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Abstract

Rust is a programming language that provides a high degree of memory-
safety. A substantial part of Rust’s memory-safety originates from its
ownership model which is enforced by the borrow checker. Rust is
partitioned into a safe and an unsafe subset and Rust’s memory-safety
guarantees are only provided for the safe subset of Rust.

Recent work introduces an operational semantics for memory accesses
in Rust called Stacked Borrows. This operational semantics encodes
the borrow checker rules and makes them applicable to unsafe Rust
too. Stacked Borrows enables new optimisations, however, there is cur-
rently no work leveraging Stacked Borrows to implement these kinds
of optimisations.

In this work we attempt to fill this gap by implementing a static anal-
ysis that approximates Stacked Borrows. This static analysis generates
information which we call immutability spans. We demonstrate the rel-
evance of these immutability spans by creating an optimisation based
on them which can apply improving changes to Rust programs that
were previously not performed by the Rust compiler infrastructure.

We evaluate our static analysis and optimisation using our own test
suite of manually written programs. Moreover, we also perform an
evaluation by running the analysis and optimisation on the official
rustc test suite.
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Chapter 1

Introduction

Rust [13] is a modern programming language designed to develop perfor-
mant and safe low-level software. Recent work [12] defines an operational
semantics for memory accesses in Rust called Stacked Borrows. In that work
Stacked Borrows is used to justify new optimisations that are currently not
performed by the Rust compiler. Implementing static analyses that enable
these kinds of optimisations is the main goal of this master’s thesis. More-
over, our goal is to also implement optimisations that make use of our static
analysis to show their relevance.

In this chapter we will briefly describe the kind of optimisations we want to
implement and the static information they require, then present the goals of
the thesis and give an outline to this report.

1.1 Optimisations

The optimisations we want to enable are based on alias information. Two
references alias each other, if the location they point to overlap. Note that in
out case partial overlaps already suffice for references to be considered each
others alias.

To explain the kind of optimisation we want to enable and why they require
non-aliasing information we will discuss a concrete example right away.

1 fn f(x: &mut i32, y: &mut i32) -> bool {

2 *x = 7;

3 *y = 42;

4 return *x == 7 && *y == 42;

5 }

Listing 1: Overview Example
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1. Introduction

Listing 1 defines a function f that takes two mutable references x and y as
parameters. In the body of f we write the numbers 7 and 42 to the locations
x and y point to and then dereference x and y and finally compare their
values to constants.

We would now like to argue, that x and y do not alias each other. If this
was the case, we would know that the assignment to *y on line 3 does not
change *x and therefore, we could replace the read *x with the constant 7.
This would allow the compiler to simply return true, because the read *y

could trivially be replaced with 42.

Listing 2 shows the optimised version of the example as described in the
text above.

1 fn f(x: &mut i32, y: &mut i32) -> bool {

2 *x = 7;

3 *y = 42;

4 // return *x == 7 && *y == 42;

5 // return 7 == 7 && 42 == 42;

6 return true;

7 }

Listing 2: Non-Aliasing Optimisation of Example

Rust’s typesystem statically enforces non-aliasing rules that were used for
the optimisation above. But those rules can be broken by using unsafe

Rust. However, breaking those rules is generally considered as bugs by Rust
developers and, as we will see, Stacked Borrows considers code were those
rules are broken to be undefined behaviour (UB). Even so, we will next
illustrate in the following code how our example could be broken by using
unsafe Rust.

1 let v = 5;

2 let raw_pointer = &mut v as *mut i32;

3 let result = unsafe {

4 f(&mut *raw_pointer, &mut *raw_pointer)

5 };

Listing 3: Unsafe Rust Code Creating Aliasing Mutable References

Listing 3 shows how two mutable references to the same location can be
created and passed as two separate function arguments. This would make
x and y from Listings 1 and 2 point to the same location and therefore, they
would alias each other, breaking the assumption required for the shown
optimisation.

