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Abstract

Software verification has the goal of ensuring correctness of software.
Refinement is a verification technique, where we prove that one system
implements a smaller, simpler system, which serves as a specification for
the larger system. The technique is especially useful for the verification
of concurrent and distributed systems. We would like to use refinement
to prove that a program written in a language such as Rust correctly
implements an abstract specification in the style of TLA+.

In this thesis, we present an approach for describing and verifying
refinement between a TLA+ model and an implementation written in
Rust, based on the approach described in “Flexible Refinement Proofs
in Separation Logic” by Bı́lý et al. [1]. We implemented this approach in
Prusti, a verification tool for Rust. The model state is embedded in the
implementation as ghost state, protected by a ghost lock. The ghost lock
can be acquired to perform steps in the model; this way model steps
are linked to implementation steps. Model steps can be protected by
a guard; these steps can then exclusively be performed by the thread
which owns the guard. For the verification of larger applications, a
modular approach is needed. We support trusted modules for primitives
such as atomic variables, as well as verified modules with an inner
model, which can be linked to the outer model where the module is
used. Finally, we demonstrate the approach on two case studies.
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Chapter 1

Introduction

Prusti [2] is a tool for the verification of Rust [3] code. It makes use of Rust’s
ownership system, and can verify general properties such as absence of
panics, and also custom specifications given as annotations in the Rust code.
This is useful for implementing software correctly.

TLA+ [4] is a language for writing high-level, mathematical models of a
system, expressed as a state machine. Modeling a software system in TLA+

is useful for designing it correctly.

In TLA+, a lower-level, more detailed model can be connected through a
refinement to a higher-level model. The refinement is a theorem which states
that the low-level model implements the high-level model. This theorem can
be checked using a model checker or proof system.

A TLA+ model is already valuable without formally verifying that the code
implements it, as it allows developers to identify design problems in their
programs. Nonetheless, programs may still have implementation issues not
captured by the model, and they can even fail to comply with the formal
model written in TLA+. As such, in this thesis, we explore how to extend
existing refinement approaches to the implementation, thus closing the gap
between the TLA+ models and the concrete implementation.

More concretely, the goal of this thesis is to develop an approach for describ-
ing and verifying refinement between a TLA+ model and an implementation
written in Rust, based on the general approach described in “Flexible Re-
finement Proofs in Separation Logic” by Bı́lý et al. [1]. We only target safety
properties, liveness properties are out of scope.

We implement and evaluate the approach with Prusti. However, we did not
extend or modify Prusti itself, and the approach could also be implemented
in other verification tools with similar features.
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1.1. Outline

1.1 Outline

As an introduction to writing specifications, we start by specifying a regular
lock (Section 3.1).

For the refinement approach, we first need to translate the TLA+ model
to Prusti syntax, so that we can refer to it from specification annotations
(Section 3.2). We embed the model state as ghost state in the implementation,
protected by a ghost lock, which forms the core of the approach (Section 3.3).
Guards are ghost resources which can protect certain steps of the model, and
can be used in an exclusive or in a shared read-only mode (Section 3.4).

To support verification of concurrent systems, we model atomics in our
approach, both with sequentially consistent and with weaker release-acquire
ordering (Section 3.5).

To allow splitting large systems into smaller, independently verified parts,
and to allow reuse of parts, we introduce modules, which can be used in a
model, and can be either trusted or verified (Section 3.6). The atomics form
a trusted module. Our hash set case study uses the atomics module, and is
itself a verified module, which could be used in a bigger application.

While most conditions for the correctness of the approach are stated as
preconditions of the various methods and thus verified automatically, there
are some assumptions that need to be checked manually (Section 3.7).

We evaluate our approach on two case studies: A consensus algorithm for
distributed systems (Section 4.1), and a concurrent data structure (Section
4.2).
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Chapter 2

Background

2.1 Refinement approach

This thesis builds on the general approach to refinement described in “Flex-
ible Refinement Proofs in Separation Logic” by Bı́lý et al. [1], which we
summarize here.

An abstract transition system (ATS) is defined by the variables of the abstract
state, and the Init and Next relations. Init defines the initial states, and
Next defines transitions between states. Listing 2.1 shows an example ATS,
written in the TLA+ language. Figure 2.1 shows a trace of this ATS.

We want to prove that a program implements, or refines, the model. Formally,
a state machine m refines state machine m′, if any trace of m is also a trace of
m′. However, we cannot directly compare an execution trace of the program
with a trace of the ATS. To do so would require the model to describe the
entire state of the program in a detailed operational semantics, which is

extends Integers, Sequences
variables count, stdout

Init ∆
= count = 0 ∧ stdout = ⟨⟩

Next ∆
= ∧ count′ = count + 1

∧ stdout′ = Append(stdout, count)

Listing 2.1: Example TLA+ model. In Next, unprimed and primed variables refer to the state
before and after the transition, respectively.

count = 0
stdout = ⟨⟩

count = 1
stdout = ⟨0⟩

count = 2
stdout = ⟨0, 1⟩

Figure 2.1: A possible trace (sequence of states) of the example.
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2.1. Refinement approach

impractical. Instead, we describe the execution of the program in terms of
the model variables.

As a first step, we embed the model variables into the program as ghost
variables. These ghost variables can be modified in ghost statements. When
the program is compiled, ghost variables and statements are removed; they
are only there for verification. Because ghost code cannot affect control flow
of the program, removing it is safe.

But this is not enough. Note that in the example model, the count and stdout
variables must be updated simultaneously. To achieve this, we introduce
a ghost lock, which protects all model variables. The variables may only be
changed while holding the lock, and we consider all changes to the model
variables between acquiring and releasing the lock as one atomic update.
With these ghost updates in place, we can now check if the trace of the model
variables during the program execution is a trace of the ATS.

However, so far, the approach does not relate the ghost updates to what
the actual code is doing. To address this, we represent all interactions
of the program with the environment in the model, and make sure that
what happens in the model corresponds to what happens in the code. We
achieve this by declaring some model variables to be environment variables.
In the example, stdout is an environment variable. Then, we identify all
methods of the program which interact with the environment, and specify
the corresponding change to the environment variables. In the example, we
could have a print method, which is specified as appending its argument to
the stdout sequence. Finally, we disallow changing environment variables in
ghost code; they may only be changed by calling the methods that actually
interact with the environment.

Now that we have defined the refinement, we want to statically verify that
all program traces are also ATS traces. First, we need to show that Init
holds when we create the ghost lock after initializing ghost variables. Then,
we have two proof obligations for every block of code that acquires and
releases the ghost lock: (1) The Next relation must hold for the model state
before and after the block. (2) The code executed in the block must be atomic.
By discharging these proof obligations, we finally obtain a proof that the
program implements the model.

Why do we have to prove atomicity of the code executed while holding the
ghost lock? This is because, otherwise, the actions of two threads could
interleave, such that the actual behavior of the system no longer corresponds
to the behavior of the model. Another way to see this is that the ghost lock
is treated as if it was a regular lock during verification, but at runtime, the
acquire/release calls are erased, and this erasure is only sound if the code
between the calls was already atomic.

4



2.2. Lipton’s Reduction

For the proof that the Next relation is satisfied, we often need to keep some
knowledge about the abstract state, without holding the ghost lock. This is
achieved by the thread having ownership of (or, in the case of Rust, a mutable
reference to) a ghost resource, without which certain transitions in the ATS
are not allowed. We can then reason that if a certain property of the abstract
state held when we last held the ghost lock, it will still hold when acquiring
the ghost lock again. There are different types of ghost resources that can be
used here, the approach does not prescribe which is used.

2.2 Lipton’s Reduction

The general approach by Bı́lý et al. [1] requires the code executed in ghost
lock steps to be atomic, but leaves open how to check atomicity. In this thesis,
we use reduction by Lipton [5] for this.

The question considered by Lipton is: When can we treat a block R in a
program P as if it was atomic, when making proofs about P, even though
R consists of multiple actions? We define P/R, called the reduction of P by
R, as the program obtained from P by replacing R with a single indivisible
action which has the same effect as R. If R satisfies certain restrictions, then
we can prove some property for the simpler program P/R, and obtain the
same property for P.

The key idea by Lipton is to define certain atomic actions to be right movers
or left movers. f is a right mover if, for any computation α f h where α is
a computation and f and h are actions in different threads, αh f is also a
computation, and the final values of program variables in α f h and αh f are
the same. Similarly, g is a left mover if, for any computation αhg, where h
and g are in different threads, αgh is also a computation, and the values of
program variables in αhg and αgh are the same.

We define P/R to be a D-reduction if R consists of atomic statements S1; . . . ; Sk,
and for some i, S1, . . . , Si−1 are right movers and Si+1, . . . , Sk are left movers
(Si is unconstrained), and all of S2, . . . , Sk can always execute. Lipton then
shows that a D-reduction P/R halts if and only if P halts.

Intuitively, a right mover can be moved across all actions happening in other
threads, up to the point where the next action is in the same thread as the
right mover, and the result of the program is the same. Similarly, left movers
can be moved to the left across actions in other threads. If we move all left
and right movers as far as possible, the result is that all of S1, . . . , Sk of a
D-reduction are right next to each other, with no interleaving actions by other
threads. And this explains why, even though S1, . . . , Sk may be interleaved
with other threads, we can treat it as if it was a single atomic action.

5



2.3. Rust

2.3 Rust

Rust [3] is a relatively new systems programming language. Unique about
Rust are the safety guarantees enabled by its ownership and lifetimes system.
The safe subset of Rust is guaranteed to have no memory safety violations or
data races.

Each resource has exactly one owner, which can access it. We can borrow a
resource, which makes the original resource inaccessible for the lifetime of
the borrow. Shared borrows are denoted by & and allow read-only access to a
resource; multiple such borrows can exist simultaneously. Exclusive borrows
are denoted by &mut and allow modifications to the resource; there can only
be one such borrow at a time, and no shared borrows can exist at the same
time.

Interior mutability allows us to circumvent these rules; it allows modifications
of values behind a shared borrow. For example, a lock can be shared between
threads, such that each thread has a shared borrow to the same lock. After
acquiring the lock, the value stored inside can be modified.

2.4 Prusti

Prusti [2] is a verification tool for Rust programs. It extends the syntax of
Rust with specification annotations. We can then run the verification tool to
check whether the specifications of a Rust program are valid. Prusti relies
on a powerful SMT solver to perform verification automatically for the most
part, but in some situations additional annotations are needed to help the
tool find proofs. Here we provide a quick overview; for more details see the
Prusti user guide [6].

Prusti defines an extended expression syntax for specifications. In addition to
regular Rust expressions, we can write universal and existential quantifiers.
There are convenience operators for logical implications. The snapshot equality
operator can compare two values by their snapshots. For example, the
snapshot of a struct contains the values of all fields, but values with interior
mutability are not part of the snapshot.

In a Rust method, we can add assert and assume statements, which contain
a Boolean specification expression. For each assert, the tool checks that the
expression is true, and raises an error if it cannot prove it. For an assume
statement on the other hand, it will assume that the expression is true without
checking it; it simply trusts the specification author.

For each Rust method, we can add pre- and postconditions. Preconditions
are specification expressions that are asserted to be true where the method
is called, and which we assume are true at the start of the method body.

6



2.4. Prusti

Postconditions on the other hand are asserted before the method returns,
and assumed after the call to the method. In postconditions, we can use
old(...) expressions to refer to the value of parameters at the time when
the method was called, and we can use the special variable result to refer to
the returned value.

Loops can generally not be verified automatically, therefore we need to
provide loop invariants. These are specification expressions which must hold
before the loop starts, and must be preserved by the loop body.

We differentiate between methods and functions. Methods can have side ef-
fects and arbitrary control flow, and may or may not return a value. Functions
on the other hand behave like mathematical functions, they have no side
effects and always return the same value for the same arguments. In Prusti,
functions are annotated with the pure attribute. In specification expressions,
we can only call functions, but not methods. Functions can also have pre-
and postconditions, but we do not need old expressions, as the state before
and after are the same.

Both functions and methods can be ghost code. Ghost methods are also
called lemma methods. Ghost code is code that is only used for verification,
and is not present after the code is compiled. This means that we cannot
execute these, but instead we can use the extended specification syntax in
ghost functions and methods. Ghost functions are marked with predicate!

in Prusti. Prusti currently does not support ghost methods.

Functions and methods can also be trusted. For a trusted function or method,
the verification tool does not look at the body; it trusts that it is correct, and
that the postconditions are satisfied at the end. Trusted ghost functions and
methods do not have a body, we call them abstract.

In this thesis, we mostly use a pseudo-code-like syntax rather than actual
Rust syntax with Prusti extensions. This is intended to be easier to read, and
underscores that the approach we present is not specific to Prusti, but could
also be implemented in other verification tools with similar features.

7



Chapter 3

Approach

3.1 Regular lock

To start, we describe how we add specifications to a lock. With a lock,
multiple threads in the same process can temporarily obtain exclusive access
to a shared resource. In Rust, Mutex implements a lock. When it is acquired,
we obtain a MutexGuard, which can be used to access the protected resource.

3.1.1 Invariant

Even without specifications, the type system gives us some guarantees. When
we create a lock, we have to provide a resource of the correct type. When we
later acquire it, we obtain access to this resource, and we can be sure that it
has the correct type. Finally, when releasing the lock, the resource must still
have the correct type. If we try to violate these constraints, the compiler will
raise a type checking error.

We extend this idea by adding a lock invariant. The lock invariant is a
Boolean predicate over the type protected by the lock. We wrap the lock
constructor in a method which takes the predicate as a parameter, in addition
to the initial value. We also add a precondition which requires that the
predicate is true for the given initial value. The lock acquire method gets a
postcondition that the predicate is true for the value that is currently in the
lock. And finally, release has a precondition that the predicate is still true
for the possibly changed value. The verification tool will return an error if
we violate the invariant.

Here is a summary of the lock API with specifications:

trusted method new_lock(val : T, invariant : T → bool) : Mutex<T>
requires invariant(val)

8



3.1. Regular lock

trusted method acquire(m : &Mutex<T>) : MutexGuard<T>
ensures invariant(result.val)

trusted method release(g : MutexGuard<T>)
requires invariant(g.val)

3.1.2 Two-state invariant

The invariant restricts the value that the lock can have at any point in time,
but sometimes we also want to restrict how the value changes over time. This
is especially useful if the value changes monotonically in some dimension.
As an example, consider a set protected by a lock, from which we never
remove elements. If we know that the set contained a particular value in the
past, we should be able to assert that this value is still in the set when we
acquire the lock again.

To address this case, we add a two-state invariant to the lock, which is
a predicate which takes two arguments of the type protected by the lock.
twostate(oldval, val) is true if the value in the lock can be val if it was oldval
at some point in the past. In the set example, we could define this as
twostate(oldval, val) := ∀x. x ∈ oldval → x ∈ val, or simply oldval ⊆ val.

