is rust
used safely by software developers? CoRR, abs/2007.00752. Citation on page
10, 21, 22

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580. Citation on page 11

95

96 Bibliography

[Jasper et al., 2020] Jasper, M., Klabnik, S., Scheel, R., and Huss, E. (2020). The
Rust Reference, chapter 10.4 Interior Mutability. Accessed 2020-05-19: https:
//doc.rust-lang.org/reference/interior-mutability.html. Citation on
page 37

[Klabnik and Beingessner, 2020a] Klabnik, S. and Beingessner, A. (2020a). The
Rustonomicon, The Dark Arts of Unsafe Rust, chapter 1.2 What Un-
safe Can Do. Accessed 2020-05-19: https://doc.rust-lang.org/nomicon/
what-unsafe-does.html. Citation on page 10

[Klabnik and Beingessner, 2020b] Klabnik, S. and Beingessner, A. (2020b). The
Rustonomicon, The Dark Arts of Unsafe Rust, chapter 1.1 How Safe and
Unsafe Interact. Accessed 2020-08-07: https://doc.rust-lang.org/nomicon/
safe-unsafe-meaning.html. Citation on page 20

[Klabnik and Nichols, 2020] Klabnik, S. and Nichols, C. (2020). The Rust
Programming Language, chapter 4.2 References and Borrowing. No Starch
Press. Accessed 2020-05-14: https://doc.rust-lang.org/stable/book/
ch04-02-references-and-borrowing.html. Citation on page 7

[Leino et al., 2009] Leino, K. R. M., Müller, P., and Smans, J. (2009). Verifi-
cation of concurrent programs with chalice. In Aldini, A., Barthe, G., and
Gorrieri, R., editors, Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of Lecture Notes in Computer
Science, pages 195–222. Springer. Citation on page 44

[Loeckx and Sieber, 1987] Loeckx, J. and Sieber, K. (1987). The Foundations
of Program Verification, chapter 6. Vieweg+Teubner Verlag, second edition.
Citation on page 11

[Müller et al., 2016] Müller, P., Schwerhoff, M., and Summers, A. J. (2016). Viper:
A verification infrastructure for permission-based reasoning. In Jobstmann,
B. and Leino, K. R. M., editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag.
Citation on page 15

[O’Hearn, 2007] O’Hearn, P. W. (2007). Resources, concurrency, and local rea-
soning. Theor. Comput. Sci., 375(1-3):271–307. Citation on page 45

[Owicki and Gries, 1976] Owicki, S. S. and Gries, D. (1976). An axiomatic proof
technique for parallel programs I. Acta Informatica, 6:319–340. Citation on
page 57

[O’Hearn et al., 2001] O’Hearn, P., Reynolds, J., and Yang, H. (2001). Local
reasoning about programs that alter data structures. In Fribourg, L., editor,
Computer Science Logic. CSL 2001. Lecture Notes in Computer Science, volume
2142, pages 1–19, Berlin, Heidelberg. Springer. Citation on page 11

https://doc.rust-lang.org/reference/interior-mutability.html
https://doc.rust-lang.org/reference/interior-mutability.html
https://doc.rust-lang.org/nomicon/what-unsafe-does.html
https://doc.rust-lang.org/nomicon/what-unsafe-does.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doc.rust-lang.org/stable/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/stable/book/ch04-02-references-and-borrowing.html

Bibliography 97

[Qin et al., 2020] Qin, B., Chen, Y., Yu, Z., Song, L., and Zhang, Y. (2020).
Understanding memory and thread safety practices and issues in real-world
rust programs. In Donaldson, A. F. and Torlak, E., editors, Proceedings of
the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
763–779. ACM. Citation on page 21, 44

[Reynolds, 2002] Reynolds, J. C. (2002). Separation logic: A logic for shared
mutable data structures. In 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings,
pages 55–74. IEEE Computer Society. Citation on page 45

[Rust Team, 2020a] Rust Team (2020a). Trait std::cmp::Ord. Ac-
cessed 2020-09-04: https://doc.rust-lang.org/std/cmp/trait.Ord.html#
how-can-i-implement-ord. Citation on page 85

[Rust Team, 2020b] Rust Team (2020b). Trait std::cmp::PartialEq. Accessed
2020-09-04: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#
derivable. Citation on page 75

[Rust Team, 2020c] Rust Team (2020c). Trait std::iter::Iterator. Accessed
2020-09-04: https://doc.rust-lang.org/std/iter/trait.Iterator.html.
Citation on page 30

[Rust Team, 2020d] Rust Team (2020d). Trait std::iter::TrustedLen
. Accessed 2020-09-04: https://doc.rust-lang.org/std/iter/trait.
TrustedLen.html. Citation on page 30