Users are advised to predominantly use safe Rust and either use unsafe
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1.2. Motivation

Rust in concise small blocks of code or by using crates (Rust packages) that
provide safe abstractions around unsafe code. Even with these guidelines,
unsafe Rust has been found to be used in a significant amount of Rust
projects [2], so we have to consider unsafe Rust when we develop optimi-
sations for Rust.

This is where Stacked Borrows comes into play, because this operational
semantics also extends to unsafe Rust and the code in listing 3 would be
considered undefined behaviour (UB). This essentially means that, if we
assume the Stacked Borrows operational semantics holds for a program, we
can perform the described optimisation.

1.2 Motivation

To showcase why the described optimisation is useful and not something
that is already covered for Rust programs consider the following example.

1 fn f2(x: &mut i32, y: &mut i32) -> bool {

2 *x = 7;

3 *y = 42;

4 lib(&*x);

5 lib(&*y);

6 return *x == 7 && *y == 42;

7 }

Listing 4: Motivating Example

Listing 4 shows function f2 which is very similar to f in listings 1 and 2.
There are only two additions: in line 4 and 5 we call a black-box function
lib that takes read-only access to x and y.

The Stacked Borrows operational semantics allow us to prove that an opti-
misation replacing the return statement on line 6 to return true is correct.
This is an optimisation that is not yet performed in Rust even when running
the compiler on the highest optimisation level and enabling experimental
advanced optimisations.

Moreover, the compiler internals do not expose the explicit information to
perform the described optimisation. To generate this information more static
analysis is required. Implementing this additional static analysis is the main
goal of this work. Additionally, optimisations are implemented to evaluate
the quality of the generated information.

3



1. Introduction

1.3 Goals

In order to address the challenges presented so far, in the beginning we
defined the following goals:

• Craft Examples: Create code examples for the optimisation and possi-
bly combine them into an automatic test suite. The examples should
include code that is expected to be optimised, as well as code that is
not allowed to be optimised.

• Gather Optimisation Requirements: Discover what information is re-
quired to implement the desired optimisation.

• Design Static Analysis: Design the details of the non-aliasing static
analysis.

• Expose Static Analysis: Expose the static analysis in a way consum-
able by the optimisation.

• Implement Optimisation: Implement the optimisation using the infor-
mation exposed by the static analysis.

• Evaluation: Evaluate the developed static analysis and optimisation.

1.4 Outline

The structure of this report is as follows:

• Chapter 1 introduced the problem and goals of the thesis and gives an
outline of the report.

• Chapter 2 contains information about knowledge that is required to
understand the presented work. This makes Stacked Borrows a special
focus of the chapter.

• Chapter 3 describes our methodology: we explain idea and architec-
ture of our work and our solution in more detail.

• Chapter 4 formalises the static analysis and the static information gen-
erated by it.

• Chapter 5 takes a closer look at the evaluation, implementation, and
faced challenges.

• Chapter 6 discusses related work.

• Chapter 7 concludes this work and elaborates future work, possibili-
ties, and opportunities.

4



Chapter 2

Background

This chapter contains information about knowledge that is required to un-
derstand the presented work. First we describe the programming language
Rust with its aspects that are important to the thesis. Second we summarise
the results of Stacked Borrows [12], on which this work is based. Last we
explain some of the Rust compiler (rustc) internals that are required to un-
derstand our methodology.

2.1 Rust-Language

For readers unfamiliar with Rust we recommend learning about it in one of
the many great free sources online. Some of those sources are: the official
Rust book [13], the book called ”Rust By Example” [17], and on the more hu-
morous side the book ”Learn Rust With Entirely Too Many Linked Lists” [4].
However, we try to make the core of this thesis understandable without prior
knowledge of Rust by providing examples and describing Rust syntax and
semantic as we go along.

2.2 Stacked Borrows

This section summarises the results of Stacked Borrows [12]. It is the work
on which this thesis is based on and therefore an important part to under-
stand the rest of this report.