The two-state invariant must be transitive. This ensures that it holds between
any two points in time, even if we only check it between consecutive points.
We enforce this by adding the definition of transitivity as a precondition

∀a, b, c. twostate(a, b) ∧ twostate(b, c) → twostate(a, c)

to the lock constructor. We also require reflexivity with ∀v. twostate(v, v), so
that it holds even if the value was not changed between some point in the
past and now.

We check that the two-state invariant holds between the values at the time
of acquire, and the matching release. We do this by remembering the
value at the time of acquire, and then adding a precondition of the two-
state predicate between the remembered old value and the current value to
release.

Finally, we need a way to make use of the two-state invariant. For the regular
invariant, this was simply a postcondition on acquire, but here it is more
involved.

First, we introduce a Boolean predicate oldvalue(v), which says that v was
previously a value of the lock. This predicate has no body (it is ‘abstract’),
so initially we know nothing about its value. We add a postcondition to the
lock constructor that oldvalue is true for the initial value, and similarly to
release for the value at that time.

9



3.1. Regular lock

Next, we introduce a lemma method apply_old_value(oldval), which can
be called while the lock is acquired. We can call it with an old value of the
lock, and learn that the two-state invariant holds between that old value
and the current value. This is implemented by having oldvalue(oldval) as a
precondition, and twostate(oldval, val) as a postcondition, where val is the
value at time of acquire.

To finish the set example, we can now use this to assert that values that were
previously in the set are still in the set. Proof state annotations are marked
with ▷, they show relevant facts as they are obtained. We could turn these
annotations into assertions, and it would still verify.

let m := new_lock({}, λ v. true, λ oldv, v. oldv ⊆ v);
let g := acquire(&m);
g.val := g.val ∪ {4};
let oldv := g.val;
release(g);
▷ oldvalue(oldv)
let g := acquire(&m);
apply_old_value(&g, oldv);
▷ twostate(oldv, g.val)
assert 4 ∈ g.val;
release(g);

Listing 3.1 shows the complete specification of the lock. Here we also add an
identifier to the lock, which allows us to distinguish different instances. This
way, oldvalue facts from one lock cannot be used on another lock. In the Rust
implementation, we use u32 as the Id type. Since we cannot actually refer to
the invariant parameter of new_lock in the other methods, we ‘copy’ it into
m invariant by ensuring that they are equal for all v (same for twostate).

3.1.3 More on abstract functions

It is important to understand that when we learn that oldvalue(v) is true
for some v, oldvalue does not change (it is a mathematical function after
all), only our knowledge about it changes. That means that oldvalue(v) has
always been true. Nevertheless, if we can assert oldvalue(v), we can be sure
that v was an old value in the past. In fact, if we could assert oldvalue(v)
when we only learn it in the future, that would allow circular reasoning.

One needs to be careful when creating trusted lemma methods. For example,
if apply_old_value(oldval) was instead defined with just a postcondition
oldvalue(oldval) → twostate(oldval, val), which looks very similar to the
actual definition, it would be unsound. This is because the implication does
not force us to know that oldvalue(oldval) is true right now. We can apply
the implication later when we do learn oldvalue(oldval), and can then arrive

10



3.1. Regular lock

struct Mutex<T> {id : Id}

struct MutexGuard<T> {id : Id, pub val : T, oldval : T}

abstract function m invariant(id : Id, v : T) : bool

abstract function m twostate(id : Id, oldv : T, v : T) : bool

abstract function m oldvalue(id : Id, v : T) : bool

trusted method new_lock(val : T, invariant : T → bool,
twostate : T× T → bool) : Mutex<T>

requires invariant(val)
requires ∀v. twostate(v, v)
requires ∀a, b, c. twostate(a, b) ∧ twostate(b, c) → twostate(a, c)
ensures ∀v. m invariant(result.id, v) = invariant(v)
ensures ∀oldv, v. m twostate(result.id, oldv, v) = twostate(oldv, v)
ensures m oldvalue(result.id, val)

trusted method acquire(m : &Mutex<T>) : MutexGuard<T>
ensures m invariant(m.id, result.val)
ensures result.id = m.id
ensures result.val = result.oldval

trusted method release(g : MutexGuard<T>)
requires m invariant(g.id, g.val)
requires m twostate(g.id, g.oldval, g.val)
ensures m oldvalue(g.id, g.val)

abstract method apply_old_value(g : &MutexGuard<T>, oldval : T)
requires m oldvalue(g.id, oldval)
ensures m twostate(g.id, oldval, g.oldval)

Listing 3.1: The complete lock specification.

at a contradiction, because twostate(oldval, val) can be false for an oldval
which was not an old value at the time we called apply_old_value(oldval).

3.1.4 Passing predicates to methods

The Prusti specification language is a first-order logic, which means that we
cannot directly pass a predicate as an argument to a method. But how can
we pass an invariant predicate of type T → bool to the lock constructor?

First, we define a Predicate type, which simply contains an Id. We define
a new_predicate method, which returns a Predicate and has no pre- or
postconditions. And we define an abstract, Boolean predicate val(pred, val)
function, which takes a Predicate and a value of a generic type.

11
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To use it, we call new_predicate to obtain a Predicate pred, and then add
an assume statement to define predicate val for this pred. For example, the
expression val > 0 is turned into the assume statement

∀val. predicate val(pred, val) ↔ (val > 0).

We can now pass pred to a method, which can refer to the predicate through
predicate val. In the Rust implementation, we wrap this in a convenient
macro which takes an expression and returns a Predicate.

3.1.5 Lock release in Rust

In Rust, when we acquire a Mutex, we obtain a MutexGuard. To release the
lock, we simply ‘drop’ the MutexGuard. Dropping happens implicitly when a
variable goes out of scope, and causes the destructor to be run, which in the
case of MutexGuard releases the lock. This makes it convenient to work with
and prevents forgetting to release.

However, because drop happens implicitly, this makes it hard to attach pre-
or postconditions to it. Instead, we require users of our wrapped lock type to
explicitly call a release method. To prevent users from circumventing this
by just dropping the wrapped mutex guard, we wrap the MutexGuard in a
ManuallyDrop. This means that when the guard is dropped, the lock remains
locked. This ensures soundness at the cost of introducing a deadlock.

We see two ways to mitigate this: First, we can add a destructor to the
guard which panics, which turns a deadlock into an easier to debug runtime
panic. Second, a ‘lint’ could be introduced in the Rust compiler which can be
attached to struct definitions resulting in a compile error when an instance is
dropped, similar to the existing must_use and must_not_suspend lints. We
could then attach this lint to the MutexGuard type.

3.2 Model

Our goal is to show refinement between a TLA+ model and an implemen-
tation in Rust, using Prusti. To do this, we first need to translate the model
from the TLA+ language into Prusti constructs.

A basic TLA+ model consists of variable declarations, and Init and Next
operators. There may be a Spec operator which combines Init and Next into
a single temporal formula, but we do not handle temporal formulas in our
approach and require separate Init and Next. By convention, there usually
is also a type invariant operator TypeOK (sometimes called TypeInvariant),
which describes what types the variables have. An example is shown in
Listing 3.2. The same example translated to Prusti is shown in Listing 3.3.

12
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module counter with actions
extends Integers, Sequences
variables count, std out

TypeOK ∆
= count ∈ Int ∧ std out ∈ Seq(Int)

Init ∆
= count = 0 ∧ std out = ⟨⟩

Increment(v) ∆
= ∧ v > 0

∧ count′ = count + v
∧ std out′ = Append(std out, count)

Print0 ∆
= ∧ std out′ = Append(std out, 0)

∧ unchanged count

Next ∆
= ∨ ∃ v ∈ Int : Increment(v)

∨ Print0

Listing 3.2: Example TLA+ model.

In the example, there are two variables: count, and std out. TypeOK tells
us that count is an integer, while std out is a sequence of integers. Init
defines the initial state, and Next defines possible state transitions. Next is
a disjunction of two cases: In a single step, either count is incremented by
some positive integer, and the old value of count is appended to std out, or 0
is appended while count remains unchanged.

We can translate the Init and Next TLA+ operators into Prusti predicates. In
TLA+ operators, we can directly use variables, but in Prusti predicates, we
need to pass them in a parameter. We translate all variables to fields in a
struct AbsState to make this convenient. In Next, we use primed variables
to refer to the next state, which we translate to a parameter s for the current
state and n for the next state.

Next, we discuss how various features can be translated in more detail. In
Section 3.2.5, we will look at how we could restrict TLA+ to a subset which
would allow to perform this translation mechanically.

3.2.1 Actions

The Prusti version of the example in Listing 3.3 has an Action type, and a
parameter of this type in next, which does not exist in the TLA+ version.

We expect Next to be written as a disjunction, where each arm may have
existential quantifiers, and then applies an operator with the existentially
quantified variables as parameters. This can then be translated into the
enum Action, where each disjunction arm corresponds to an enum variant,
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1 #[derive(Clone, Copy)]

2 struct AbsState {

3 count: i32,

4 stdout: AbsSeq<i32>,

5 }

6

7 #[derive(Clone, Copy)]

8 enum Action {

9 Increment(i32),

10 Print0,

11 }

12

13 predicate! {

14 fn init(s: AbsState) -> bool {

15 s.count == 0 &&

16 s.stdout === AbsSeq::empty()

17 }

18 }

19

20 predicate! {

21 fn next(s: AbsState, n: AbsState, a: Action) -> bool {

22 match a {

23 Action::Increment(v) =>

24 v > 0 &&

25 n === AbsState {

26 count: s.count + v,

27 stdout: s.stdout.append(s.count),

28 ..s

29 },

30 Action::Print0 =>

31 n === AbsState {

32 stdout: s.stdout.append(0),

33 ..s

34 },

35 }

36 }

37 }

Listing 3.3: The example model from Listing 3.2 translated to Prusti.
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and the existential quantifiers correspond to fields on the variants. The
Action is then passed in a parameter to next, which can be written as a
match expression over the Action. We could write

exists(|a: Action| next(s, n, a))

to hide this parameter, which more closely matches Next in the TLA+ version.

In the implementation, whenever a step in the model is taken, the Action

that corresponds to this step must be provided. The main motivation for this
is that automated verifiers can have difficulties proving disjunctions and exis-
tential quantifiers. By providing an Action, we can explicitly give witnesses
for the quantifiers, avoiding this problem. Additionally, it communicates
intent, and allows to easily find where in the implementation a particular
action is performed.

3.2.2 Types

TLA+ is an untyped language, where every value is a set. When an operator
is used with a value of the wrong type (as in 2∧ ⟨5⟩), the result is unspecified
[4, p. 296]. Rust on the other hand is typed, and the type-checker prevents
using values of the wrong type. In most places, the type is inferred, but we
need to provide it in struct definitions, arguments and quantifiers.

While TLA+ is untyped, there are sets that are used like types, such as Int,
the set of all integers. In quantifiers, we can directly use these type sets, as in
∃ v ∈ Int. And for variables, this information is provided in TypeOK.

Next, we show common TLA+ type sets and corresponding Rust types.

boolean: Corresponds to bool.

Int: Prusti does not yet have unbounded integers, we can approximate this
with bounded types such as i32.

subset T: This is the powerset of T, or the type of sets of T. We have defined
a corresponding type in Rust: AbsSet<T>.

[S → T]: This is the set of functions S → T. We represent this with a map
type AbsMap<S, T>.

Seq(T): Sequences of T, corresponds to AbsSeq<T>.

[h1 : S1, . . . , hn : Sn]: A record with n fields, where the i-th field has name hi
and is in Si. This corresponds to a struct in Rust:

struct SomeStruct { h1: S1, ..., hn: Sn }

S1 × · · · × Sn: n-tuples where the i-th component is in Si. This corresponds
to the tuple in Rust: (S1, ..., Sn).
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[type : {“t1”}, h1 : S1, . . . , h2 : S2] ∪ · · · ∪ [type : {“tn”}, h3 : S3, . . . , h4 : S4]:
This is a tagged union type. TLA+ has no builtin feature for this, so we build
it as a union of record types, where type is the discriminant. Rust on the
other hand does have enums built in:

enum SomeEnum {

T1 { h1: S1, ..., h2: S2 },

...,

Tn { h3: S3, ..., h4: S4 },

}

3.2.3 Expressions

In this section, we look at various TLA+ expressions and operators, and how
they can be translated to Prusti.

Logic

The Boolean operators ∧ ∨ ¬ ⇒ ≡ correspond to && || ! ==> <==>. Constants
true, false correspond to true, false. Quantifiers ∀ x ∈ S : p and ∃ x ∈ S : p
correspond to forall(|x: S| p) and exists(|x: S| p).

Sets

Since all values in TLA+ are sets, the set equality operators = and ̸= corre-
spond to == and != for primitive types, and snapshot equality === and !==

for all other types.

The set operators x ∈ S, x /∈ S, S ⊆ T are translated as s.contains(x),
!s.contains(x), s.is_subset(t) on our AbsSet<T> type. The operators ∪,
∩, \, union have not yet been implemented on AbsSet<T>, but it would be
easy to do so: We can create a corresponding abstract function, and add its
definition [4, p. 300] as a postcondition.

The set constructor {e1, . . . , en} can be translated as

AbsSet::empty().add(e1) ... .add(en).

Set comprehensions {x ∈ S : p} and {e : x ∈ S} also have not yet been
implemented, but could be, by first creating a function expression from p or
e (discussed next), and then defining abstract functions which implement the
set comprehensions, taking the function expression as a parameter, and with
the definition of the set comprehensions in postconditions.

Functions

Remember that we represent functions with the AbsMap<S, T> type. Function
application f [e] corresponds to f.get(e). The function expression [x ∈ S 7→
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e] can be translated to AbsMap::<S, T>::new(e) if e is independent of x. And
the update expression [ f except ![e1] = e2] is translated to f.set(e1, e2).

Translating a general function expression [x ∈ S 7→ e] where e depends on x is
a bit more involved. In Section 3.1.4, we showed how we can pass a predicate
in a function parameter, however, this solution cannot be used in pure code.
What we can do instead is to create a new abstract function f returning an
AbsMap<S, T>, with postcondition forall(|x: S| result.get(x) === e).
Then we translate the function expression as f(). Any free variables in e

need to be passed as parameters to f.

Records

The field access expression e.h corresponds to e.h in Rust. The record
constructor [h1 7→ e1, . . . , hn 7→ en] is translated to

SomeStruct { h1: e1, ..., hn: en }.

Record update [r except !.h = e] can be written as

SomeStruct { h: e, ..r }.

Enums

Remember that enums are represented in TLA+ as a union of record types,
with an explicit discriminant field. The variant constructor [type : “t1”, h1 :
e1, . . . , h2 : e2] is translated to

SomeEnum::T1 { h1: e1, ..., h2: e2}.