[Smans et al., 2009] Smans, J., Jacobs, B., and Piessens, F. (2009). Implicit
dynamic frames: Combining dynamic frames and separation logic. In
Drossopoulou, S., editor, European Conference on Object-Oriented Program-
ming, pages 148–172, Berlin, Heidelberg. Springer. Citation on page 15

[Vafeiadis, 2008] Vafeiadis, V. (2008). Modular fine-grained concurrency verifica-
tion. Technical Report UCAM-CL-TR-726, University of Cambridge, Computer
Laboratory. Citation on page 57

[Williams and Rust Team, 2020] Williams, A. and Rust Team (2020). Rust. Ac-
cessed 2020-09-04: https://www.rust-lang.org/. Citation on page 1, 7

https://doc.rust-lang.org/std/cmp/trait.Ord.html#how-can-i-implement-ord
https://doc.rust-lang.org/std/cmp/trait.Ord.html#how-can-i-implement-ord
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#derivable
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#derivable
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
https://doc.rust-lang.org/std/iter/trait.TrustedLen.html
https://www.rust-lang.org/

98 Bibliography

Appendix A

Unmodified Listings for Prusti
Example

Listing A.1 shows the original Rust program generated by Prusti from Listing 2.5.
Note that Prusti also generates a program file for typechecking. That file is
omitted here.

1 #![feature(custom_attribute)]
2 #![allow(dead_code)]
3 extern crate prusti_contracts;
4 #[pure]
5 #[ensures = "result >= a && result >= b"]
6 #[ensures = "result == a || result == b"]
7 #[__PRUSTI_SPEC = r#"101"#]
8 fn max(a: i32, b: i32) -> i32 { if a < b { b } else { a } }
9 #[__PRUSTI_SPEC_ONLY = r#"101"#]

10 #[allow(unused_mut)]
11 #[allow(dead_code)]
12 #[allow(non_snake_case)]
13 #[allow(unused_imports)]
14 #[allow(unused_variables)]
15 fn max__spec() -> () {
16 #[__PRUSTI_SPEC_ONLY = r#"101"#]
17 fn max__spec__pre(a: i32, b: i32) -> () { }
18 #[__PRUSTI_SPEC_ONLY = r#"101"#]
19 fn max__spec__post(a: i32, b: i32, result: i32) -> () {
20 #[allow(unused_imports)]
21 use prusti_contracts::internal::*;
22

23 #[__PRUSTI_EXPR_ID = r#"101"#]
24 #[pure]
25 || -> bool { result >= a };
26

A-1

A-2 Bibliography

27 #[__PRUSTI_EXPR_ID = r#"102"#]
28 #[pure]
29 || -> bool { result >= b };
30

31 #[__PRUSTI_EXPR_ID = r#"103"#]
32 #[pure]
33 || -> bool { result == a || result == b };
34 }
35 }
36 #[invariant = "self.d1 == self.d2"]
37 #[__PRUSTI_SPEC = r#"102"#]
38 struct Dummy {
39 d1: i32,
40 d2: i32,
41 }
42 impl Dummy {
43 #[__PRUSTI_SPEC_ONLY = r#"102"#]
44 #[allow(unused_mut)]
45 #[allow(dead_code)]
46 #[allow(non_snake_case)]
47 #[allow(unused_imports)]
48 #[allow(unused_variables)]
49 fn Dummy__spec(self) -> () {
50 #[allow(unused_imports)]
51 use prusti_contracts::internal::*;
52

53 #[__PRUSTI_EXPR_ID = r#"104"#]
54 #[pure]
55 || -> bool { self.d1 == self.d2 };
56 }
57 }
58 #[__PRUSTI_SPEC = r#"103"#]
59 fn test(d: &Dummy) {
60 let val = max(d.d1, d.d2);
61 assert!(val == d . d1);
62 }
63 #[__PRUSTI_SPEC = r#"104"#]
64 fn main() { }

Listing A.1 [rust] full Rust program generated by Prusti for spec generation and
type checking.

Appendix B

Encoding of Dummy

In many examples throughout this thesis, a Rust Dummy type is used, whose
declaration can be seen in Listing B.1. Its simplified Viper encoding is seen
in Listing B.2. Note this is not the true encoding obtained from Prusti, but a
simplified one in order to keep the examples shorter and less complex.

1 struct Dummy {
2 inner: i32,
3 }

Listing B.1 [rust] declaration of the Dummy examples.

1 field inner: Int
2

3 predicate Dummy(self: Ref) {
4 acc(self.inner, write)
5 }

Listing B.2 [viper] encoding of Dummy used in many Viper examples.