Stacked Borrows [12] is an operational semantics for memory access which
encodes aliasing rules for references in Rust. These rules are designed to
compute identical or more liberal rules than Rust’s borrow checker for safe
Rust, but other than the borrow checker, Stacked Borrows’ rules also extend
to unsafe Rust.

5



2. Background

Stacked Borrows’ rules are implemented in Miri [11], which is an interpreter
for Rust that works as a dynamic analysis tool for aliasing information. Be-
cause Miri is an interpreter, executing a program is about 1000 times slower
compared to running the same code compiled to a native executable. That
is the main reason, why the interpreter is intended to be used for testing
rather than replacing compiled Rust. Note that Miri does not create static
information, but does dynamic analysis on a specific execution of a Rust
application.

Stacked Borrows works by tracking which references have access to which
memory locations. This access information is stored in a stack per memory
location called borrow stack, hence the name Stacked Borrows. Generally
every reference in the borrow stack can be used to access the referenced
memory location. Before an access all entries of the borrow stack above the
used reference get popped, leaving the used reference at the top of the stack.
This is introduced as stack principle, which enforces well-nested usage of
references and is argued to be equivalent to what the static borrow checker
does but extended to unsafe Rust and C-style pointers. Accessing a memory
location by using a reference that is not on the borrow stack is undefined
behaviour.

For the use in optimisations the compiler can assume an input program to
conform to Stacked Borrows in every situation. A violation of the Stacked
Borrows rules is undefined behaviour and in these situations the compiler
is allowed to assume any behaviour.

2.3 Mid-level Intermediate Representation (MIR)

This section explains a Rust compiler (rustc) internal structure that is re-
quired to understand our methodology and implementation.

The Mid-level Intermediate Representation [10] [15], abbreviated as MIR, is
the representation of a Rust program during the ”middle” stages of com-
pilation. It is called mid-level, because it is the representation that is used
between the High-level Intermediate Representation (HIR) and LLVM [6]
(the low-level presentation).

HIR is roughly an abstract syntax tree and LLVM is not a Rust specific
intermediate representation. The introduction of MIR added a Rust specific
low-level intermediate representation. MIR reduces Rust to a simple core:
all expressions are flattened, allowing no nested expressions and all control
flow statements (e.g. while, if, match, ...) are unified by creating a so called
control flow graph.

A control flow graph (CFG) is a graph based representation of code. The
nodes of a CFG, called basic blocks, consist a list of non-branching state-
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2.3. Mid-level Intermediate Representation (MIR)

ments. Branching and merging of control flow is represented by edges of
the CFG.

CFG representations such as MIR are useful for optimisations and so called
dataflow analysis [16]. In this thesis we make use of dataflow analyses to
generate static information and perform optimisation. Therefore, operating
on MIR was the obvious choice for our work.
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Chapter 3

Methodology

This chapter describes our methodology. We first give an overview of the
scope of this thesis, second explain the idea of our work in an intuitive way,
third discuss the developed static analysis in greater detail and last present
the implemented optimisation.

3.1 Scope

In this section we briefly outline the scope of our work.

Our goal is to create a solution that can be run on Rust code and is sound.
First this means that we want to create static analyses and optimisations
that can be performed on Rust code and produce reusable information for
the former and actual executable output for the latter. Second the analyses
and optimisations have to be sound, meaning the generated information is
correct and any performed optimisation does not change the semantics of
the program it operates on. Additionally, the analyses and optimisations
have to always terminate to be sound.

Our approach works with a limited set of types. Namely, our system re-
quires reference types and more specifically mutable references. Moreover,
only references that point to copy-types are accepted, this includes most
prominently references to primitive types. For example the type &mut i32

would be handled by our system. Additionally, we require the references
to be parameters of the analysed function. The system still works for all of
Rust while being sound, it just does not generate information and perform
optimisations for types other then the ones described here.