Field access is written e.h in TLA+, but in Rust, enum fields can only be
accessed though pattern matching in a match or if let expression. This
means we need to perform a more complex transformation of the TLA+ code
into Rust, where we introduce a match expression to replace discriminant
tests such as e.type = “t1”, and replace the field accesses e.h with fresh
identifiers, which are bound in the patterns of the match.

Tuples

Tuple indexing e[i] with i ∈ {1, . . . , n} for an n-tuple can be translated as e.j,
where j = i − 1 (note that TLA+ indices are 1-based, while Rust indices are
0-based). The tuple constructor ⟨e1, . . . , en⟩ is translated as (e1, ..., en).

Other expressions

if p then e1 else e2 corresponds to if p { e1 } else { e2 }.

case p1 → e1 2 · · · 2 pn → en 2 other → e can be translated as an if-
else chain if p1 { e1 } ... else if pn { en } else { e }. If there is
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no other part, we can end the if-else chain with else { unreachable!() }.
However, this translation is only valid if the conditions pi are mutually
disjoint, and, when there is no other, if always exactly one pi is true.

This is because, in TLA+, if multiple conditions are true, then it is unspecified
which of the corresponding values is picked (it is implemented with choose),
while the Rust version is guaranteed to pick the first value. Usually, this
is not a problem, because picking the first value is a valid implementation
of the TLA+ spec. But we may be able to prove statements about the Rust
version that do not hold for the TLA+ version. There is also the edge case
that in TLA+, two case expressions that have the same set of possible values
are guaranteed to yield the same value, which means we can prove e.g.
(case true → 1 2 true → 2) = (case true → 2 2 true → 1), which
would be false in Rust. But not even TLC implements this edge case [4,
p. 262]. To avoid all of this, the conditions of a case expression should be
mutually disjoint [4, p. 298].

let d ∆
= f in e can be translated to { let d = f; e }.

We have not implemented the choose x ∈ S : p expression, but it could be
done in the same way as set comprehensions.

3.2.4 Constants

TLA+ modules can contain constant declarations, e.g. constant C. These
constants can be used in the model definition, and are intended for values
that remain constant over time, but can differ depending on the situation in
which the model is used. When checking a model with TLC, concrete values
for these constants must be picked.

In addition, assumptions can be made about constants in assume p state-
ments, where p can refer to constants. The values that are picked for the
constants must satisfy these assumptions. Theorems defined in the module
can rely on them.

When translating this concept to Rust, we need to define constants in such
a way that the init and next predicates can refer to them. We do it by
declaring an abstract function without parameters for each constant. This
means that references to constant C are replaced with c().

To define the value of constant c(), a statement prusti_assume!(c() === e)

for some expression e can be used. This should be inserted at the beginning
of the program, e can for example depend on process arguments. And we can
translate assume p statements to prusti_assert!(p), so that we check these
assumptions. They should be placed after the prusti_assume! statements
which assign the values of constants.
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3.2.5 Mechanical translation

For the most part, the translation from TLA+ to Prusti is straight forward.
The translation of types, and particularly enums is more complex, because
these are implemented very differently between the two. By restricting the
TLA+ code in certain ways, it would be possible to perform the translation
automatically (though we have not implemented this). Here we describe the
restrictions which would allow this automatic translation.

General

We require the TLA+ module to have Init, Next and TypeOK operators.

Types

First, we define a ‘type set’ as one of boolean, Int, subset T, [S → T],
Seq(T), S1 × · · · × Sn, or a name N, where: S, Si, T are type sets. N is an
operator, which is defined as either a type set (this corresponds to a type
alias in Rust), or a struct or enum definition. A type set can be translated
directly to the corresponding Rust type.

The TypeOK operator must be a conjunction of x ∈ T expressions, one for
each variable x, where T is a type set. Each quantifier must be of the form
∀ x ∈ T : p or ∃ x ∈ T : p, where T is a type set. The field types in struct and
enum definitions must be type sets. These requirements ensure that we have
a type set in all places where the corresponding Rust syntax requires a type.

Enum access

If e is an expression of enum type, with variant names t1, ..., tn, then e.type
may only appear as part of an expression if e.type = “ti” then ei else f or
e.type = “ti” ∧ ei or case e.type = “t1” → e1 2 · · · 2 e.type = “tn” → en.
Field accesses e.h may only appear inside ei in the expressions above, where h
must be a field of variant ti. This ensures that enum access can be translated
to a match expression.

Type hints

When constructing a struct or enum instance in Rust, we need to give the
name of the struct or enum definition. This information is not present in
TLA+, but we can add it as follows: We define an operator Type(v, T) ∆

= v,
and require all struct or enum constructor or update expressions v to be
wrapped as Type(v, T), where T is the name of the struct or enum type
definition.

We can also uses this as a type hint in places where a type cannot be inferred.
For example, AbsSet::<T>::empty() has a type parameter which can be
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inferred and thus omitted in many cases, but not always. We can then
provide the type as Type({}, subset T).

Well-typedness

We require all expressions to be well-typed. For example, in the expression
if p then e1 else e2, e1 and e2 must have the same type, and p must have
type boolean. We can rely on the type checker of the Rust compiler to check
this.

3.3 Ghost lock

Now that we have translated the TLA+ model into Rust, the next step is to
connect the model to the implementation. The model state is an abstraction of
the state of the program and its environment, and the next relation defines the
possible state changes in this system. Our goal is to verify that the program
refines the model, which means that whenever it takes a concrete step which
changes the abstract view of the system, the corresponding abstract step is
permitted by the model.

But how do we know which abstract step corresponds to a given concrete
step? The idea of the approach is that the program just tells us. We embed
the entire abstract state into the program as ghost variables, and whenever
the program takes a concrete step which is visible in the abstract view, it
also changes the ghost variables accordingly. Except, the environment part
of the abstract state cannot be changed by the program directly, but only
by calling the methods which interact with the environment. This way, the
observable behavior of the program matches the model, while the internal
implementation is not constrained.

The model may change multiple variables in a single atomic step, so we
need a way to group multiple ghost variable updates together. This is where
the ghost lock comes in. We can acquire and release the ghost lock, and
update the ghost variables between the two points, and all these updates
must correspond to a single step of the model.

Like the regular lock, the ghost lock is implemented as a Rust struct, with
various fields and methods. But unlike the regular lock, it is ghost state,
which means that it only exists for specification and verification purposes,
and is not present at runtime. This means that the state in the ghost lock
cannot affect the execution of the program; for example, we cannot print a
value stored in the model state.

The abstract state represents a global view of the system. This system can
consist of multiple threads, or even distributed processes communicating
over a network, all making steps in this single global model of the system.

20



3.3. Ghost lock

struct AbsState {count : i32}

enum Action = Increment(i32)

ghost function init(s : AbsState) : bool
s.count = 0

ghost function next(s : AbsState, n : AbsState, a : Action) : bool
match a {
Action::Increment(v) 7→

v > 0 ∧ n = AbsState{count : s.count + v}
}

method main(){
let mut gl := GhostLock::new(AbsState{count : 0});
gl.acquire();
gl.state.count := gl.state.count + 4;
gl.release(Action::Increment(4));

}
Listing 3.4: A simple model is defined, which allows a field to be incremented by a positive
amount. The main method creates a ghost lock instance and then performs a ghost lock step in
which the field is incremented.

Some steps of the model may not even be performed by software, e.g., a
button being pressed by a user.

Next, we describe how the ghost lock is used and implemented in more
detail.

3.3.1 Initializing

Before the ghost lock can be used, an instance of it must be created. This
is done with the method GhostLock::new(init state : AbsState) : GhostLock.
It should be called at the start of the program, and takes the initial state as
a parameter. We check that it is a valid initial state according to the model,
with a precondition init(init state).

If the system consists of multiple threads or even distributed processes, then
each thread needs to create its own instance of the ghost lock. The user of
the approach must ensure that only one instance is created in each thread,
and that each instance is created with the same initial state.

3.3.2 Acquiring and releasing

Listing 3.4 shows a simple example of how the ghost lock is used. We can
acquire the ghost lock with the acquire method, read and write the model
state through the state field, and finally release it. We call this a ghost lock
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step. The state field can be freely modified, but we can only release if the
modifications form a valid step of the model.

We add a field locked : bool to the GhostLock to keep track of whether the
ghost lock is currently acquired. acquire has a precondition ¬sel f .locked
and postcondition sel f .locked, and conversely release has a precondition
sel f .locked and postcondition ¬sel f .locked. This ensures that release and
acquire calls are matched. The locked field and all other fields introduced
later are private, to protect them from changes outside the ghost lock imple-
mentation. Only the state field is public. The private fields can still be read,
through getter functions with the same name as the fields, e.g. gl.locked().

The release method takes an Action as a parameter, which describes the
step in the model that was taken between acquire and release. We check that
this step was actually taken with a precondition

next(sel f .initial state, sel f .state, action).

The initial state field of the GhostLock refers to the value of sel f .state at time
of the call to acquire. This is done with a postcondition sel f .initial state =
sel f .state on acquire.

There is also a release_stutter method, which requires sel f .initial state =
sel f .state. This can be used to perform a stutter step, which does not change
the state; this is useful if we only need to read the state.

3.3.3 Interacting with the environment

So far, we can use the ghost lock to take steps in the model state, and it is
verified that these are valid steps. But nothing connects this to what the
program is actually doing yet. In our approach, we do not directly link model
variables to internal program variables. Instead, we only care about how the
program interacts with its environment, and check that this corresponds to
the model.

To do this, we declare some model variables to be environment variables. We
add specifications to all methods which interact with the environment, to
describe how this interaction is reflected on the environment variables. We
also disallow changing these variables directly; they may only be changed
by calling the methods which actually interact with the environment. An
example of this is shown in Listing 3.5.

To protect the environment variables from change, we create a copy of
AbsState named EnvState, which contains only the environment variables.
We also define a function get env state, which projects an AbsState to an
EnvState. Then, we add the field env state : EnvState to the GhostLock.
We use this to keep a protected copy of the environment variables in

22



3.3. Ghost lock

struct AbsState {count : i32, stdout : AbsSeq<i32>}

enum Action = Increment(i32) | Print0

ghost function init(s : AbsState) : bool
s.count = 0 ∧ s.stdout = AbsSeq::empty()

ghost function next(s : AbsState, n : AbsState, a : Action) : bool
match a {
Action::Increment(v) 7→ v > 0 ∧

n = AbsState{count : s.count + v, stdout : s.stdout.append(s.count)}
Action::Print0 7→ n = AbsState{stdout : s.stdout.append(0), ..s}

}

struct EnvState {stdout : AbsSeq<i32>}

function get env state(s : AbsState) : EnvState
EnvState{stdout : s.stdout}

trusted method print(x : i32, gl : &mut GhostLock)
requires gl.locked()
ensures gl.locked()
requires gl.env state() = get env state(gl.state)
ensures gl.env state() = get env state(gl.state)
ensures gl.initial state() = old(gl.initial state())
ensures gl.state = AbsState{

stdout : old(gl.state.stdout).append(x),
..old(gl.state)

}

method main(){
let mut gl :=
GhostLock::new(AbsState{count : 0, stdout : AbsSeq::empty()});

let mut c := 0;
while c < 5 {

invariant ¬gl.locked();
gl.acquire();
assume c = gl.state.count;
print(c, &mut gl);
c := c + 4;
gl.state.count := gl.state.count + 4;
gl.release(Action::Increment(4));

}
}
Listing 3.5: The counter example is extended by printing the value of the counter. The print

method interacts with the environment, which is modeled with the stdout environment variable.
stdout is part of EnvState in order to protect it from changes made directly without calling
print.
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the state field. To ensure that they stay in sync, we add a postcondition
sel f .env state = get env state(sel f .state) to acquire, and the same as a pre-
condition to release. The result is that, if we accidentally modify an envi-
ronment variable through gl.state, verification will fail.

For the methods which interact with the environment, we add a parameter
taking a mutable reference to the ghost lock, and we add trusted specifi-
cations. We need to check in preconditions that the ghost lock is locked
and the env state is valid. In a postcondition, we describe how the state is
updated, and another postcondition states that the env state is also updated
accordingly. We also need to provide postconditions for the things that have
not changed: The ghost lock is still locked, and initial state still has the same
value.

In the example in Listing 3.5, we also show how this is used in the main

method. We have a local variable c which corresponds to the model variable
count, and we print and increment it in a loop. After acquiring the ghost lock,
we initially know nothing about the abstract state, so we need to assume that
c is equal to count. We will see later in Section 3.4 how we can remove this
assumption.

3.3.4 Reasoning with preserved predicates

With the regular lock, we were able use the apply_old_value lemma method
to learn something about the current value from a past value and the two-
state invariant (see Section 3.1.2). We can do something similar with the
ghost lock.

An example is shown in Listing 3.6. In the example, we can send and receive
messages over a network. The network is modeled as a set of messages that
have been sent, and when we receive a message, we learn that this message
is in the set of sent messages. Concretely, one side can send a ping message,
and if the other side has received the ping, it can reply with a pong. The
main method first receives a message, and if it is a ping, it responds with a
pong.

The receive and send are in two separate ghost lock steps. In the first step,
we learn that msg is in msgs, and in the second step, we need this knowledge,
as it is a precondition of the SendPong action. Again, we initially know
nothing about the state after acquiring the ghost lock, so we need some way
to transfer this knowledge from the first to the second step, taking advantage
of the fact that messages are never removed from msgs.

This is why we have the call to the preserved_predicate method. It takes
an old state of the ghost lock, and a predicate, which must hold for the old
state and must be preserved by every possible step. Then we can conclude
that it still holds in the current state.
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enum Message = Ping(i32) | Pong(i32)

struct AbsState {msgs : AbsSet<Message>}

struct EnvState {msgs : AbsSet<Message>}

enum Action = SendPing(i32) | SendPong(i32)

ghost function init(s : AbsState) : bool
s.msgs = AbsSet::empty()

ghost function next(s : AbsState, n : AbsState, a : Action) : bool
match a {
Action::SendPing(v) 7→

n = AbsState{msgs : s.msgs.add(Message::Ping(v))}
Action::SendPong(v) 7→ s.msgs.contains(Message::Ping(v)) ∧

n = AbsState{msgs : s.msgs.add(Message::Pong(v))}
}

trusted method send(msg : Message, gl : &mut GhostLock)
(pre- and postconditions for locked and env state omitted)
ensures gl.initial state() = old(gl.initial state())
ensures gl.state = AbsState{

msgs : old(gl.state.msgs).add(msg),
..old(gl.state)

}

trusted method receive(gl : &GhostLock) : Message
(preconditions for locked and env state omitted)
ensures gl.state.msgs.contains(result)

method main(){
let mut gl := GhostLock::new(AbsState{msgs : AbsSet::empty()});
gl.acquire();
let msg := receive(&gl);
let receive state := gl.state;
gl.release_stutter();
if let Message::Ping(v) := msg {

gl.acquire();
gl.preserved_predicate(receive state, λ s. s.msgs.contains(msg));
send(Message::Pong(v), &mut gl);
gl.release(Action::SendPong(v));

}
}
Listing 3.6: Verified implementation of a Pong server. In order to use facts learned during
previous ghost lock steps, it uses the preserved predicate method.
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We will now show how this is implemented. First, we need to keep track of
old values of the ghost lock, and we do it the same as for regular locks, by
introducing an abstract function old state(s : AbsState) : bool. We then add
postcondition old state(old(sel f .state)) to release and release_stutter,
and old state(init state) to new. This means that if we can assert old state(v)
for some v, then we know that v is a previous value of the ghost lock at that
point.

