
Ownership Typesystem based Optimisations for Rust
Master Thesis Project Description

Janis Peyer
Supervised by Prof. Dr. Peter Müller, Vytautas Astrauskas, Federico Poli

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction
Rust [1] is a modern programming language designed

to develop performant and safe low-level software. Recent
work [2] defines an operational semantics for Rust called
Stacked Borrows, which justifies new optimisations by
introducing undefined behaviour. So far these optimisa-
tions were not implemented in Rust. Implementing static
analyses that enables these optimisations is the main goal
of this master’s thesis.

In this section we will first describe the kind of optimi-
sations we want to implement and briefly explain the Rust
knowledge required to understand them, and last we will
talk about Stacked Borrows and explain how it justifies
these optimisations.

A. Optimisations
The optimisations we want to implement are based on

the knowledge, that certain references do not alias each
other. Two references alias each other if the location they
point to partially or fully overlap. To explain the target
optimisation and how non-aliasing information makes it
possible we will discuss a concrete example right away.

1 fn no_alias(
2 x: &mut i32,
3 y: &mut i32,
4 ) -> i32 {
5 *x = 42;
6 *y = 7;
7 return *x;
8 }

Listing 1: Example of a Non-Aliasing Optimisation

Listing 1 defines a function no_alias that takes two
mutable references x and y as parameters. Then in the
body of the function we first write 42 to the underlying
value of x, second we write 7 to the underlying value of y,
and last we return the underlying value of x as the result
of the function.

We would now like to argue, that x and y do not alias
each other. If that was the case, we could show that the
assignment to *y does not change the underlying value of x
and therefore, we could optimise the code above to return

42 directly instead of reading *x again. Because x and y
are mutable references, Rust prevents them from aliasing
each other. This is one of the rules that are enforced at
compile time by a static stage of the Rust compiler called
borrow checker.

While the borrow checker has a lot of advantages and
ensures memory safety, there are cases where the enforced
rules are too restrictive and prevent valid use cases. An
example of a valid use case that is not allowed, is a channel
data structure that allows inter-thread communication,
because it requires shared mutable state. Another even
simpler example is building a cyclic linked list, which
would also be prevented by the borrow checker.

This is where unsafe Rust comes into play. Unsafe Rust
is a programming language similar to (safe) Rust, but
it allows accessing shared mutable state and the use of
C-style raw-pointers including pointer arithmetic. Unsafe
Rust can be used inside of a safe Rust code-base by
specifying scopes as unsafe. Code inside of such a scope
is handled as unsafe Rust.

Users are advised to predominantly use safe Rust and
either use unsafe Rust in concise small blocks of code or
by using modules that provide safe abstractions around
unsafe code. Even with these guidelines, unsafe Rust has
been found to be used in a significant amount of Rust
projects [3], so we have to consider unsafe Rust when we
develop optimisations for Rust.

Using unsafe Rust we can construct an example that
would make the shown optimisation of replacing *x with
42 in Listing 1 invalid. The following Listing 2 shows, how
unsafe Rust can be used to create two mutable references
that point to the same underlying value and pass them to
our function no_alias that is completely written in safe
Rust.

On line 2 a pointer to the local variable v is cre-
ated. Then no_alias is called, and using the pointer
two mutable references that both point to v are passed
as arguments. Because pointer dereferencing is used, the
function call has to be wrapped in an unsafe block to opt-
in to unsafe Rust. This example compiles without errors
and is considered valid by the borrow checker.

This program would be a counterexample to the out-
lined optimisation: for our function no_alias, the mutable

1



1 let v = 5;
2 let raw_pointer = &mut v as *mut i32;
3 let result = unsafe {
4 no_alias(
5 &mut *raw_pointer,
6 &mut *raw_pointer,
7 )
8 };

Listing 2: Unsafe Rust Code Creating Aliasing Mutable
References

references x and y could potentially alias each other.
That would mean the assignment to *y could also modify
the underlying value of x and we could not simplify the
subsequent read from *x.

B. Stacked Borrows

Stacked Borrows [2] is an operational semantics which
encodes aliasing rules for references in safe and unsafe
Rust. These rules are designed to compute identical or
more liberal rules than Rust’s borrow checker for safe Rust,
but other than the borrow checker, Stacked Borrows’ rules
also extend to unsafe Rust.

The Stacked Borrows rules are implemented in Miri,
which is an interpreter for Rust that works as a dynamic
analysis tool for aliasing information when combined with
Stacked Borrows. Because Miri is an interpreter, executing
a program is about 1000 times slower compared to running
the same code as a compiled binary. That is the main
reason, why the interpreter is implemented to run nightly
test suites rather than replacing compiled rust.

