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I. Introduction
Prusti [1] is a tool for the verification of Rust [2] code. It makes use of Rust’s ownership system, and can

verify general properties such as absence of panics, and also custom specifications given as annotations in the
Rust code. This is useful for implementing software correctly.

TLA+ [3] is a language for writing high-level, mathematical models of a system, expressed as a state machine.
Modeling a software system in TLA+ is useful for designing it correctly.

In TLA+, a lower-level, more detailed model can be connected through a refinement to a higher-level
model. The refinement is a theorem which states that the low-level model implements the high-level model.
This theorem can be checked using a model checker or proof system.

A TLA+ model is already valuable without formally verifying that the code implements it, as it allows
developers to identify design problems in their programs. Nonetheless, programs may still have implementation
issues not captured by the model, and they can even fail to comply with the formal model written in TLA+.
As such, in this thesis, we explore how to extend existing refinement approaches to the implementation, thus
closing the gap between the TLA+ models and the concrete implementation.

More concretely, the goal of this thesis is to implement support in Prusti for describing and verifying
refinement between a TLA+ model and an implementation written in Rust, using the approach described in
“Flexible Refinement Proofs in Separation Logic” by Bílý et al. [4]. We only target safety properties, liveness
properties are out of scope.

II. Approach
To summarize the approach by Bílý et al. [4]:
An abstract transition system (ATS) is defined by the variables of the abstract state, and the Init and

Next relations. Init defines the initial states, and Next defines transitions between states. Listing 1 shows an
example ATS, written in the TLA+ language. Fig. 1 shows a trace of this ATS.

extends Integers, Sequences
variables count, stdout

Init
∆
= count = 0 ∧ stdout = 〈〉

Next
∆
= ∧ count′ = count+ 1

∧ stdout′ = Append(stdout, count)

Listing 1. Example TLA+ model. In Next, unprimed and primed variables refer to the state before and after the transition,
respectively.

We want to prove that a program implements, or refines, the model. Formally, a state machine m refines
state machine m′, if any trace of m is also a trace of m′. However, we cannot directly compare an execution
trace of the program with a trace of the ATS. To do that, we need to describe the execution of the program
in terms of the model variables.
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count = 0
stdout = 〈〉

count = 1
stdout = 〈0〉

count = 2
stdout = 〈0, 1〉

Fig. 1. A possible trace (sequence of states) of the example.

As a first step, we embed the model variables into the program as ghost variables. These ghost variables can
be modified in ghost statements. When the program is compiled, ghost variables and statements are removed,
they are only there for verification. Because ghost code cannot affect control flow of the program, removing it
is safe.

But this is not enough. Note that in the example model, the count and stdout variables must be updated
simultaneously. To achieve this, we introduce a ghost lock, which protects all model variables. The variables
may only be changed while holding the lock, and we consider all changes to the model variables between
acquiring and releasing the lock as one atomic update. With these ghost updates in place, we can now check
if the trace of the model variables during the program execution is a trace of the ATS.

However, so far, the approach does not relate the ghost updates to what the actual code is doing. To address
this, we represent all interactions of the program with the environment in the model, and make sure that what
happens in the model corresponds to what happens in the code. We achieve this by declaring some model
variables to be environment variables. In the example, stdout is an environment variable. Then, we identify
all functions of the program which interact with the environment, and specify the corresponding change to
the environment variables. In the example, we could have a print function, which is specified as appending
its argument to the stdout sequence. Finally, we disallow changing environment variables in ghost code; they
may only be changed by calling the functions that actually interact with the environment.

Now that we have defined the refinement, we want to statically verify that all program traces are also ATS
traces. First, we need to show that Init holds when we create the ghost lock after initializing ghost variables.
Then, we have two proof obligations for every block of code, where the ghost lock is acquired at the start
and released at the end: (1) The Next relation must hold for the model state before and after the block. (2)
The code executed in the block can perform at most one atomic observable action. By discharging these proof
obligations, we finally obtain a proof that the program implements the model.

Why do we have to prove atomicity of the code executed while holding the ghost lock? This is because,
otherwise, the actions of two threads could interleave, such that the actual behavior of the system no longer
corresponds to the behavior of the model.

For the proof that the Next relation is satisfied, we often need to keep some knowledge about the abstract
state, without holding the ghost lock. This is achieved by the thread having ownership of (or, in the case of
Rust, a mutable reference to) a ghost resource, without which certain transitions in the ATS are not allowed.
We can then reason that if a certain property of the abstract state held when we last held the ghost lock, it
will still hold when acquiring the ghost lock again.

III. Implementation in Prusti
Our goal is to implement this approach in Prusti. To get an idea of what is required, let’s again look at the

example. Listing 2 shows a Rust program, which implements the example model. We have added ghost code
in the syntax from Bílý et al. [4].

a) Model: We need to define how to write the TLA+ model in Rust syntax. This includes a definition of
the variables and their types, and the Init and Next relations. We may also need to define which variables
are environment variables.