For the preserved_predicate method, we check in preconditions that the
ghost lock is locked, that the given old state is actually an old state using
old state, and that the given predicate holds for the old state. We also check
that the predicate is preserved by all possible steps, with

∀s, n, a. predicate(s) ∧ next(s, n, a) → predicate(n).

If all these conditions hold, then we conclude in a postcondition that the
predicate holds for the current state.

3.3.5 Linearizability

The model describes a set of behaviors which consist of a sequence of atomic
steps. For a program to correctly refine the model, each ghost lock step must
be atomic with respect to other steps, and we must be able to totally order
all these steps, together with the steps taken by the environment, such that
we obtain a valid sequential behavior of the model. In other words, the ghost
lock steps must be linearizable.

Consider the example is Listing 3.7. The model allows to print 1 and 2 in a
single step. Now imagine that we have two threads executing the bad method
concurrently. It is possible that the print calls are interleaved, such that we
get the output “1, 1, 2, 2”. This behavior is not allowed by the model. The
bad method does not refine the model, because the ghost lock steps are not
linearizable. The good method on the other hand acquires a regular lock on
the standard output before writing 1 and 2. No matter how many threads we
run, we will never get a behavior which is not allowed by the model, because
the ghost lock steps are linearizable. We will see later why the regular lock
acquire and release methods take a reference to the ghost lock.

How can we systematically determine whether a ghost lock step is lineariz-
able? We use the reduction argument by Lipton [5] for this, which we
introduced in Section 2.2. This means that we can treat a ghost lock step as
atomic if it consists of a sequence of right movers, followed by an arbitrary
atomic action and a sequence of left movers. The idea is that we can move
all actions to a single point in the middle, which is the linearization point.
Ghost lock steps are then ordered according to the linearization points.

Right movers are actions which can be moved ‘to the right’ (i.e. later in time)
across actions in other threads, without changing the outcome. Essentially,
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struct AbsState {stdout : AbsSeq<i32>}

enum Action = PrintOneTwo

ghost function next(s : AbsState, n : AbsState, a : Action) : bool
match a {
Action::PrintOneTwo 7→

n = AbsState{stdout : s.stdout.append(1).append(2)}
}

method bad(gl : GhostLock)
requires ¬gl.locked()
ensures ¬gl.locked()

{
gl.acquire();
print(1, &mut gl);
print(2, &mut gl);
gl.release(Action::PrintOneTwo);

}

method good(gl : GhostLock)
requires ¬gl.locked()
ensures ¬gl.locked()

{
gl.acquire();
let ol = stdout.acquire(&mut gl);
ol.write(1, &mut gl);
ol.write(2, &mut gl);
ol.release(&mut gl);
gl.release(Action::PrintOneTwo);

}
Listing 3.7: This example demonstrates linearizability. The bad method is not linearizable,
because with two threads running it concurrently, the print calls could be interleaved. The good
method on the other hand is linearizable.
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right movers are actions that acquire a resource, for example receiving on
a stream (e.g. TCP socket, standard input) to which we have exclusive
access, or acquiring a regular lock which protects an environment resource.
preserved_predicate is also a right mover because it ‘acquires’ an old state
fact, which could come from another thread. Left movers are the dual of
right movers, examples are sending on a stream, or releasing a regular lock.

We call actions that are neither right nor left movers non-movers. There can
be at most one such action per ghost lock step. Examples for non-movers are
reads and writes to shared state where updates are immediately visible, such
as files, GPIO pins, or atomic variables shared between threads.

Actions that are both right and left movers are both-movers; these are actions
that are only visible in the current thread, such as reads and writes to local
variables or the ghost lock state. There are no restrictions for both-movers.

There are also methods like remote procedure calls (e.g. HTTP request), which
consist of a send and receive, and need to be represented by two separate
ghost lock steps. But if we assume that the RPC is handled atomically at the
other end, then we can simplify it to a single non-mover action.

We can now apply these rules to the example in Listing 3.7. print is a non-
mover, so bad is not allowed. Internally, print is implemented as acquiring
the lock on stdout, writing the argument and releasing the lock. In good

on the other hand, we have a right mover (acquire), followed by three left
movers (write and release), which means that this can be treated as an
atomic step.

Verifying linearizability

The question is now, how can we verify this? Our idea is to add a Boolean
flag, did act, to the GhostLock, which represents whether we are past the
linearization point. After acquiring the ghost lock, the flag is initially false,
this is provided by a postcondition ¬sel f .did act on acquire. For a right
mover method, we add a precondition that the flag is false, and ensure that it
is still false in a postcondition. For a non-mover, we also add a precondition
that the flag is false, but in the postcondition the flag is true. Finally, a left
mover has no added precondition, but a postcondition that the flag is true.
With this setup, we can ensure that after a non-mover or left mover is called,
only left movers can be called until the ghost lock is released. In fact, we
can drop the postconditions that the flag is true from non-movers and left
movers, because we do not actually need to know that the flag is true, it is
sufficient that we know nothing about its value.

We can now see why the acquire and release methods of the stdout lock
take a reference to the ghost lock: This is needed to mark them as right and
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method bad(){
let mut g1 = ghostlock_acquire();
let mut g2 = ghostlock_acquire();
let ol = stdout.acquire();
ol.write(1, &mut g1);
ol.write(1, &mut g2);
ol.write(2, &mut g1);
ol.write(2, &mut g2);
ol.release();
g1.release(Action::PrintOneTwo);
g2.release(Action::PrintOneTwo);

}

method good(){
let mut g1 = ghostlock_acquire();
let mut g2 = ghostlock_acquire();
let ol = stdout.acquire();
ol.ghost_acquire(&mut g1);
ol.write(1, &mut g1);
ol.write(2, &mut g1);
ol.ghost_release(&mut g1);
ol.ghost_acquire(&mut g2);
ol.write(1, &mut g2);
ol.write(2, &mut g2);
ol.ghost_release(&mut g2);
ol.release();
g1.release(Action::PrintOneTwo);
g2.release(Action::PrintOneTwo);

}
Listing 3.8: Example with hypothetical interface allowing reentrancy, using the same model as
Listing 3.7.

left movers respectively. We also allow these to be called while the ghost lock
is not locked, because they do not interact with the ghost lock state.

3.3.6 Reentrancy

A design choice we had to make was whether the ghost lock should be
reentrant. Reentrancy means that it is possible to perform a ghost lock step,
while another step is currently ongoing in the same thread. We can either
allow reetrancy, then we need to ensure that it does not lead to unsoundness.
Or we can disallow it, and then we need to check that it does not occur.
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Allow Reentrancy by itself does not seem to be a problem, it is not that
much different from two ghost lock steps happening concurrently in different
threads. We just need to ensure that the left and right movers of one step can
move across the actions of the other step in the same thread.

Consider the method bad in Listing 3.8. Here we use a hypothetical interface
to acquire two ghost lock guards, and then write to stdout after acquiring
the regular lock on it. Obviously, this should not be allowed, because the
output will be interleaved in a way not permitted by the model. The problem
is that the lock on stdout is only exclusive to the current thread, when we
need something stronger: We need the lock exclusively for one ghost lock
guard. In method good, we show how this could be solved: After acquiring
the regular lock, we also call a ghost method to lock it exclusively to one
ghost lock guard. We do this separately to allow a regular lock to remain
locked across multiple ghost lock steps.

Disallow If we disallow reentrancy, we need to ensure that it is not possible.
A GhostLock instance cannot be acquired again if it is already locked. The
user needs to ensure that at most one instance is created in each thread.
Additionally, we make the GhostLock type !Send in the Rust implementation,
which prevents transferring an instance to another thread, where we would
then have two instances.

Comparison When we disallow reentrancy, we need to pass the mutable
reference to the ghost lock through parameters to all methods which use
it. We could avoid this when we allow it. However, this would have the
disadvantage that it becomes easier to omit a ghost lock release call, since we
are not forced to return the ghost lock in a released state. To address this, we
could have a single GhostLock with a counter tracking how many ghost lock
guards are currently open.

There could be cases where reentrancy is useful, such as when we call some
method while in a ghost lock step, and that method needs to perform a
different ghost lock step.

It is not yet clear which option is better. For this thesis, we have decided to
disallow reentrancy.

3.4 Guards

In Listing 3.5, we needed to assume that the local variable c is equal to the
model variable count after acquiring the ghost lock. In this section, we will
see how we can use guards to get rid of this assumption.

The reason we needed the assumption is that after acquiring the ghost lock,
we initially know nothing about the abstract state. This is because between
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the release and acquire, other ghost lock steps could happen, for example in
another thread. In this case, there are no other threads, so we know that the
assumption is correct. But we want to avoid making assumptions, because it
is very easy introduce unsoundness with incorrect assumptions. We want
to say that only this thread is allowed to perform the Increment action, and
then conclude that c = gl.state.count, instead of assuming it.

A guard is a ghost resource. Importantly, each guard must only exist once in
the system; there cannot be two identical guards.

After defining the guards, we then disallow certain transitions of the model
without ownership of a particular guard. For example, we can define a
guard CountGuard, and only allow changing count if the thread owns the
CountGuard.

Next, we can define a predicate over the model state and prove that its
value cannot be changed without access to the guard. This now allows us to
keep track of the value of these predicates, while not holding the ghost lock.
Because the thread owns the guard, and the guard is unique, no transitions
which require the guard can happen elsewhere.

In the original approach [1], guards were used in some of the case studies.
While the idea is the same, the way we implement it in our approach is quite
different. In Listing 3.9, we show how we can replace the assume statement
with guards in the example. Next, we will explain how guards are used and
how they are implemented.

3.4.1 Extending the model

Guard kinds As a first step, we define which guards can exist, with the
GuardKind enum. Variants of this enum can have fields, such as thread or
process identifiers. Usually, there is one guard for each agent in the system
which has some local state. In the example, we have only one guard kind.

Requiring guards for actions Next, we define the action requires guard
function, which defines which guards are required for which action. The
value of the function is true if the guard of kind k is required for action a.
In the example, the Increment action requires the Counter guard, while the
Print0 action does not require guards. If there are multiple agents, then the
action usually has a parameter identifying the agent performing the action.
We can then require the guard with the matching agent identifier.

3.4.2 Creating a guard instance

Guards are represented by the Guard struct. We can create an instance with
the Guard::new method, which takes the guard kind as a parameter. The
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enum GuardKind = Counter

ghost function action requires guard(a : Action, k : GuardKind) : bool
match a {
Action::Increment(v) 7→ k = GuardKind::Counter

Action::Print0 7→ false
}

method main(){
let init state := AbsState{count : 0, stdout : AbsSeq::empty()}
let mut gl := GhostLock::new(init state);
let mut guard := Guard::new(GuardKind::Counter);
let mut guard state := init state;
let mut c := 0;
while c < 5 {

invariant ¬gl.locked();
invariant guard.kind() = GuardKind::Counter;
invariant released(guard.last id());
invariant f inal state(guard.last id()) = guard state;
invariant guard state.count = c;
gl.acquire();
guard.open(&gl);
guarded_preserved_predicate(

guard state, gl.state, guard.kind(), λs. s.count = c);
print(c, &mut gl);
c := c + 4;
gl.state.count := gl.state.count + 4;
guard state := gl.state;
gl.release(Action::Increment(4));

}
}
Listing 3.9: Example with guards. The model is the same as in Listing 3.5. We protect
the Increment action with the Counter guard. After opening the guard, we can then use
guarded preserved predicate to learn that the value of count is still the same as at the end
of the last step where we opened the guard.
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user has to ensure that a guard of each kind is only created once in the entire
system.

The guard kind is stored in the kind field. All fields of the guard are private
and can be read with getter functions.

3.4.3 Opening a guard

When we want to use a guard in a ghost lock step, we call the open method.
After opening the guard, we are then allowed to perform an action which
requires the guard.

The ghost lock release method will need to check whether the required
guards have been opened, so we need some way to remember which guards
have been opened in the current ghost lock step. To do this, we add a field
id : Id to the ghost lock, which identifies the current step of the ghost lock.
The acquire method has no postcondition about the id field, so we can
think of it as assigning a new id each time the ghost lock is acquired. Then,
we create an abstract function guard is open(id : Id, kind : GuardKind) : bool,
which means that the guard of this kind has been opened in the ghost lock
step with this id. open gets a postcondition guard is open(gl.id, sel f .kind), so
we learn this fact when we open a guard. Finally, we can now check whether
required guards were opened by adding to release the precondition

∀k. action requires guard(action, k) → guard is open(sel f .id, k).

Because we now have the id field on the ghost lock, we need to add the
postcondition gl.id() = old(gl.id()) to environment methods, so that the
value is preserved across them. Previously, we had such a postcondition
for the initial state field. But we can now also attach this to the id: We
introduce an abstract function initial state(id : Id) : AbsState, and replace all
uses of gl.initial state() with initial state(gl.id()). The initial state field is no
longer needed, and we can remove the postcondition preserving it from the
environment methods.

3.4.4 Reasoning with guard-preserved predicates

The last remaining step before we can remove the assume statement in the
example is to take advantage of the fact that actions protected by a guard
that we own cannot happen elsewhere. We do this similarly to the preserved
predicates we saw in Section 3.3.4, where we passed a predicate that had to
be preserved by any possible steps. But this time, the predicate only has to
be preserved by steps which do not require the guard that we hold.

Because the guard is unique, we know that when we open a guard, no
ghost lock steps requiring the guard have happened between the last step
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where the guard was opened, and the current step. To be able to express
this formally, we need some way to refer to the final state of the last step
where the guard was opened. If we tried to store this state in a field of the
guard, it seems tricky, because we only know the final state when release

is called, where we do not have access to the guard instance. Instead, we
use an indirection through the id field of the ghost lock. We add a field
last id : Id to the guard, which is set to the current ghost lock step id in
open by a postcondition sel f .last id = gl.id. Then we introduce the abstract
function f inal state(id : Id) : AbsState, analogous to initial state. We add
a postcondition f inal state(old(sel f .id)) = old(sel f .state) to both release

and release_stutter. Now, we can refer to the final state of the last step
where the guard was opened with f inal state(sel f .last id).