B-1

B-2 Bibliography

Appendix C

Full Encoding of Stateful RefCell

1 predicate RefCell(cell: Ref)
2

3 predicate CanBorrowMut(cell: Ref)
4

5 // data.inner > 0
6 predicate Positive(cell: Ref)
7

8 // data.inner < 0
9 predicate Negative(cell: Ref)

10

11 field inner: Int
12

13 predicate Dummy(self: Ref) {
14 acc(self.inner, write)
15 }
16

17 function read(): Perm
18 ensures result > none
19 ensures result < write
20

21 method borrow_mut(cell: Ref) returns (data: Ref)
22 requires acc(RefCell(cell), read()) &&
23 acc(CanBorrowMut(cell), write)
24 ensures acc(RefCell(cell), read()) &&
25 acc(Dummy(data), write) &&
26 (acc(Dummy(data), write) --*
27 acc(CanBorrowMut(cell), write))
28

29

30 method client(cell: Ref)
31 requires acc(RefCell(cell), read()) &&

C-1

C-2 Bibliography

32 acc(CanBorrowMut(cell), write)
33 requires Positive(cell)
34 ensures Negative(cell)
35 {
36 var dummy: Ref
37

38 // borrow_mut and invariant inhales
39 dummy := borrow_mut(cell)
40 unfold Dummy(dummy)
41 assume Positive(cell) ==> dummy.inner > 0
42 assume Negative(cell) ==> dummy.inner < 0
43

44 // ...
45

46 // can use rely
47 assert dummy.inner > 0
48

49 dummy.inner := -42
50

51

52 // release
53 exhale Positive(cell) // state change
54 inhale Negative(cell)
55

56 // ensure state change is correct
57 assert (perm(Positive(cell)) > none) ==> dummy.inner > 0
58 assert (perm(Negative(cell)) > none) ==> dummy.inner < 0
59

60 fold Dummy(dummy)
61 apply acc(Dummy(dummy), write) --* acc(CanBorrowMut(cell), write)
62 }

Listing C.1 [viper] full encoding of a stateful RefCell with two states: Positive
and Negative. The snippet shows the entire encoding of the abstract predicates, and
a borrow-release with a state transition that is verified.

Appendix D

Encoding of read() function

1 function read(): Perm
2 ensures result > none
3 ensures result < write

Listing D.1 [viper] encoding of read() function used in many Viper examples.

D-1

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor .

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work .

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Verifying Safe Clients of Unsafe Code and Trait Implementations in Rust

Beckmann Jakob

Zürich, 27.09.2020

	Acknowledgements
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Overview
	1.4 Conventions

	2 Background
	2.1 Rust Programming Language
	2.1.1 Borrows
	2.1.2 Traits
	2.1.3 Unsafe Rust

	2.2 Formal Verification
	2.3 Prusti
	2.4 Viper

	3 Traits
	3.1 Background
	3.2 Use-case Analysis
	3.3 Traits with Method-Dependent Unsafety
	3.4 Marker Traits
	3.4.1 Invariants
	3.4.2 Contract Refinement

	3.5 Evaluation
	3.5.1 Non-marker Traits
	3.5.2 Marker Traits

	3.6 Summary and Shortcomings

	4 Interior Mutability
	4.1 Background
	4.2 Problem statement
	4.3 Approaches
	4.3.1 Simple [language=Rust,style=colouredRust,breaklines=true]Mutex
	4.3.2 Rust Specification
	4.3.3 Rely/Guarantee
	4.3.4 [language=Rust,style=colouredRust,breaklines=true]RwLock
	4.3.5 [language=Rust,style=colouredRust,breaklines=true]RefCell
	4.3.6 [language=Rust,style=colouredRust,breaklines=true]Cell

	4.4 Implementation Challenges

	5 Contract Derivation
	5.1 Background
	5.2 Problem Statement
	5.3 Approaches
	5.3.1 Operator Overloading
	5.3.2 [language=Rust,style=colouredRust,breaklines=true]PartialEq<Rhs>
	5.3.3 [language=Rust,style=colouredRust,breaklines=true]Eq
	5.3.4 [language=Rust,style=colouredRust,breaklines=true]PartialOrd<Rhs>
	5.3.5 [language=Rust,style=colouredRust,breaklines=true]Ord
	5.3.6 [language=Rust,style=colouredRust,breaklines=true]Default
	5.3.7 [language=Rust,style=colouredRust,breaklines=true]Clone
	5.3.8 [language=Rust,style=colouredRust,breaklines=true]Copy
	5.3.9 [language=Rust,style=colouredRust,breaklines=true]Hash

	5.4 Summary and Shortcomings

	6 Conclusion
	6.1 Future Work
	6.1.1 Atomic Types and Other Wrappers
	6.1.2 Proper Concurrency Support
	6.1.3 Improved Support for Universal Quantification in Invariants for Hyperproperties
	6.1.4 Unsafe Code

	Bibliography
	A Unmodified Listings for Prusti Example
	B Encoding of [language=Viper,style=colouredViper,breaklines=true]Dummy
	C Full Encoding of Stateful [language=Rust,style=colouredRust,breaklines=true]RefCell
	D Encoding of [language=Viper,style=colouredViper,breaklines=true]read() function