In general, the Next relation is a disjunction of different transitions, and each transition may have existential
quantifiers. Automation can have difficulty determining which transition to use and how to instantiate the
quantifiers. For this reason, we plan to annotate in the code which transition is taken and to provide witnesses
for the quantifiers. To do this, the transitions and quantifiers need to have identifiers.
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stdout := Append(stdout, x)
fn print(x: i32) {

println!("{}", x);
}

fn main() {
count := 0; stdout := 〈〉
Init {

let mut c = 0;
while c < 5 {

Next {
print(c);
count := count+ 1

}
c = c + 1;

}
}

}

Listing 2. The example implemented in Rust, with ghost code on shaded background

For defining the relations, we plan to use Prusti predicates. The identification of transitions and quantifiers
could be done by defining a Rust enum, with a variant for each transition, and defining fields on the variants
for the existential quantifiers. The Next predicate can then be written as a match expression over this enum.
However, due to current limitations of Prusti, we may need to use a solution based on function calls instead.

b) Environment functions: The print function interacts with the environment, so it has a specification
which describes this interaction on the model state. In this case, it appends the printed value to the stdout
sequence.

This specification needs to be written as a Prusti annotation on the function.
c) Ghost lock: The ‘Init’ block initializes the ghost lock. It is written as a block to indicate that the ghost

lock remains initialized during the execution of the program. The ‘Next’ block acquires the ghost lock. Only
inside this block are ghost variables allowed to be modified.

We need to define the Rust syntax for initializing and acquiring the ghost lock. Probably, we will define
Rust macros for this. We also need to define how to access and modify the model variables protected by the
ghost lock.

d) Atomicity: We must check that each ‘Next’ block performs at most one atomic interaction with the
environment, so that it can be accurately modeled as a single transition in the TLA+ model. How to do this
is to be investigated, it may involve implementing an analysis in Prusti.

e) Regular locks: We also want to add support to Prusti for verifying regular locks (i.e., Mutex in Rust).
This is relevant for the verification of multithreaded programs. There are similarities to the ghost lock, so we
may be able to use some mechanisms that we will implement for both.

We will need some way to attach invariants to locks. One possibility could be to do something similar to
specification entailments from “Modular Specification and Verification of Closures in Rust” [5], but for locks
instead of closures.

f) Guards: As mentioned in Section II, we need some way to keep knowledge about the model state
while not holding the ghost lock. Consider the print(c) call in Listing 2. We need to prove that the concrete
variable c has the same value as the model variable count. Guards are one possible solution to this, used in
some of the examples of Bílý et al. [4].

A guard is a ghost resource. Importantly, each guard must only exist once in the system, there cannot be
two identical guards.
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After defining the guards, we then disallow certain transitions of the model unless a mutable reference to a
particular guard is provided. For example, we can define a guard CountGuard, and only allow changing count
if a &mut CountGuard is provided.

Next, we can define a predicate over the model state and prove that its value cannot be changed without
access to the guard. This now allows us to ‘remember’ the value of these predicates, while not holding the
lock. Because the thread owns the guard, and the guard is unique, no transitions which require the guard can
happen elsewhere.

IV. Core goals
1) Introduce a minimal and sound extension to the specification language of Prusti and its logic:

• Enable reasoning about atomicity of a given MIR control-flow (sub)graph.
• Implement an encoding for at least one physical lock, e.g. std::sync::Mutex.
• Implement an encoding for at least one ghost lock, e.g. GhostLock attached to an abstract transition

system + invariants.
• Encode init and next steps.

2) Describe a canonical format for TLA+ specifications that allows:
• A clear identification of (two-state) invariants, as seen in the Next relation in our example.
• A clear identification of transitions and related existentially quantified variables.

3) Demonstrate this approach in a Case Study implemented in Rust and verified with Prusti. Possible
case studies include implementations of distributed hash table algorithms (like Chord), and consensus
algorithms such as Paxos and Raft.

V. Extension Goals
1) Add support for guards in Prusti.
2) Add support for interfacing Prusti with TLA+ modules to allow importing TLA+ models directly in

Prusti.
3) Allow a clear separation of state between different components at the code level.
4) Support component-wise initialisation, i.e. Init state reached at different times in different threads.

VI. Schedule
Implement lock encoding 3 weeks
Implement ghost lock 3 weeks
Reason about atomicity 3 weeks
Create case study 4 weeks
Extension goals 3 weeks
Write report 4 weeks

References
[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging Rust types for modular specification and verification,”

in Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), vol. 3, no. OOPSLA. ACM, 2019, pp.
147:1–147:30. [Online]. Available: https://doi.org/10.1145/3360573

[2] N. D. Matsakis and F. S. Klock, “The Rust language,” Ada Lett., vol. 34, no. 3, p. 103–104, oct 2014. [Online]. Available:
https://doi.org/10.1145/2692956.2663188

[3] L. Lamport, Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley,
2002. [Online]. Available: https://lamport.azurewebsites.net/tla/book.html

[4] A. Bílý, C. Matheja, and P. Müller, “Flexible refinement proofs in separation logic,” 2021. [Online]. Available:
https://arxiv.org/abs/2110.13559

[5] F. Wolff, A. Bílý, C. Matheja, P. Müller, and A. J. Summers, “Modular specification and verification of closures in Rust,”
in Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), vol. 5, no. OOPSLA. New York, NY,
USA: ACM, oct 2021. [Online]. Available: https://doi.org/10.1145/3485522

4

https://doi.org/10.1145/3360573
https://doi.org/10.1145/2692956.2663188
https://lamport.azurewebsites.net/tla/book.html
https://arxiv.org/abs/2110.13559
https://doi.org/10.1145/3485522

	Introduction
	Approach
	Implementation in Prusti
	Core goals
	Extension Goals
	Schedule
	References