9



3. Methodology

3.2 Idea

In this section we present the core idea of our work and give an intuition
how the pieces fit together.

Our plan was to design a static analysis that works as a static approximation
of Stacked Borrows. The following text will discuss what kind of informa-
tion our analysis has to provide. Additionally, we describe the optimisation
we implemented, which we have done to evaluate that the information gen-
erated by the static analysis is relevant and non-trivial.

We will again use our motivating example for illustration:

1 fn f2(x: &mut i32, y: &mut i32) -> bool {

2 *x = 7;

3 *y = 42;

4 lib(&*x);

5 lib(&*y);

6 return *x == 7 && *y == 42;

7 }

Listing 5: Motivating Example

Recall that we want to replace the statement in line 6 with a simple return

true resulting in eliminating two reads and one comparison. To achieve
this we would like to simplify line 6 to return 7 == 7 && 42 == 42 first
and then let the compiler reduce this to return true. This second part is
something that is already solved for Rust and we can therefore focus on the
first part. To simplify this first part even more it can be seen as replacing
reads like *x with a value. In the example this is done twice: first replacing
*x with 7 and second replacing *y with 42.

To be able to perform this optimisation the compiler needs information.
More concretely the information it needs to know is:

1. The value of *x for a reference x at location l. In our example we want
the compiler to know that the value of *x is 7 at line 2 and the value
of *y is 42 at line 3.

2. The values of *x and x do not change between l and the location of the
read. In our example we want the compiler to know that the value of
*x did not change between lines 2 and 6 and the value of *y did not
change between lines 3 and 6.

We combined those two properties into something we call immutability span.
An immutability span contains the location l at which the value of *x is
known and a set of subsequent consecutive locations for which we know

10



3.3. Static Analysis

that *x and x were not changed. For our example this could be visualised
as shown in listing 6.

Listing 6: Motivating Example – Immutability Span Visualised

Listing 6 shows two immutability spans. The first is visualised with a green
line that starts with a circle on line 2 and ends on line 6. The second is
shown using a blue line that starts with a rhombus on line 3 and ends on
line 6. The shapes at the start are used to be able to differentiate the lines
with something other than colour and have no further purpose.

3.3 Static Analysis

In this section we describe in more detail how our static analysis works. First
we look at a simplified version of the analysis that only considers straight
line code, last we expand and generalise the approach to also work on more
complex code that contains branches and merges of control flow.

3.3.1 Straight Line Code

In this section we expand on the intuition given about the static analysis at
the beginning of the chapter.

Recall that we want to compute immutability spans that hold the informa-
tion that for a set of consecutive statements the value *x did not change
for a reference x. Now we will discuss how these immutability spans are
computed.

To compute immutability spans we use static analysis, or more precisely we
use dataflow analysis [16]. This method of static analysis works on the con-
trol flow graph (CFG) representation of the program we are analysing. We
have discussed CFGs and Rust’s CFG called Mid-level Intermediate Repre-
sentation (MIR) in the background chapter.

When explaining how the dataflow analysis works we will always look at
one body at a time. Bodies can be seen as the sub-graphs of the CFG that
contain all nodes and edges belonging to a function. For example when

11



3. Methodology

looking at a Rust function fn f, the body of f is all CFG nodes and edges
that result from compiling f to the MIR stage. We are allowed to only look
at one body at a time, because Stacked Borrows, and our analysis that builds
on it, enable intraprocedural reasoning.

The dataflow analysis to compute immutability spans works as follows: Find
all mutable references of supported types that are passed to the current body.
We will discuss which types are supported later on. Next for each reference
x that was found, we do the following steps:

1. Find statement after which the value *x is known. So for example
after the statement *x = 42; we know that *x has value 42. But
we are not limited to compile time constants. So for the assignment
*x = get_user_input(); the analysis also considers the value of *x to
be known. We use assignments here as an example, but the approach
is not restricted assignments.