What if we open a guard for the first time? When we create a guard,
the last id field is set to the constant id INIT ID, representing the initial-
ization of the ghost lock. The ghost lock constructor has a postcondition
f inal state(INIT ID) = init state. That way, the first time the guard is
opened, the last state is actually the initial state of the ghost lock.

The actual reasoning is done in the separate guarded_preserved_predicate

method. We could also have added this to open instead, but this way allows
to have multiple preserved predicates in the same ghost lock step. The infor-
mation of the last state where the guard was used needs to be passed from
open to guarded_preserved_predicate, which we do with an abstract func-
tion guarded twostate(s : AbsState, n : AbsState, k : GuardKind) : bool. The
meaning of this is that there exists a (possibly empty) sequence of steps
to get from state s to n without using guard k. open has a postcondition
guarded twostate( f inal state(old(sel f .last id)), initial state(gl.id), sel f .kind).

guarded_preserved_predicate takes four arguments: last state : AbsState,
state : AbsState, kind : GuardKind and predicate : AbsState → bool. The first
three arguments match the arguments of guarded twostate, and we have a
precondition guarded twostate(last state, state, kind). It works similarly to
predicate_preserved: The predicate must hold for the old state and be
preserved by all actions which do not require the guard, and then we learn
that the predicate holds in the current state. To check that the predicate is
preserved, we have the precondition

∀s, n, a. predicate(s) ∧ next(s, n, a) ∧ ¬action requires guard(a, kind) →
predicate(n).

In the example in Listing 3.9, we store a copy of the state where the guard was
last used in the variable guard state. This is then used as the first argument to
guarded_preserved_predicate. The count field can only be changed with
the Increment action, which is protected by the guard. This means that the
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predicate λs. s.count = c is preserved without access to the guard. We know
that guard state.count = c and learn that gl.state.count = c, which is exactly
what we need to replace the assume statement from Listing 3.5.

3.4.5 Ensuring soundness

We said that there exists a possibly empty sequence of steps to get from the
last state to the current state without using the guard. But this is only true
if the linearization point of the last ghost lock step is before the one of the
current step. A guard can be sent between two threads, even while there is
an ongoing ghost lock step in both threads, so we need to ensure that this is
sound.

The open method is a right mover, which means that the linearization point
of the current step is after the call to open. We also need to ensure that the
linearization point of the last step is before the call. Actually, we strengthen
this to the requirement that the last step has been released. To imple-
ment it, we introduce the abstract function released(id : Id) : bool, which
means that the ghost lock step with this id has been released. We add the
postcondition released(old(sel f .id)) to release and release_stutter, and
released(INIT ID) to GhostLock::new. Then, we can check the requirement
by adding precondition released(sel f .last id) to open.

3.4.6 Opening guards read-only

Guards can be sent between threads, for example using a Mutex. Rust also
has a RwLock, which allows a single thread to obtain write access, or multiple
threads to obtain read-only access at a time. We would like to be able to put
a guard into a reader-writer lock, and allow multiple readers to open the
guard concurrently in a read-only mode, allowing them to conclude that the
guard has not been used since the last time the guard was opened writably,
but not permitting to perform actions which require the guard. We have not
implemented this in our code, but we show our ideas here.

To implement this, we add a new method open_readonly, which takes &sel f
instead of &mut sel f . It has the same preconditions as open, i.e., gl.locked,
¬gl.did act, and released(sel f .last id). But we only have the single postcondi-
tion guarded twostate( f inal state(sel f .last id), initial state(gl.id), sel f .kind).
This means that the last id is not updated, and we do not learn guard is open,
so we cannot perform actions which require the guard, but we can use
guarded_preserved_predicate.

The challenge, however, is to ensure soundness. We still require that the
last ghost lock step where the guard was used has been released; this part
works the same way as before. But we still need to ensure that guard is
not opened writably in other threads before the linearization point of the
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current ghost lock step. Since we cannot change last id, the other thread is
not prevented from opening the guard. We need some other way to ensure
that the read-only reference to the guard lives until after the linearization
point.

Solution 1 One way to achieve this is with the lifetime system of Rust. We
can specify lifetime bounds, which require one lifetime to live at least as long
as another lifetime. In this case, we want the lifetime 'a of the &'a Guard

to live at least as long as the region between acquire and release of the
ghost lock. To do that, we need a lifetime for this region. We can return a
struct containing PhantomData<Cell<&'b ()>> from acquire, which has to
be given back at release; the lifetime 'b is now exactly the region between
acquire and release. The downside of this solution is that we have this extra
struct which has to be passed back to acquire in every ghost lock step, even
when we do not use read-only guards.

Solution 2 Alternatively, we could add a new field to the ghost lock, to keep
track of which guards have been opened read-only, and with which last id.
Then, we add another method to ‘close’ the guard, which is a left mover
and thus after the linearization point. This method checks that the last id is
still the same, and then removes the guard from the set of opened read-only
guards. In release, we check that this set is empty. With this solution, we
ensure that each read-only open is matched by a close after the linearization
point, and that the guard has not been used in the mean-time. This solution
is also somewhat inconvenient, since it requires two calls for each read-only
opened guard, and needs an additional field on the ghost lock which needs
to be preserved by all environment functions.

Solution 3 Instead, we can also attack the problem from another angle: We
can require all methods that allow sending values to another thread to be
made ghost lock aware, only allowing sending while the ghost lock is not
locked, or as a left mover. This is enough to ensure that the guard is not
used before the linearization point, since it can only be sent to other threads
after the linearization point. For completeness, the receiving side should
similarly be outside a ghost lock step, or a right mover. This looks like the
best solution, because it requires little additional code (passing the ghost lock
to methods that send/receive values), and these restrictions are also useful
elsewhere. For example, for locks which protect environment resources, we
need the mover restrictions anyway.

There is a limited number of ways to send/receive values: Locks, channels,
Arc, and thread spawn/join. Arc is the atomic reference-counting pointer.
When an Arc is dropped and only one reference remains, this reference can
use get_mut to obtain write access to the value. This means that the drop
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implementation of Arc can be used to send values [7]. Since we cannot attach
specifications to drop, we need to replace it with a regular method call and
prevent dropping, as we did for MutexGuard in Section 3.1.5.

3.5 Atomics

In this section, we will see how we can verify programs that use atomics using
our approach. Atomics are variables in memory that can be read and written
concurrently by multiple threads, allowing communication between them.
Each access is performed atomically. There are also more complex operations
available, such as compare and exchange, which atomically compares the value
with a first argument, and if it matches, sets it to a second argument.

For each access, we must choose an ordering, which restricts to what extent
the compiler and processor can reorder accesses. Rust uses the C++ ordering
model. There are three different orderings: Relaxed ordering provides no
ordering guarantees. Release-acquire ordering establishes synchronization
between a store and a load of the written value. Sequentially consistent
ordering guarantees that the total order of accesses agrees with the program
order in each thread. For a formal definition, see the C++ reference on
ordering [8]. The stronger the guarantees are, the higher the performance
cost.

3.5.1 Sequentially consistent ordering

First, we will look at how we can verify programs using atomics with sequen-
tially consistent ordering. This provides very strong guarantees, and is thus
easy to understand.

For verification, we will consider the atomic variables to be part of the
environment. This may seem a bit strange at first, because they are internal
to the program. But atomics allow communication between threads, which is
not that much different from processes communicating over a network.

Sequential consistency means that there exists a total order of all accesses,
such that each load reads the value of the latest preceding store to the same
variable, and this order agrees with the program order. We can model this by
storing the value of each atomic variable in the abstract state. Each access
is a non-mover, which directly operates on the value in the abstract state.
This means that the total order of atomic accesses also has to agree with the
total order of ghost lock steps. We say that two orders agree, if their union is
acyclic. There is nothing which prevents that, assuming that I/O operations
are not reordered across atomic accesses.

We need a way to identify atomic variables, so we require the user to define
an AtomicId enum. Then, we can represent atomics of type AtomicU64 in the
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trusted method SCAtomicU64::new(
val : u64, id : AtomicId, gl : &mut GhostLock)

requires ¬gl.did act()
requires ¬gl.state.atomic allocated.contains(id)
ensures result.id = id
ensures gl.state = AbsState{

atomic allocated : old(gl.state).atomic allocated.add(id),
atomic u64 : old(gl.state).atomic u64.set(id, val),
..old(gl.state)

}

trusted method SCAtomicU64::load(&sel f , gl : &mut GhostLock) : u64
requires ¬gl.did act()
ensures result = gl.state.atomic u64.get(sel f .id)
ensures gl.state = old(gl.state)

trusted method SCAtomicU64::store(
&sel f , val : u64, gl : &mut GhostLock)

requires ¬gl.did act()
ensures gl.state = AbsState{

atomic u64 : old(gl.state).atomic u64.set(sel f .id, val),
..old(gl.state)

}

trusted method SCAtomicU64::compare_exchange(&sel f ,
current : u64, new : u64, gl : &mut GhostLock) : Result<u64, u64>

requires ¬gl.did act()
ensures match result{
Ok(v) 7→ v = current ∧ current = old(gl.state).atomic u64.get(sel f .id)∧

gl.state = AbsState{
atomic u64 : old(gl.state).atomic u64.set(sel f .id, new),
..old(gl.state)

}
Err(v) 7→ v = gl.state.atomic u64.get(sel f .id) ∧ gl.state = old(gl.state)

}
Listing 3.10: Specifications for sequentially consistent atomics. Boilerplate pre- and postconditions
for locked, env state and id are omitted.
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abstract state with a field atomic u64 : AbsMap<AtomicId, u64> (we need one
such field for each of the atomic types). When we construct an AtomicU64, we
provide the AtomicId, which is then stored in a ghost field, and used when
performing operations. The atomic u64 field is also part of the EnvState, so
that it can only be modified by performing atomic operations.

However, it is unsound if multiple AtomicU64 are constructed with the same
AtomicId. This is because, if we store a value in one instance, and then
load from another with the same id, the model tells us that we load the
same value, but during execution the value is of course different. We could
either just require the programmer to be careful and not do this. Or we
can verify that it does not happen, by keeping track of which ids have been
allocated in the abstract state, and only allowing instances to be created if
the id has not been allocated. To do this, we can either add a new field
atomic allocated : AbsSet<AtomicId>, or change the type of the atomic u64
field to AbsMap<AtomicId, Option<u64>>, where None indicates that the id
is not allocated. In practice, the first option seems more convenient. Because
we now need to prove that the id has not been allocated, the model action
where the id is allocated needs to be protected by a guard.

Listing 3.10 shows the specifications for the atomic operations.

3.5.2 Release-acquire ordering

Sequential consistency is easy to reason about, but it has a performance
cost. For performance-critical code, we therefore prefer to use release-acquire
ordering, at the cost of more complex correctness arguments.

First, we look at how release-acquire ordering is formally defined [8]. Happens-
before is a strict partial order of accesses. We have happens-before between
subsequent accesses in the same thread (program order), and between a
store and a load that reads from this store (synchronizes-with). There exists
a modification order for each variable, which is a total order of stores to
that variable. Coherence requirements guarantee that happens-before and
modification order do not contradict:

1. Write-write coherence: If two stores to the same variable are ordered by
happens-before, they are ordered the same way by modification order.

2. Read-read-coherence: If two loads from the same variable are ordered
by happens-before, they either read from the same store, or the stores
they read from are ordered the same way by modification order.

3. Read-write coherence: If a load happens-before a store to the same
variable, then the load reads from an earlier store in modification order.

4. Write-read coherence: If a store happens-before a load from the same
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variable, then the load reads from the same or a later store in modifica-
tion order.

The release-acquire model is a declarative model, but for specifying the
behavior of operations, we need an operational model. Lahav et al. [9]
present such an operational model for a slightly strengthened version of
release-acquire. In this model, there is a local memory and an outgoing
message buffer for each processor. Processors read from and write to their
local memory, and append writes, together with a global timestamp, to their
message buffer. Non-deterministically, processors update their local memory
from the message buffers of all other processors. However, this model does
not seem practical for verifying programs.

Instead, we start with a very simple and weak model, which we will
strengthen later: Each AtomicU64 is represented by an AbsSet<u64> in the
model. A store adds the value to the set, and a load returns any value in the
set. This model is correct, because we know that for any load, the store that
it reads from happens-before it. The happens-before order agrees with the
program order and with the total order of sequentially consistent accesses,
so nothing prevents it from also agreeing with the order of ghost lock steps.
In this model, load is a right mover, because any loaded value can still be
loaded later; and store a left mover, because any stored value could have
been stored earlier without changing the values loaded by other threads. The
model is already sufficient for some use cases, such as a flag that is only set
once.

To strengthen the model, we will take advantage of the requirements on
happens-before and modification order. But before we can even talk about
these relations, we need a way to refer to the operations, which we do with
OpId, a type alias for Id. This is just an opaque identifier; we used the same
type for identifying ghost lock steps. Instead of directly keeping a set of
values in the abstract state, we store an AbsSet<OpId>, containing the set
of ids of all store operations which have been performed on the variable
so far. To refer to the stored values, we introduce the abstract function
op value(id : OpId) : T. The return value is generic to allow the function to be
used for any of the primitive types. We also no longer need a separate field in
the abstract state for each primitive type as we did for sequentially consistent
atomics. The store method now returns the OpId, and load returns the OpId

of the store that it reads from and its own OpId, in addition to the value.

We can now introduce an abstract function to represent the happens-before
relation. For each load, the store that it reads from happens-before it; we
can now state this as a postcondition on load. Happens-before also holds
between subsequent operations in the same thread. To be able to express this,
we introduce the HappenedBeforeToken, which is a struct containing an OpId

in a private field. The meaning of this token is that the contained id happens-
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before any operation performed in the thread where and when it exists. Each
atomic operation returns a token containing its own OpId, and also takes a
token in a parameter. We then establish that the id in the passed-in token
happens-before the operation. This means that we can pass the token of
an operation we performed earlier in the same thread to another operation,
and we obtain happens-before between them. The HappenedBeforeToken

can even be sent between threads, which is sound, because any way of
passing values between threads must establish happens-before between the
sending and receiving operation. Here we assume that the restriction on
sending/receiving values describes in Section 3.4.6 have been implemented;
otherwise we could obtain happens-before relations which contradict the
ghost lock step order, which might be problematic. It must, however, not
be possible to ‘send’ a token by putting it into the abstract state, which
we prevent by not deriving the Copy trait for HappenedBeforeToken. The
AbsState must be Copy and hence cannot contain a token.

Essentially, we are building a relatively simple operational model which says
that each load reads from a store that has happened earlier in ghost lock step
order, and then putting the declarative model that defines release-acquire
on top of this. We could then use the coherence requirements to further
restrict the set of stores that each load can read from. However, we have not
implemented this.