Stacked Borrows work by tracking which references
currently have access to which memory locations. Non-
reference variables are treated as references to their stack
locations. Each memory location tracks which references
currently have access on a borrow stack: Creating a ref-
erence pushes it on the stack. Accessing the value with
reference r pops every reference above r from the stack.
This is introduced as stack principle, which enforces well-
nested usage of references and is argued to be equivalent
to what the static borrow checker does but extended to
unsafe Rust and C-style pointers.

For the use in optimisations, everything that violates
Stacked Borrows’ rules is considered undefined behaviour.
Doing this justifies, that the compiler can assume an input
program to conform to Stacked Borrows in every situation
and is free to do anything if it does not. Using this back
in our optimisation example, we can now formally reason
that Listing 2 does not conform to Stacked Borrows and
introduces undefined behaviour. Therefore, our optimisa-
tion of replacing the read from *x with the constant 42 in
Listing 1 would still be valid, even when used like shown
in Listing 2.

II. Main Goal
The main goal for this master’s thesis is to design a

static analysis usable for optimisations. The analysis will
assume that the input code passes the borrow checker
and conforms to Stacked Borrows. The output of this
analysis is then used by optimisations that we develop
to improve the runtime of the input code. Both analysis
and optimisations will work intra-procedurally and will be
created as extension to the Rust compiler.

The following sections describe optimisations that will
be implemented during the thesis. These optimisation
ideas originate from the Stacked Borrows paper [2] and
we introduce the different optimisations here in the same
order as they appear in the paper. The plan is to also
implement the optimisations in this order.

A. Move Up for Mutable References
The first optimisation will only consider mutable ref-

erences. More concretely, we want to move up reads
from mutable references across instructions that will never
mutate the value. The following example in Listing 3
illustrates this. We previously used the same example in
the introduction.

1 fn mutable(
2 x: &mut i32,
3 y: &mut i32,
4 ) -> i32 {
5 *x = 42;
6 *y = 7;
7 return *x;
8 }

Listing 3: mutable Original Input Code

*x is written to on line 5 and read again on line 7. x
and y could potentially point to the same value, but a
trace, where that is the case, would not conform to Stacked
Borrows and therefore would be undefined behaviour. So,
under our assumptions x and y do not alias and the read
can be moved up past the write to *y on line 6. The
following Listing 4 shows the code after performing this
transformation:

1 fn mutable(
2 x: &mut i32,
3 y: &mut i32,
4 ) -> i32 {
5 *x = 42;
6 let val = *x;
7 *y = 7;
8 return val;
9 }

Listing 4: mutable Transformed Code

So far we only moved the read, but since the write and
read are now directly consecutive, the second read can be

2



replaced by the constant used in the write. Since we used a
fresh variable (not used anywhere else) to hold the return
value, the variable can be eliminated and the value can
be directly returned. This finally results in the following
optimised code:

1 fn mutable_opt(
2 x: &mut i32,
3 y: &mut i32,
4 ) -> i32 {
5 *x = 42;
6 *y = 7;
7 return 42;
8 }

Listing 5: mutable_opt Optimised Code

B. Move Up for Shared References
The next optimisation will extend the support for the

move up to also encompass shared references. Shared
references only allow read-only access and if the program
conforms to Stacked Borrows, the underlying value cannot
be changed between two reads from a shared reference.

The following Listing 6 shows an example of where a
move up optimisation would be useful when using a shared
reference. The reference x is twice read from and divided
by 3. Note that even if we pass the reference x into another
function, the underlying value is still guaranteed to be
unmodified after that function returns.

1 fn shared(x: &i32) -> i32 {
2 let val = *x / 3;
3 f(x, val);
4 return *x / 3;
5 }

Listing 6: shared Original Input Code

The next Listing 7 shows the result after the optimi-
sation. We moved the expression *x / 3 up across the
function call and then simplified the code to only execute
the expression once, getting rid of a needless read and
division.

1 fn shared_opt(x: &i32) -> i32 {
2 let val = *x / 3;
3 f(x, val);
4 return val;
5 }

Listing 7: shared_opt Optimised Code

C. Move Down using Protectors
To support optimisations which move down reads we

have to rely on Stacked Borrows’ protectors in the gen-
eral case. The following Listing 8 shows the function
protectors in which we would like to move the read
access of x down across the function calls to reduce register
pressure (amount of registers required at once).