2. For each statement from step 1 find all consecutive statements for
which the following conditions hold:

• *x is not modified,

• x is not changed to point to a different location, and

• the statement does not give away mutable access to *x. For exam-
ple the following statement would violate this last condition:
write_to(&mut *x);

3. Construct immutability span out of the statement found in step 1 and
the statements found in step 2.

We will illustrate these steps in our motivating example in listing 7. The
resulting immutability spans from that example are:

• i1 for x: Starting at line 5 and ending at line 18.

• i2 for y: Starting at line 10 and ending at line 18.

Notice that the two resulting immutability spans are overlapping. This is
usual for different references. For the same reference we will make sure
that its immutability spans do not overlap each other, by merging those
overlapping immutability spans together.

3.3.2 Branches and Loops

The approach discussed so far works well for functions in which we can
just look at the statements as a consecutive list. But we already know, that
the data structure we look at is a directed graph which is allowed to have
branches and cycles. So we need to generalise our approach to work with
CFGs.

12



3.3. Static Analysis

1 // Found mutable references x and y.

2 fn f2(x: &mut i32, y: &mut i32) -> bool {

3 // *x is known after the following statement.

4 // Immutability Span i1 starts here.

5 *x = 7;

6

7 // *y is known after the following statement.

8 // Immutability Span i2 starts here.

9 // i1: All conditions are fulfilled => add to i1

10 *y = 42;

11

12 // i1: All conditions are fulfilled => add to i1

13 // i2: All conditions are fulfilled => add to i2

14 lib(&*x);

15

16 // i1: All conditions are fulfilled => add to i1

17 // i2: All conditions are fulfilled => add to i2

18 return *x == 7 && *y == 42;

19 }

Listing 7: Example for Finding Immutability Span

First we will briefly look into immutability spans again and how this affects
them. So far we have defined the set of statements in the immutability
span to consist of consecutive statements but we kept it vague and did not
describe what consecutive means in this context. For blocks (nodes of the
CFG) it is simple: inside of a block statements are in an absolute order
and statements are consecutive with statements directly before and after
themselves according to that order.

However, to be able to provide non-trivial instances of immutability spans,
we require a definition of consecutiveness that can span across block bound-
aries. In those boundary cases a statement can have more than two consec-
utive statements. Namely, the first statement of a block b is consecutive to
the last statements of all blocks that are predecessors to b in the CFG. Anal-
ogously, the last statement of a block b2 is consecutive to the first statements
of every block that is a successor of b2.

For simplification we will look at branches and merges in the CFG and
not consider more complex structures such as cycles as a whole. Every
branching or merging of control flow could potentially be a part of a cycle
and this option has to be considered in the analysis. Inside of blocks (nodes
of the CFG) we keep the described approach from the previous section. But
we change the overall order of execution and define how the analysis works
for transitions between blocks (i.e. what happens on branches and merges).

13



3. Methodology

1 dirty := copy(body.blocks)

2 analysis_information :=

3 { (index, bottom) for index in body.statements.indices }

4 while |dirty| > 0:

5 block := dirty.pop()

6 for i := 0..|block.statements|:

7 statement := block.statements[i]

8 old_information := analysis_information[statement.index]

9 new_information := analyse(statement)

10

11 if i == 0: for predecessor in block.predecessors:

12 new_information :=

13 join(new_information, predecessor.information)

14

15 analysis_information[statement.index] := new_information

16

17 if i == |block.statements| - 1:

18 block.information := new_information

19 if old_information != new_information:

20 dirty := union(dirty, block.successors)

Listing 8: Pseudocode that Describes Dataflow Analysis

This generalised approach works as illustrated by the pseudocode in listing
8. This listing shows a general dataflow algorithm, which was not created as
part of this work, but is used here to explain how dataflow analysis works.
The algorithm loops over blocks until it converges to a fixpoint. This fixpoint
essentially means that no more changes to analysis information would occur
to any block b at this point if we run analysis again for block b.