For a successful compare-and-exchange operation, we know that it reads from
the immediately preceding operation in modification order. We represent
this with the abstract function mo next(id : OpId) : OpId, which assigns to an
operation the immediate successor in modification order. After a successful
compare and exchange, we then learn that mo next of the operation that it
reads from is the compare-and-exchange operation itself. This is already
sufficient for verifying our case study which uses atomics. In fact, we did not
even need the happens-before relation for this.

3.6 Modularity

We would like to create reusable modules which can use the ghost lock.
For example, we would like to create an atomics module, which wraps the
atomics of the Rust standard library, and provides trusted specifications of
how actions on the atomics interact with the abstract state in the ghost lock.
Each program could then use the subset of modules that it needs in its model.

Moreover, we would like to create modules which are verified instead of
trusted. For example, our hash set case study (Section 4.2) is a data structure
which is verified against a model, but is not useful on its own, as it needs to
be integrated into a program which uses the hash set. We would like to use
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the hash set as a module in a program with its own model, and somehow
link the program’s model with the hash set’s model.

The hash set is a verified module, which in turn uses the atomics module.
Larger applications could be composed of a hierarchy of independently
verified modules.

3.6.1 Trusted modules

To make the atomics module reusable, it cannot have access to the concrete
types of a specific model, such as AbsState. But if the module does not know
the concrete type of AbsState, it also cannot access the atomics field inside
that struct. Therefore, we project the GhostLock to a ProjectedGhostLock,
which only contains the atomics part of the AbsState.

This is done by the project method, which takes a &mut GhostLock and
returns &mut ProjectedGhostLock. For the specification of this method, the
user has to provide two functions:

function get module(s : AbsState) : AtomicsState
s.atomics

function put module(s : AbsState, atomics : AtomicsState) : AbsState
AbsState{atomics : atomics, ..s}

With this, we can specify that the state field of the projected ghost lock
is initially extracted from the AbsState with get module, and once the
&mut ProjectedGhostLock expires, we put the new value back into the
AbsState with put module. For providing specifications that apply after
expiry, we use the pledge feature of Prusti.

In the Rust implementation, both the regular and projected ghost lock are
generic. The regular ghost lock is generic over a type which must implement
the Model trait. In this trait, the AbsState, Action, GuardKind and EnvState

must be defined as associated types, and init, next, action requires guard and
get env state as associated functions. The type which implements this trait
can be an empty struct. The projected ghost lock is generic over a type which
must implement the Module trait. This trait only requires the ModuleState

associated type. If we want to use a module X in a model, we then have to
implement the trait Project<X> for the model type. This trait requires the
two functions get module and put module.

The ProjectedGhostLock is reduced compared to the GhostLock; it only has
the state and did act field. It is always implicitly locked, and its state field is
private since it is implicitly part of the environment state. The module can
now provide trusted specification for how its methods interact with the state
of the module, and whether these methods are left movers, right movers or
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non-movers. The program passes project(&mut gl) to the methods of the
module.

3.6.2 Modules with inner model

The hash set model has various fields to represent internal state, but at the
highest level we have the set : AbsSet<u64> field, which represents the hash
set as an abstract set. A program which uses the hash set is not interested in
the internal state, but only in how operations interact with this abstract set.
We would like to link the set field of the hash set’s model to a set field of the
same type in the program’s model. The program could then use the hash set
module much like the atomics module, with operations having specifications
of how they interact with the abstract set. But unlike the trusted specifications
of the atomics module, these specifications are verified. They form a contract,
which is fulfilled by the module and relied on by the program.

The idea is that the models of the program and of the hash set are mostly
independent, except that the set fields of both are linked; they always have the
same value and are updated together. We can represent this as a single model
which is a composition of the two models. We have model a, with AbsStateA,
ActionA, inita, nexta, and analogously for model b. The composed model
then looks as follows:

struct AbsState = {a : AbsStateA, b : AbsStateB}

enum Action = A(ActionA) | B(ActionB) | Both(ActionA, ActionB)

ghost function init(s : AbsState) : bool
inita(s.a) ∧ initb(s.b) ∧ s.a.set = s.b.set

ghost function next(s : AbsState, n : AbsState, act : Action) : bool
match act {
Action::A(a) 7→ nexta(s.a, n.a, a) ∧ n.a.set = s.a.set ∧ n.b = s.b
Action::B(b) 7→ nextb(s.b, n.b, b) ∧ n.b.set = s.b.set ∧ n.a = s.a
Action::Both(a, b) 7→

nexta(s.a, n.a, a) ∧ nextb(s.b, n.b, b) ∧ n.a.set = n.b.set
}

Both set fields must be initialized with the same value. A step can be in just
one of the two model, but then the set field cannot change. It can only change
when performing a step in both models simultaneously, and in that case
both fields must be changed to the same new value. Note that this combined
model is only for illustration, it does not exist in the implementation.

To implement this idea, we extend the ProjectedGhostLock with a ig field,
short for ‘inner ghost lock’, which contains the GhostLock for the inner
model. The Module trait gets a new associated type InternalModel, which
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is the model for this inner ghost lock. InternalModel must implement
Project<Self>, such that we can project it to its own ModuleState.

The inner ghost lock is a full ghost lock, and is initially not locked. The
module can use this like a regular ghost lock to make internal steps which
are not linked to the outer ghost lock. The outer ghost lock remains locked
during the entire time that the projected ghost lock exists. If the module
wants to link an internal ghost lock step to the ongoing outer ghost lock
step, it calls the link method on the ProjectedGhostLock. This method
establishes that the value of the linked fields is equal between the inner and
outer ghost lock. After calling link, the module can then call linked_set to
simultaneously update the linked field in the inner and outer ghost lock.

Several things need to be considered to ensure that this is sound. The
linearization point of the inner and outer step should coincide, since in the
combined model, it really is a single step. We do this by making link a non-
mover in the outer model, while it is a both-mover in the inner model. The
linearization point of the outer model is not the link call itself, but equal to
the linearization point of the inner model. The fact that link is a non-mover
also ensures that the outer step can only be linked to a single inner step. It
must only be possible to call linked_set if link has been called before in the
same inner step, since the linked value can only be updated in a combined
step. To ensure this, we use the abstract function linked(id : Id) : bool, which
is true if link has been called while the inner ghost lock had this id. The
linked field should be part of the EnvState in both the inner and outer model,
such that linked_set is the only way to update it.

There are still some unresolved soundness issues. We need to ensure that the
inner ghost lock is initialized, and that the initial value of the linked field is
the same in inner and outer model. For now, we do this ad-hoc by creating
a GhostLock instance for the inner model, which is thrown away (since we
obtain it later with project), and asserting that the linked field has the same
value. Because we allow steps in the inner ghost lock which are not linked
to the outer step, we can have two independent, concurrent ghost lock steps
in the same thread, so considerations similar to allowing reentrancy apply,
which we discussed in Section 3.3.6. There is also the issue that there could
be multiple independent instances of the same model in a bigger application
composed of multiple modules, which themselves rely on other modules. In
this case, we have to ensure that these instances are not mixed. For example,
guards or old state facts from one instance should not be used on a different
instance, as this would be unsound. We could address this by introducing
an instance id, which we would attach to ghost locks, guards and facts, such
that they cannot be mixed between instances. Alternatively, we might be
able to solve this using the type system, by somehow making sure that the
different instances have incompatible types.
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We would like to use the same ProjectedGhostLock also for trusted modules
which do not have an internal model. We can do so by using a dummy model,
and adding trusted specifications to methods as before.

3.7 Assumptions

There are several assumptions that we make, which are needed for soundness,
but not verified automatically. This means that the user of the approach has
to check these assumptions manually or justify them with an external proof.
Here we discuss these assumptions and how they could be lifted.

3.7.1 Initialization

The model is initialized by creating ghost lock and guard instances using the
GhostLock::new(init state) and Guard::new(kind) methods. If the model
has constants, we also need to define their values. We make several assump-
tions about how these methods are used:

1. In each thread, at most one ghost lock instance is created.

2. Each ghost lock instance is created with the same initial state.

3. At most one guard is created of any given kind.

4. Model constants are set to the same value in each process.

The first assumption is needed because we disallow reentrancy, as discussed
in Section 3.3.6. The next two assumptions are because the model can only
have one initial state, and we assume that each guard is unique. Constants
were introduced in Section 3.2.4; it would be a contradiction if a constant
were set to two different values.

Lifting these assumptions is challenging, because the system in which the
model is used can for example consist of distributed processes communicat-
ing over a network. We need to trust the user that all these processes are
started with the correct configuration; for example, that each process has a
unique identifier, such that guards created in each process with this identifier
do not overlap.

What we can do is to create an initialization model, which is a verification-only
method which simulates how the system is configured and initialized. The
creation of processes can be simulated by spawning threads. We can make a
wrapper for the thread spawn method which passes a ghost lock instance to
the thread closure; this way we do not need to call the ghost lock constructor
on each thread.
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To verify that guards are unique, we introduce the guard dispenser. This is a
struct which is used to create guard instances. It remembers which guards
have been created, and only allows each kind to be created once.

With this initialization model, we can now lift the above assumptions, and
we only have to check manually that the ghost lock and guard dispenser are
only created once, and each constant is defined once. Of course, we have the
new assumption that the initialization model is an accurate representation of
the real initialization process, but at least it should be easier to compare the
two.

3.7.2 Termination checking

After acquiring the ghost lock, the program can perform arbitrary actions,
only restricted by the mover requirements. Only when the ghost lock is
released do we check whether this sequence of actions is allowed by the
model, and if not, verification will fail at that point.

This assumes that, whenever the ghost lock is acquired, it is eventually
released. There are two ways to violate this assumption: Either by blocking
or looping infinitely, or by exiting the thread or process without releasing the
ghost lock. This is also related to the second condition of the D-reduction
(Section 2.2), which we have ignored so far. It requires all except the first
action of a ghost lock step to always be able to execute, i.e., they cannot block.

Maier [10] describes how to implement termination checking in Prusti, which
is exactly what we need here, but this is not yet available in the version of
Prusti used for the evaluation of this work. The feature allows us to attach
a terminates attribute to a method, which then requires that method to
terminate. The question is now, which method do we attach the attribute
to? We cannot just attach it to the entry method of the program, since
the program may not terminate. Instead, we could imagine changing the
interface for making ghost lock steps, such that we call some method with
a closure, which performs the step and returns the performed Action. We
would then require this closure to terminate.

To prevent exiting a thread without releasing the ghost lock, our wrapper
method of spawn can require the ghost lock to be in unlocked state when
the thread closure returns. By not adding the terminates attribute to the
process::exit method, we can also block this way of avoiding to release
the ghost lock.
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Chapter 4

Evaluation

4.1 Case study: Paxos

Our first case study is a verified implementation of the Paxos consensus
algorithm [11]. It is based on the TLA+ model of Paxos available at [12] in the
accompanying material. Table 4.1 shows some statistics for this case study.

The Paxos consensus algorithm lets a set of processes choose a value by
communicating with each other over a network. The algorithm guarantees
that, once a value is chosen, no other value can be chosen. There are three
roles: proposers, acceptors and learners. At any point, a proposer can start a
ballot by sending a 1a message to all acceptors, containing a ballot number.
When receiving this message, each acceptor checks whether it has seen
a bigger ballot number before, and if not, it replies with a 1b message,
containing its identity, the received ballot number, and the value and ballot
number of the latest vote it has made so far, if any. The 1b message represents
a promise not to vote in a ballot with smaller than the received number. The
proposer then collects 1b messages, until it has received one from a quorum

Model Impl Proof Verification time

Complete 112 132 152 3.5m
Phase 1a 4 14 24 30s
Phase 2a 21 50 61 2.5m
Phase 1b+2b 27 33 40 1m
Shared part 60 35 27 30s

Table 4.1: Statistics for the Paxos case study. We show statistics for the complete code, and also
for individual phases of the algorithm, and the part shared between phases. For each of these, we
show lines of code for model, implementation and proof, and verification time. Implementation
includes only the lines that are necessary to execute the program. Proof includes pre- and
postconditions, loop invariants, assertions, and ghost code.
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TypeOK ∆
= ∧ maxBal ∈ [Acceptor → Ballot ∪ { − 1}]

∧ maxVBal ∈ [Acceptor → Ballot ∪ { − 1}]
∧ maxVal ∈ [Acceptor → Value ∪ {None}]
∧ msgs ⊆ Message

Send(m)
∆
= msgs′ = msgs ∪ {m}

Phase1b(a) ∆
=

∧ ∃m ∈ msgs :
∧ m.type = “1a”
∧ m.bal > maxBal[a]
∧ maxBal′ = [maxBal except ! [a] = m.bal]
∧ Send([type 7→ “1b”, acc 7→ a, bal 7→ m.bal,

mbal 7→ maxVBal[a], mval 7→ maxVal[a]])
∧ unchanged ⟨maxVBal, maxVal⟩

Listing 4.1: The phase 1b step of the TLA+ model of Paxos [12].

of acceptors. If none of these acceptors had voted before, the proposer is
free to choose a value, otherwise it must take the value from the vote with
largest ballot number in the received messages. It then sends a 2a message
to all acceptors, containing the ballot number and value. Upon receiving
this message, each acceptor again checks whether it has seen a bigger ballot
number, and if not, it votes for this value, by sending a 2b message to all
learners, containing its identity, the ballot number and value. When a learner
has received the same vote from a quorum of acceptors, it learns that this
value has been chosen.

We will now look at phases 1b and 2a of the algorithm in more detail. We
discuss how we translate these parts of the original TLA+ model to Rust
syntax, and how we implement the phases. The other two phases are not
discussed, as there is nothing new to see there.

4.1.1 Phase 1b

Phase 1b is the step where an acceptor sends a 1b message.

Listing 4.1 shows this step in the the original TLA+ specification. The model
has four variables; TypeOK shows their types. maxBal[a] is the largest ballot
number that acceptor a has seen. maxVal[a] and maxVBal[a] are the value
and ballot number of the latest vote cast by a. Finally, msgs is the set of
messages that have been sent. In the Phase1b step, we check that a message
of type 1a has been sent, and that the ballot number is the biggest we have
seen so far. We then update maxBal[a] and send the 1b message.

Listing 4.2 shows the same step after translating it to Rust as described in
Section 3.2. For the state, we use Option instead of sentinel values to denote
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struct AbsState {
msgs : AbsSet<Message>
max bal : AbsMap<Acceptor, Option<Ballot>>

max vote : AbsMap<Acceptor, Option<(Ballot, Value)>>

}

ghost function next(s : AbsState, n : AbsState, act : Action) : bool
match act {
Action::Phase1b(a, b) 7→

s.msgs.contains(Message::Msg1a(b))∧
match s.max bal.get(a) {
Some(mb) 7→ ballot greater(b, mb)
None 7→ true

} ∧
n = AbsState{

msgs : s.msgs.add(Message::Msg1b(a, b, s.max vote.get(a))),
max bal : s.max bal.set(a, Some(b)),
..s

}
. . .