1 fn protectors(x: &i32) -> i32 {
2 let val = *x / 3;
3 f1(x);
4 f2();
5 return val;
6 }

Listing 8: protectors Original Input Code

It is important to note, that in this example protectors
are required. Protectors are a technique in Stacked Bor-
rows to make sure that function parameters outlive the
function call. In the example this is relevant because the
lifetime of x could otherwise potentially end after the call
to f1 and the underlying value of x be modified through
a pointer in f2 while still conforming to Stacked Borrows;
protectors prevent that and would render such a trace
invalid.

The following Listing 9 shows the function after the
optimisation of moving access to x down.

1 fn protectors_opt(x: &i32) -> i32 {
2 f1(x);
3 f2();
4 return *x / 3;
5 }

Listing 9: protectors_opt Optimised Code

D. Evaluation
This subsection briefly details how the implementation

is going to be evaluated.
• Unit Tests: Evaluate that the optimisations are

applied as expected to a set of crafted examples.
The examples and test suite should ideally be created
before the implementation.

• Real World Code: Apply the developed optimi-
sations to existing code bases. Evaluate, where the
optimisations got applied and run the unit tests for
those projects after applying optimisations. If the op-
timisations get applied a lot and no unit tests break,
this gives some measure of confidence that the applied
transformation do not introduce breaking changes. If
none or only a few optimisations get applied this could
indicate, that we should broaden the optimisation or
test on different code bases.

• (Optional) Benchmarking: Benchmark the compi-
lation time with and without the optimisations. One
hypothesis is, that compilation time might be shorter
when adding our optimisations, because the LLVM
(Rust back-end compilation) optimisations get sim-
plified. We could also create a benchmark to compare
the runtimes of code with our optimisations applied
to the unoptimised version of the same code.

III. Core Goals
The main goal above is organised into the following core

goals.

3



• Craft Examples: Create code examples for the dif-
ferent optimisations and possibly combine them into
an automatic test suite. The examples should include
code that is expected to be optimised, as well as
code that is not allowed to be optimised for every
implemented optimisation.

• Gather Optimisation Requirements: Discover
what information is required to implement the desired
optimisations.

• Design Static Analysis: Design the details of the
non-aliasing static analysis.

• Expose Static Analysis: Expose the static analysis
in a way consumable by the optimisations.

• Implement Optimisations: Implement the two
”move up” optimisations II-A and II-B.

• Evaluation: Evaluate the developed optimisations
(II-D).

IV. Extension Goals

This section explains extension goals that are possible
additions to the thesis after the core goals are completed.

• Develop Additional Optimisations: Design, im-
plement and evaluate additional optimisations that
use aliasing-information. Extend the static analysis if
needed. This could involve but is not restricted to the
following points:

– Implement the ”move down” optimisation that
depends on protectors described in the main goal
section.

– Automatically replacing vectors of structs with
multiple vectors. This would be an optimisation,
because operating on multiple vectors of prim-
itive types generally performs better than on a
single vector containing a complex type.
For example, the type A in the following code
would be transformed into the type B:
type A = Vec<S>;
struct S { f1: i32, f2: u64 }
struct B { b1: Vec<i32>, b2: Vec<u64> }

– Vectorisation: Knowing Non-aliasing information
has the potential to be useful in vectorisation op-
timisations, where transformations often involve
computing multiple results at once instead of
computing them one-by-one. This could also be
combined with the transformation above, as that
also favours vectorisation.

• Correctness Proof: Formally prove, that the per-
formed optimisations do not change program be-
haviour under the assumption, that the program con-
forms to the Stacked Borrow rules.

• Alias Information for Function Returns and
Nested References: In the core goals only refer-
ences passed as parameter were considered. If an
aliasing with any other kind of reference was possible,
optimisation was not performed. With this extension

goal, we also want to compute alias information for
references returned by function calls and references
obtained by using a dereference.

References
[1] S. Klabnik and C. Nichols, The Rust Programming Language

(Covers Rust 2018). San Francisco, CA: No Starch Press, Aug.
2019. [Online]. Available: https://doc.rust-lang.org/book/

[2] R. Jung, H.-H. Dang, J. Kang, and D. Dreyer, “Stacked borrows:
An aliasing model for rust,” Proc. ACM Program. Lang., vol. 4,
no. POPL, pp. 1–32, Jan. 2020.

[3] V. Astrauskas, C. Matheja, F. Poli, P. Müller, and A. J. Summers,
“How do programmers use unsafe rust?” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, pp. 1–27, Nov. 2020.

4

https://doc.rust-lang.org/book/

	Introduction
	Optimisations
	Stacked Borrows

	Main Goal
	Move Up for Mutable References
	Move Up for Shared References
	Move Down using Protectors
	Evaluation

	Core Goals
	Extension Goals
	References