Here we will briefly discuss the algorithm in the pseudocode in listing 8: it
loops over blocks until there are no ”dirty” blocks left and we process one
block at a time. A block b is part of the dirty set, if b was not yet processed
or if at least one of b’s predecessors changed its analysis information since
b was last processed. Processing a block works by looking at the individual
statements of the block in order and doing following steps:

1. Analyse the current statement.

2. If it was the first statement of the block, then use the join function
to combine the analysis information of predecessor blocks with the
analysis information of the first statement of the current block. We
will discuss how the join function is implemented later on.

3. If it was the last statement of the block, check if the analysis informa-
tion changed. If it changed add all successors of the current block to

14



3.4. Optimisation

the dirty set.

With some implementations of join and analyse the code could loop end-
lessly. To make sure it is an algorithm and always terminates for any input,
some restrictions for how join and analyse work have to be enforced. We
will go into the details of those restrictions in the formalisation chapter.

Next we will look into what kind of analysis data we use in the discussed
algorithm to be able to find immutability spans using it. The analysis data
we store per statement is: a mapping V → ⊥|I|⊤, where V is the set of all
local variables of the current body and I is the set of immutability spans. So
a statement can be part or not part of an immutability span for every local
variable. ⊥ means the statement was not processed yet and ⊤ means the
analysis cannot conclude if the statement is part of an immutability span for
the given variable. ⊤ and ⊥ will be further discussed in the formalisation
chapter.

The function join has to merge different analysis information coming from
different blocks in a meaningful way. Using the definition from above join
has the following type: join : AxA → A where A = (V → ⊥|I|⊤) join for
our analysis is simply defined as:

join(A, B)(v) :=



⊥, if A(v) = B(v) = ⊥
i ∈ I, if A(v) = B(v) = i
i ∈ I, if A(v) = i ∧ B(v) = ⊥
i ∈ I, if B(v) = i ∧ A(v) = ⊥
⊤, otherwise

3.4 Optimisation

In this section we describe in more detail how the optimisation works.

The optimisation tries to use the generated immutability spans to perform
optimisations. More specifically, we want to eliminate reads from memory.
We will again use our motivating example in listing 9 to discuss how the
optimisation works. Recall that we want to replace the reads in line 6 so that
the line is simplified to return 7 == 7 && 42 == 42. The compiler already
has optimisations in place that will further reduce that to return true.

Using the immutability spans performing the optimisation is not too in-
volved: at the point of the write we store the right hand side of the as-
signment in a temporary local variable. Then for all reads inside of the
immutability span we replace the read with the local variable. For our ex-
ample this would look as shown in listing 10 using two immutability spans,
one for each reference x and y.
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1 fn f2(x: &mut i32, y: &mut i32) -> bool {

2 *x = 7;

3 *y = 42;

4 lib(&*x);

5 lib(&*y);

6 return *x == 7 && *y == 42;

7 }

Listing 9: Motivating Example

1 fn f2(x: &mut i32, y: &mut i32) -> bool {

2 let local_x = 7;

3 *x = local_x;

4 let local_y = 42;

5 *y = local_y;

6 lib(&*x);

7 lib(&*y);

8 return local_x == 7 && local_y == 42;

9 }

Listing 10: Motivating Example Optimised

Note that we did not replace the reads in the return statement with the
numbers directly but with a read-only local. For the compiler and further
optimisations this is almost equivalent, as a simple constant propagation can
replace the variable in the return statement with the correct constants. How-
ever, using those read-only locals makes our approach way more flexible, as
we can also do replacements as shown in listings 11 and 12.