}
Listing 4.2: The phase 1b step of the model translated to our syntax.

that no ballot has been seen or no vote cast yet. We also merge maxVBal
and maxVal into the single max vote field. In the Phase1b step, we avoid
the existential quantifier for the message by adding the ballot number to
the action parameters. Ballot numbers are compared using the ballot greater
function; this is because our ballot numbers are actually a pair of a number
and the proposer identifier. We do this because each proposer must have its
own space of ballot numbers.

The implementation of phase 1b is shown in Listing 4.3. run_acceptor is the
method which runs in each acceptor process. In a loop, it receives messages
and processes them.

The a parameter is this acceptor’s identity. Each acceptor has a guard, which
protects the Phase1b and Phase2b actions for this acceptor. This means that
the entries of the max bal and max vote fields that belong to this acceptor can
only be changed with this guard. We keep copies of these values in the local
variables of the same name. After opening the guard, we can then learn that
the local variables match the values in the abstract state. We always update
both at the same time, such that they stay in sync; in phase 1b we see this in
the max bal update.

Message sending and receiving works the same as with the Pong server in
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method run_acceptor(a : Acceptor, gl : &mut GhostLock,
guard : &mut Guard, init state : AbsState){

let mut max bal : Option<Ballot> := None;
let mut max vote : Option<(Ballot, Value)> := None;
let mut guard state := init state;
loop{

invariant ¬gl.locked();
invariant guard.kind() = GuardKind::Acceptor(a);
invariant released(guard.last id());
invariant f inal state(guard.last id()) = guard state;
invariant guard state.max bal.get(a) = max bal;
invariant guard state.max vote.get(a) = max vote;
gl.acquire();
let msg := receive(gl);
let receive state := gl.state;
gl.release_stutter();
match msg {
Message::Msg1a(b) 7→ {

if match max bal { Some(mb) 7→ ballot greater(b, mb)
None 7→ true }{

gl.acquire();
gl.preserved_predicate(receive state,

λs. receive state.msgs.is subset(s.msgs));
guard.open(gl);
guarded_preserved_predicate(

guard state, gl.state, guard.kind(),
λs. s.max bal.get(a) = max bal ∧

s.max vote.get(a) = max vote);
max bal := Some(b);
gl.state.max bal := gl.state.max bal.set(a, max bal);
send(Message::Msg1b(a, b, max vote), gl);
guard state := gl.state;
gl.release(Action::Phase1b(a, b));

}
}
. . .

}
}

}
Listing 4.3: The implementation of phase 1b. Preconditions for run acceptor are omitted, they
are the same as the loop invariants except with init state instead of guard state.
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Phase2a(b, v) ∆
=

∧ ¬∃m ∈ msgs : m.type = “2a”∧ m.bal = b
∧ ∃ Q ∈ Quorum :

let Q1b ∆
= {m ∈ msgs : ∧ m.type = “1b”

∧ m.acc ∈ Q
∧ m.bal = b}

Q1bv ∆
= {m ∈ Q1b : m.mbal ≥ 0}

in ∧ ∀ a ∈ Q : ∃m ∈ Q1b : m.acc = a
∧ ∨ Q1bv = {}

∨ ∃m ∈ Q1bv :
∧ m.mval = v
∧ ∀mm ∈ Q1bv : m.mbal ≥ mm.mbal

∧ Send([type 7→ “2a”, bal 7→ b, val 7→ v])
∧ unchanged ⟨maxBal, maxVBal, maxVal⟩

Listing 4.4: The phase 2a step of the TLA+ model of Paxos [12].

Listing 3.6. We use preserved_predicate to establish that the msgs field of
the state at the time we received the message is a subset of gl.state.msgs. In
particular, this means that gl.state.msgs.contains(msg).

4.1.2 Phase 2a

Phase 2a is the most complex of the four phases of Paxos. As in the previous
section, the original TLA+ model is shown in Listing 4.4, and our translated
version in Listing 4.5.

In this phase, we have to prove that we received a 1b message for the ballot
from each of a quorum of acceptors. In the original TLA+ model, the relevant
messages are first filtered from msgs using a set comprehension and bound
to Q1b. It requires there to be a message from each acceptor of the quorum
in Q1b. The subset of messages is then further filtered to Q1bv, containing
only messages with votes. This is then used to specify the requirement that
if there are votes, the picked values must be from the vote with the largest
ballot number.

In our translation of the step, we avoid set comprehensions. Instead of the
disjunction and existential quantifier for the maximum vote, we use the
action parameter max b, which contains the acceptor and ballot number of
the maximum vote, if any.

One particular difference between the two versions is that in the original
step, we have to prove that all 1b messages in msgs of ballot b have votes
with number less or equal to the claimed maximum vote. In other words,
we have to prove that there do not exist messages in msgs where the number
is bigger. In our version on the other hand, only the existence of messages
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Action::Phase2a(b, v, q, max b) 7→
¬∃v2. s.msgs.contains(Message::Msg2a(b, v2))∧
quorum().contains(q)∧
match max b {
None 7→ ∀a. q.contains(a) →

s.msgs.contains(Message::Msg1b(a, b, None))
Some((a, mb)) 7→ q.contains(a)∧

s.msgs.contains(Message::Msg1b(a, b, Some((mb, v))))∧
∀a2. q.contains(a2) → ∃vote.

s.msgs.contains(Message::Msg1b(a2, b, vote))∧
match vote {
Some((mb2, )) 7→ ballot greater equal(mb, mb2)
None 7→ true

}
} ∧
n = AbsState{ msgs : s.msgs.add(Message::Msg2a(b, v)), ..s }

Listing 4.5: The phase 2a step of the model translated to our syntax. We omit the surrounding
next function and match expression.

has to be proven. This is relevant, because in the implementation, we cannot
directly prove the absence of messages. All we know about msgs is that
it contains the messages that we received. It would still be possible to
implement phase 2a with the original version of the model though. We know
that each acceptor sends at most one 1b message for any ballot number, and
could take advantage of this using preserved_predicate to prove that there
cannot exist other messages from the same acceptors with the same ballot
number. By writing the model in such a way that only presence of messages
that were received has to be proven, we can avoid this reasoning step in the
implementation. This change does not affect the possible behaviors of the
model, though. As we saw before, the additional messages whose absence
we do not have to prove in the new version could not exist anyway.

In our version of the model, we have replaced most existential quantifiers
with parameters on the action, but not all of them. We experimented with
replacing the ∃vote quantifier in our version with a parameter of type
AbsMap<Acceptor, Option<(Ballot, Value)>>, but this did not improve
verification time. Usually though, replacing quantifiers with parameters does
help verification to succeed.

The implementation of phase 2a receives messages in a loop, until a 1b

message is received from a majority of acceptors. We need to remember
from which acceptors we already received a message to avoid duplicates,
so we store this in a hash set. We also keep an AbsSet version of this set,
which is later used as the q parameter of the Phase1a action. The maximum
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4.2. Case study: Lock-free hash set

Model Impl Proof Verification time

123 57 376 3m

Table 4.2: Statistics for the hash set case study. The unverified implementation has 43 lines of
code. After verification, this has slightly expanded as some parts had to be split into multiple
lines.

vote we have seen so far is kept in a variable, and we use a loop invariant
to remember that it is the maximum vote. The proof of this loop invariant
is non-trivial, since it requires transitivity of ballot greater equal when we
find a vote with bigger number. Despite that, the verifier is able to prove it
without additional help.

4.2 Case study: Lock-free hash set

Our second case study is a lock-free hash set, which allows multiple threads to
concurrently insert values, and uses open addressing for collision resolution.
It is based on the TLA+ model and corresponding Java implementation
available at [13]. Almost exactly the same hash set was part of the VerifyThis
competition 2022 [14]. Table 4.2 shows statistics for this case study.

In addition to verifying that our implementation correctly implements our
model, we also verify that the operations on the set behave like the corre-
sponding operations on an abstract set. In Section 3.6.2, we discussed how
we expose this to the user of the hash set. This means that we do not have to
trust that the model is correct. We also implemented unit tests for the hash
set, to check that it is executable and works as expected.

To give some context, this is a special-purpose data structure used in the
TLC model checker [15]. The model checker walks the graph of reachable
states, starting from the initial state, and for that, it needs to know which
states it has already visited. To do that, it computes a 64-bit hash of each
found state, which is called a fingerprint, and then tries to insert it into the
hash set. If the fingerprint was already in the set, this state has already been
visited (or a different state with the same hash, i.e., a collision). Otherwise,
the state is inserted into a queue for later processing. This walking of the
state graph is done on multiple threads in parallel, so the hash set needs to
support concurrent accesses.

The hash set consists of an array of 64-bit integers, which are accessed with
atomic operations. Initially, each array entry is zero, indicating that it is
empty. A non-zero array entry means that the set contains this value. The
set cannot contain the value 0. Values cannot just be inserted at an arbitrary
position in the array; instead, the 64-bit value is scaled linearly to the length
of the array to obtain the primary position. When inserting, we first check
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4.2. Case study: Lock-free hash set

enum AtomicId = ArrayEntry(usize)

struct AbsState {
set : AbsSet<u64>
array : AbsMap<usize, u64>

array len : usize
val to probe : AbsMap<u64, usize>

idx to init op : AbsMap<usize, OpId>

idx to last op : AbsMap<usize, OpId>

atomics : AbsMap<AtomicId, AbsSet<OpId>>

}

enum Action = Init(usize, OpId) | Add(u64, usize, OpId, OpId)

Listing 4.6: The state and action types of our hash set model.

the primary position. If it already contains a different value, we check the
primary position + 1, wrapping around at the end of the array. We continue
looking for an empty position, up to the probe limit, which is the maximum
number of positions that we check before giving up; by default this is 1024.
The value must be inserted in the first empty position seen while probing.
This means that, when we find an empty position and have not seen the
value yet, we can be sure that the set does not already contain the value. The
hash set only supports a single operation, which is to insert values; it is not
possible to remove values.

In the full implementation, we do not just give up when we reach the probe
limit. Instead, we lock the set and wait until all other threads finish what they
were doing. Then, all values from the array are flushed into a file, containing
sorted fingerprints, and work can continue. For each insert operation, we
now also need to check whether the fingerprint is contained in the file. We
omit this part in our verified implementation.

4.2.1 Model

Our model is very different from the original TLA+ model [13] of the hash
set. The original model describes flushing to disk, which we omit. It is
written in the PlusCal language, which allows to write TLA+ models in an
imperative style. It is focused more on how the algorithm works and has
many steps, while our model only describes what it does, and leaves the how
to the implementation.

The state of our model is shown in Listing 4.6. At the highest level of
abstraction, we have the set field, which contains the set of values in the hash
set. At a lower level, we have the array field, which contains the current value
of each array entry. array len is the length of the array, this stays constant.
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4.2. Case study: Lock-free hash set

For each value in the set, we store the probe offset where it is stored in the
array in val to probe. At the lowest level of abstraction, we have the atomics
field. We use our release-acquire model for the atomics as described in
Section 3.5.2, where the atomic operations are specified in terms of this field.
There is an atomic variable for each array entry. The atomics field contains
the set of store operations for each atomic variable, identified by the OpId.
We also separately store the individual operations that we perform in the
idx to init op and idx to last op fields.

In Listing 4.7, we show initialization and transition relations of our model.
We only care about the initial values for set, array and atomics. The value of
val to probe.get(val) for a given val only matters if val is contained in set, so
the initial value of val to probe is irrelevant; and something similar applies
to idx to init op and idx to last op.

There are only two actions in our model: Init initializes an atomic variable,
and Add inserts a value into the set. The Init action is protected by a guard,
because we can only initialize a variable if we know that it is not already
initialized. Other than initializing the atomic variable with the value EMPTY,
this action only stores the initialization operation in idx to init op, so that we
can later refer to it.

The Add action is the most interesting, and there is a lot going on here. op is
the atomic operation which writes the value into the array. We first check that
the value stored by this operation is val, and that this value is non-zero. The
array length must be non-zero, since this is a precondition of get idx, which
computes the position in the array for a given value and probe offset. probe
contains this offset, and we check that every array entry before this is already
filled. The entry itself must be empty. op is actually a compare-and-exchange
operation, which atomically replaces the previous empty value with val. To
check this, we require the operation immediately following the initialization
operation in modification order to be op. Finally, we also check that the
atomic variable has been initialized. If all these conditions are satisfied, we
then update the state accordingly.

4.2.2 Implementation

The constructor creates the array and initializes the atomic variables in a loop,
performing an Init action for each. The insert operation has an outer loop
which searches the first empty probe offset, remembering that entry f illed
holds for every previous position. In an inner loop, we read the value from
the array, and if empty, try to compare and exchange it with the value to be
inserted. The compare-and-exchange operation may fail in case of concurrent
operations by other threads, in which case we have to try again. We may also
find that the value is already present in the set; in which case we indicate
this fact to the caller.
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4.2. Case study: Lock-free hash set

const EMPTY : u64 := 0

ghost function init(s : AbsState) : bool
s.set = AbsSet::empty()∧
s.array = AbsMap::new(EMTPY)∧
s.atomics = AbsMap::new(AbsSet::empty())

ghost function entry f illed(s : AbsState, val : u64, probe : usize) : bool
s.array.get(get idx(s.array len, val, probe)) ̸= val ∧
s.array.get(get idx(s.array len, val, probe)) ̸= EMPTY

ghost function next(s : AbsState, n : AbsState, a : Action) : bool
match a {
Action::Init(idx, op) 7→

let id := AtomicId::ArrayEntry(idx) in
op value(op) = EMPTY ∧
s.atomics.get(id) = AbsSet::empty()∧
n = AbsState{

idx to init op : s.idx to init op.set(idx, op),
atomics : s.atomics.set(id, AbsSet::singleton(op)),
..s

}
Action::Add(val, probe, init op, op) 7→

op value(op) = val ∧ val > 0 ∧ s.array len > 0∧
∀p. p < probe → entry f illed(s, val, p)∧
let idx := get idx(s.array len, val, probe) in
let id := AtomicId::ArrayEntry(idx) in
s.array.get(idx) = EMPTY ∧
s.idx to init op.get(idx) = init op∧
mo next(init op) = op∧
s.atomics.get(id) ̸= AbsSet::empty()∧
n = AbsState{

set : s.set.add(val),
array : s.array.set(idx, val),
val to probe : s.val to probe.set(val, probe),
idx to last op : s.idx to last op.set(idx, op),
atomics : s.atomics.set(id, s.atomics.get(id).add(op)),
..s

}
}

Listing 4.7: The init and next relations of our hash set model.
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4.2. Case study: Lock-free hash set

method insert(&sel f , val : u64, gl : &mut ProjectedGhostLock) :
Result<bool, ()>

requires val ̸= EMPTY
requires sel f .invariant()
requires ¬gl.ig.locked()
ensures ¬gl.ig.locked()
requires ¬gl.did act()
ensures match result {
Ok(p) 7→ old(gl.state()).contains(val) = p∧

gl.state() = old(gl.state()).add(val)
Err(()) 7→ ¬gl.did act() ∧ gl.state() = old(gl.state())

}
Listing 4.8: The specification of the insert method.