1 fn f3_original(x: &mut i32) -> i32 {

2 *x = read_input();

3 lib(&*x);

4 return *x;

5 }

Listing 11: f3 Original Input

1 fn f3_optimised(x: &mut i32) -> i32 {

2 let local_x = read_input();

3 *x = local_x;

4 lib(&*x);

5 return local_x;

6 }

Listing 12: f3 Original Optimised
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Listing 11 shows the original unmodified function, while 12 shows the result
after our optimisation was performed on it. Note that this time we did not
write a constant to *x but the result of a function call. If we replaced any read
from *x in the immutability span with that function call we would change
the semantics of the program, as function calls can have side-effects. By
using the local variable we can avoid changing the semantics of the program
and are allowed to perform the optimisation as it is shown in listing 12.
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Chapter 4

Formalisation

In this chapter we formalise the immutability spans and the static analysis
that is used to find them in given Rust programs.

In this chapter we assume that the reader has a more profound knowledge
of this work’s background. Namely, we assume a familiarity with Rust [13]
and its terminology and importantly with rustc internals such as MIR [10].
Additionally, we assume background knowledge about static analysis. Con-
cretely, we will discuss dataflow analysis and assume the reader is familiar
with terms like ”lattice”, ”transfer function”, and ”fixpoint”. As a source to
learn more about dataflow analysis we recommend the book named ”Static
Program Analysis” [16] which available online for free.

4.1 Immutability Span

In the methodology chapter we discussed what we call immutability spans
and we provided an intuitive understanding of them. In this section we
describe what an immutability span is in a more formal way.

We define an immutability span as I = (r, l, S) with

• r the local for which the immutability span holds,

• l the start location of the immutability span, and

• S a set of locations.

l and every s ∈ S are locations which are defined as a pair (b, i) where b is
the block index and i is the statement index inside that block. So locations
point to specific statements in the MIR of the target body. We use STMT(x)
to denote the statement at location x in the target body.

An immutability span I = (r, l, S) fulfills the following properties:
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• r, l and every s ∈ S belong to the same MIR body which we call the
target body of this immutability span.

• r is a mutable reference that contains a type implementing the Copy

trait.

• At runtime after STMT(l) has been executed *r has a value v. For
every s ∈ S the value of *r is v just before STMT(s) is being executed.
Note that v does not have to be known at compile time.

• The locations in S are consecutive. The locations in S are consecutive
if thew following two conditions are fulfilled:

∀(b1, i1), (b2, i2) ∈ S . b1 = b2 ∧ i1 = i2 + 2 =⇒
∃(bt, it) ∈ S . bt = b1 ∧ i1 < it < i2

(4.1)

∀(b1, i1), (b2, i2) ∈ S . b2 ∈ SUCCESSORS(b1) =⇒
LAST LOCATION(b1) ∈ S ∧ (b2, 0) ∈ S

(4.2)

Where SUCCESSORS(b) denotes the set of indices of all successor
blocks of b in the target MIR body and LAST LOCATION(b) denotes
the location (b, i) for which holds that there exists no location (b, i′)
with i′ > i.

4.2 Static Analysis

This section gives a more formal definition of the static analyses that we
implemented for this thesis.

So far we only discussed static analysis as a combined unit. However, we
actually implemented the static analysis as two separate dataflow analyses,
with the second depending on the output of the first one. Splitting the
analyses in that way has the following advantages:

• Formalisation and reasoning are simplified. We can formalise the anal-
yses separately and reason about correctness individually rather than
on one big combined system.

• The implementation becomes more structured and therefore easier to
read, understand and maintain.

• The first analysis can be used separately and independently from the
second analysis. This improves re-usability of our work.
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• The first analysis called ”Top of Borrow Stack” is in a general form
that allows usage of a specialised fixpoint iteration algorithm which
significantly reduces runtime and memory usage.1

Disadvantages of splitting the static analysis into two analyses are:

• It requires extra effort to design and implement, since a clear interface
has to be defined and data cannot be freely shifted between the two
analyses.

The two dataflow analyses are named ”Top of Borrow Stack” and ”Find
Immutability Spans” and they are described in the following sections.