In Listing 4.8, we show the specification of the insert method. It returns a
Boolean to indicate if the value was already in the set. Insertion may fail if
the probe limit is reached, in which case an error is returned. The high-level
operation is specified using the ProjectedGhostLock.

In the implementation, we make heavy use of preserved_predicate to prove
all kinds of facts about the abstract state. Many of these calls are in separate
lemma methods which are called from the insert method. Splitting it up
this way makes it easier to read, but also improves verification time.

As a simple example; if we load an array entry and find that the value is
equal to the value we are trying to insert, we want to conclude that the
value is already in the set. When we perform the load operation, we obtain
the operation prev op which has stored the value we loaded, and we learn
that gl.state.atomics.get(id).contains(prev op) and val = op value(prev op).
We can use preserved_predicate with the initial state and the predicate
λs. s.atomics.get(id).contains(prev op) → s.set.contains(val) to obtain that
gl.state.set.contains(val). This works because the step which added prev op
to atomics must also have added val to the set. Notably, we do not have to
explicitly state all the preconditions that are required for the predicate to be
preserved. The verification tool can use facts such as val = op value(prev op)
from the context for the proof.

For some more complex reasoning steps, we call preserved_predicate with
a predicate of the form λs. ∀x. p(s, x), where p is substituted with some
formula. To verify this, the verification tool will need to prove

∀s, n, a. (∀x. p(s, x)) ∧ next(s, n, a) → (∀x. p(n, x)),

which it can have trouble with. We found that in some cases, we could make
it work by asserting ∀s, n, a, x. p(s, x) ∧ next(s, n, a) → p(n, x) before the call
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to preserved_predicate. For the cases where p is more complex, we created
a lemma method which takes a predicate p and has the formula from the
assertion mentioned before as a precondition, but now without p substituted
for a different formula. We can directly use preserved_predicate with
λs. ∀x. p(s, x) to prove this lemma method.

4.3 Comparison with other refinement approaches

4.3.1 Flexible Refinement Proofs in Separation Logic

Our approach is based on the refinement approach described by Bı́lý et
al. [1], and the accompanying examples written in the Viper language. The
high-level ideas are similar to our approach, but the encoding used in the
Viper examples is quite different, especially for guards.

Guards are represented as Viper permissions. To define which actions
require which guards, they require the guard permission to be present in
the preconditions of the action itself. Guard-preserved predicates are not
provided inline in the implementation as in our approach, but must be stated
as separate Boolean functions. For each such function, there is a method
in which they prove that its value is preserved by the next relation if the
permission for this guard is absent.

In our approach, on the other hand, we separate the identification of guards
(GuardKind) from the guard resource itself (Guard). To define which actions
require which guards, we have the separate action requires guard function.
We rely heavily on abstract functions to represent the state of ghost lock steps,
such as whether a guard has been opened. As we saw in Section 4.2.2, the
fact that we state (guard-)preserved predicates inline in the implementation
instead of separately means that we can rely on facts from the context without
having to explicitly state them.

4.3.2 IronFleet

IronFleet [16] is another approach which can prove refinement between a
TLA+-style model and an implementation. It is implemented in the Dafny
language, which has similar features as Prusti. This approach is specifi-
cally for the verification of distributed systems, consisting of a set of hosts
communicating over a network.

As in our approach, they define a global state machine in terms of an init and
next predicate. Unlike our approach, this is then first refined to a distributed
state machine, with state consisting of the environment state and the state of
each host. A step in this state machine is a step of one of the hosts.
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The implementation is provided in the form of two methods HostInitImpl
and HostNextImpl. HostNextImpl takes a HostEnvironment and HostState,
and must return the new HostState. This method then runs in a loop on
each host. In our approach, this could be represented as a loop in which
we acquire the ghost lock, call HostNextImpl and release the ghost lock.
The HostEnvironment records a history of environment interactions, and
serves the same role as the env state field of our ghost lock. Rather than
having ghost state that the implementation can modify (the state field in our
approach), we have an abstraction function which takes the HostState and
returns the corresponding state of the host model. There are no guards in
this approach; each host can only modify its host state and the environment
state.

There is nothing like the preserved_predicate method of our approach.
The host next relation corresponds closely to the implementation and has
no preconditions that would require this. Instead, they use invariants of the
model for the refinement proof between the global and distributed models.

As in our approach, they use a reduction argument to allow a single step
to perform a sequence of receives followed by a sequence of sends. But
they check this by stating it as a requirement on the history of environment
interactions, rather than with a Boolean flag as in our approach.

4.3.3 Verus Transition Systems

Verus Transition Systems [17] is an approach intended mainly for the veri-
fication of multi-threaded code. They can define a state machine and then
verify that an implementation refines it. It is part of Verus [18], a verification
tool for Rust.

Rather than defining init and next relations as predicates, they use a custom
language, where actions are written in an imperative style. In the implemen-
tation, they annotate atomic operations with the corresponding action of the
state machine, using the atomic_with_ghost macro. This corresponds to our
ghost lock step. They do not use a reduction argument, and instead only
perform one atomic operation per state machine step.

They use tokens, which are linked to a specific field of the state, rather than
guards which protect certain actions. There are different tokenization strategies.
For example, in the variable strategy, there is exactly one token for the field,
which contains the value of the field. The field can only be changed when
owning the token. In the count strategy, there can be any number of tokens,
and the value of the field is the sum of all tokens.

Rather than having a protected environment part of the state as in our
approach, they use tokens to protect fields from changes. When constructing
an atomic variable, they have to hand over the token of the field which
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represents this variable. The token also replaces the AtomicId from our
approach.

They can define inductive invariants, which must be preserved by all transi-
tions. These are part of the definition of the state machine, rather than stating
them inline in the implementation as in our approach.

It would be interesting to implement their producer-consumer queue example
in our approach, in order to compare the two approaches. It should be
possible to implement their PCell, a verified version of Rust’s UnsafeCell,
in our approach. To do so, we would need to remember whether the PCell

is initialized in the abstract state, and check that subsequent accesses are
related by happens-before to prevent data races.

Each instantiation of the state machine is identified by an instance, and
tokens are associated with that instance. The instance and the initial set
of tokens is returned by the same method call. This way, no assumptions
about initialization are needed as in our approach (Section 3.7.1), as long as
we only have concurrency but not a distributed system. Similarly, the fact
that only a single action can be performed in a state machine step avoids
the assumption that each ghost lock step terminates (Section 3.7.2). It might
make sense to give up the ability to perform multiple actions in the same
step in our approach, if it allows us to remove the termination assumption.
We have not actually taken advantage of this ability in our case studies.

4.4 Limitations of Prusti

Here we discuss current limitations and missing features in Prusti, and
how these could be addressed, based on our experience in this work. The
implementation of most of these features is described by Maier [10], but they
are not yet functional in the version of Prusti used for the evaluation of this
work.

4.4.1 Abstract data types

It would be useful to have the abstract types Int, Id, Set<T>, Map<K, V> and
Seq<T> as part of the Prusti standard library. Many of these already exist in
Viper [19], the intermediate verification language which Prusti targets, so it
should be possible to expose them in Prusti. Int is the unbounded integer
type.

Id is an identifier without inherent meaning; it could be implemented as a
Viper domain. This type is useful in combination with abstract functions,
which allow us to attach meaning to the identifier. In our implementation,
we used u32 as the identifier type. This is not entirely correct, since it means
that there exists only a finite set of identifiers; but in practice it is not an issue,
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as the verification tool will not exploit this fact on its own. The identifier
type needs to support defining constants; with u32 we use arbitrary numbers
to define the values of constants.

The set, map and sequence types can be implemented using Id and abstract
functions, and we did so in our implementation. We also need axioms, e.g.
to state that two set which contain the same values are identical. Prusti
does not allow us to define axioms, but we can approximate it by stating the
axiom as a postcondition on an abstract method or function. Our map type is
total, meaning that it assigns a value to every key; if a partial map is needed,
Map<K, Option<V>> can be used.

In Section 3.2.3, we described how we can create a map which maps each key
to the value of an expression which depends on the key. This is cumbersome
to use, as the expression has to be put in the postcondition of a separate
function. But it serves as a proof of concept for a builtin map expression,
which could look similar to existing quantifier expressions.

4.4.2 Ghost code and data

In our approach, we rely on ghost code and data; for example, the ghost lock
is ghost data, and its methods are ghost code. However, Prusti does not yet
support ghost code, which means that in our implementation, the ghost code
ends up being executed at runtime. We can do this for a proof of concept,
but this is not suitable for actual use.

The way this could work is that we could define methods to be ghost meth-
ods. These methods must be verified to terminate, and we could allow the
extended specification expression syntax to be used in them. In regular
methods, we could have ghost blocks, which contain ghost code and call
ghost methods.

We also need ghost data, which can be stored in variables and struct fields,
and passed between methods in parameters and return values. This ghost
data can only be accessed by ghost code, and does not exist at runtime. One
way to achieve this is to define a wrapper type Ghost<T>, which contains
ghost data of type T [10, p. 22]. This type is like Box<T>, the heap-allocated
pointer in Rust, except that its size is zero instead of the size of a pointer, and
it can only be accessed in ghost code.

Guards in our approach must be unique, so it must not be possible to copy
a guard. But in some situations, we would like to make ghost copies of a
resource, so that we can later refer to the value it had at that point, even if
the resource does not implement the Copy trait and thus cannot normally
be copied. In Verus [18], there are actually two different types of ghost
data: spec and proof. spec data can be copied arbitrarily, while proof

respects ownership rules. There are two ways in which this idea could be
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implemented in Prusti: Either we could have two different ghost wrapper
types, similar to Verus. Alternatively, we could let the guard type itself be
regular non-ghost data, but make all its fields ghost data by wrapping them
in Ghost<T>. Then, the guard still exists during compilation, but is zero-size,
such that it can be optimized away by the compiler. It would be possible
to put a guard inside a Ghost<T> and thus make a copy of it, however, the
methods of the guard cannot be used with this copy.
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Chapter 5

Conclusion

We developed an approach for proving refinement between a TLA+ model
and a Rust implementation, and demonstrated it on two case studies. The
main challenge was to develop the interface and specifications of the ghost
lock and guard, in a way that is practical to use but also sound; we have
collected these specifications in Appendix A. Abstract functions turned out
to be a very useful tool for this, as they can be used almost like a relational
database.

We have implemented several ideas that we have not seen in existing refine-
ment approaches, such as reduction checking using a Boolean flag, or the
ability to state preserved predicates inline in the implementation, as opposed
to defining invariants as part of the state machine itself.

There is still work left to do for the approach to become practical for use
in the software industry. We ran into several limitations and bugs in Prusti.
The most severe limitation is the lack of support for ghost code. We have
fixed a small number of limitations in the Prusti code base, but in most
cases, we worked around them, by writing our code in a different way. These
workarounds are marked with comments in our case studies, which may
serve as a reference for future improvements to Prusti. However, after imple-
menting all these workarounds, it is impressive what is already achievable
today with Prusti.

The approach itself still makes some assumptions that are not checked
automatically. We could either just accept this, or try to lift these assumptions,
as discussed in Section 3.7. Verus Transition Systems [17], which we only
learned about very recently, is quite similar to our approach in some ways,
and could serve as inspiration here.

Our approach to modularity works well for the hash set case study, but to
evaluate how suitable it is for the verification of large applications, a larger
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case study would be useful. It also adds more assumptions that need to be
checked manually.

Finally, we could increase confidence in the approach by formally verifying
its soundness in a proof assistant. This boils down to proving that our
specifications of trusted methods are sound.
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Appendix A

Ghost lock and guard specifications

Here, we show all specifications of the ghost lock and guard.

struct GhostLock {
locked : bool, did act : bool, id : Id,
pub state : AbsState, env state : EnvState

}

struct Guard {kind : GuardKind, last id : Id}

const INIT ID : Id

abstract function old state(s : AbsState) : bool

abstract function released(id : Id) : bool

abstract function initial state(id : Id) : AbsState

abstract function f inal state(id : Id) : AbsState

abstract function guard is open(id : Id, kind : GuardKind) : bool

abstract function guarded twostate(
s : AbsState, n : AbsState, k : GuardKind) : bool

abstract method GhostLock::new(init state : AbsState)
requires init(init state)
ensures ¬result.locked
ensures old state(init state)
ensures released(INIT ID)
ensures f inal state(INIT ID) = init state
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abstract method GhostLock::acquire(&mut sel f )
requires ¬sel f .locked
ensures sel f .locked
ensures ¬sel f .did act
ensures initial state(sel f .id) = sel f .state
ensures sel f .env state = get env state(sel f .state)

abstract method GhostLock::release(&mut sel f , action : Action)
requires sel f .locked
ensures ¬sel f .locked
requires sel f .env state = get env state(sel f .state)
requires next(initial state(sel f .id), sel f .state, action)
requires ∀ kind. action requires guard(action, kind) →

guard is open(sel f .id, kind)
ensures old state(old(sel f .state))
ensures released(old(sel f .id))
ensures f inal state(old(sel f .id)) = old(sel f .state)

abstract method GhostLock::release_stutter(&mut sel f )
requires sel f .locked
ensures ¬sel f .locked
requires sel f .env state = get env state(sel f .state)
requires initial state(sel f .id) = sel f .state
ensures old state(old(sel f .state))
ensures released(old(sel f .id))
ensures f inal state(old(sel f .id)) = old(sel f .state)

abstract method GhostLock::preserved_predicate(
&sel f , s : AbsState, predicate : AbsState → bool)

requires sel f .locked
requires ¬gl.did act
requires old state(s)
requires predicate(s)
requires ∀s, n, a. predicate(s) ∧ next(s, n, a) → predicate(n)
ensures predicate(initial state(sel f .id))

abstract method guarded_preserved_predicate(
last state : AbsState, state : AbsState,
kind : GuardKind, predicate : AbsState → bool)

requires guarded twostate(last state, state, kind)
requires predicate(last state)
requires ∀s, n, a. predicate(s) ∧ next(s, n, a)∧

¬action requires guard(a, kind) → predicate(n)
ensures predicate(state)
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abstract method Guard::new(kind : GuardKind)
ensures result.kind = kind
ensures result.last id = INIT ID

abstract method Guard::open(&mut sel f , gl : &GhostLock)
requires gl.locked
requires ¬gl.did act
requires released(sel f .last id)
ensures sel f .kind = old(sel f .kind)
ensures sel f .last id = gl.id
ensures guard is open(gl.id, sel f .kind)
ensures guarded twostate(

f inal state(old(sel f .last id)), initial state(gl.id), sel f .kind)
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