4.2.1 Top of Borrow Stack Analysis

This section describes the ”Top of Borrow Stack” analysis. Recall that the
Stacked Borrows operational semantics tracks a borrow stack per memory
location. The ”Top of Borrow Stack” is an approximation of said borrow
stack. Concretely, for each local reference r of supported type our analysis
collects the information for which locations we can guarantee that r is on
top of every borrow stack for the place it points to.

We can better understand this by looking at the output of this analysis: the
analysis creates a set T : R × L, where R is the set of locals and L the set of
locations in the target MIR body. Every (r, l) ∈ T means:

1. r is a local,

2. r is a function parameter for the target body,

3. r is of supported type, concretely r’s type is mutable reference to a
Copy type,

4. r is at location l guaranteed to be on top of every borrow stack for the
place r points to.

In contrast, for a local r of supported type and a location, (r, l) /∈ T means
we do not know if local r at location l is or is not on top of the borrow stacks
for the place r points to. So the two options are: guaranteed to be on top
and unknown.

Next we would like to clarify two points. First we discuss what exactly
we mean with ”the place r points to”. Stacked Borrows uses for borrow
stacks memory locations in byte resolution. For example a 16-bit integer
would have two borrow stacks, one for the first byte and the second for the
other byte, and those borrow stacks could be completely different from each

1Read more about this in the evaluation chapter, where we talk about the rustc internal
GenKillAnalysis.
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4. Formalisation

other. For our analysis we only consider a simplified version and only track
a single borrow stack per type. To keep this simplification correct, (r, l) ∈ T
only holds for a local r and location l, if we can guarantee that r is at location
l for each byte of the place r points to at the top of this bytes borrow stack.

Second we discuss what we mean with a local r being in top of a borrow
stack. As we have seen this analysis only tracks mutable references. This
is the case because we are interested in aliasing information for and more
precisely we would like to provide a guarantee that the value ∗r for a refer-
ence r was not modified for a set of consecutive locations. So with that in
mind we can more precisely define which types of borrow stacks provide
the guarantees we require. For the sake of this analysis we consider r to be
on top of a borrow stack for a byte-sized memory location if:

1. Unique(r) is the top-most element of the borrow stack,

2. the borrow stack contains Unique(r) and above this entry only contains
items of permission type SharedRO above it.

Unique and SharedRO are parts of Stacked Borrows definition of the borrow
stack. What the above conditions mean is that only the local r has write
permission to the value ∗r, while other references might have or might have
had read permission to the value.

⊤

⊥
Figure 4.1: Top of Borrow Stack – Lattice

Finally we take a brief look at the lattice used for the ”Top of Borrow Stack”
analysis. Figure 4.1 shows the developed lattice. ⊥ stands for ”on top of
the borrow stack” while ⊤ means ”unknown”. This is because of how the
join operation is defined on a lattice: ⊥ ⊔⊤ = ⊤. For example for a block
with two predecessors where we receive ”unknown” on one edge and ”on
top of the borrow stack” on the other, we want the analysis to continue in
the ”unknown” state to ensure no incorrect information is propagated.

4.2.2 Find Immutability Spans Analysis

This section describes the ”Find Immutability Spans” analysis. This analysis
uses the output of the ”Top of Borrow Stack” analysis as input and gener-
ates immutability spans as output. You can find formal descriptions of im-
mutability spans and the ”Top of Borrow Stack” analysis in earlier sections
of this chapter.
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Figure 4.2 shows the lattice used in this analysis. It is more complex then
the lattice we have looked at before in the previous section. The elements of
the lattice have the following meanings:

• ⊥ stands for ”uninitialised state”. It is set for every pair of local and
location before the analysis is run.

• ⊤ stands again for ”unknown” similar to the previously discussed
lattice.

• Span(In) for a pair (r, l) means local r at location l is part of immutabil-
ity span In.

⊤

...Span(I2)Span(I1) Span(IN)

⊥
Figure 4.2: Find Immutability Spans – Lattice

As an example we could look at what Span(I1) ⊔ Span(I42) = ⊤ means for
a pair (r, l): we look at a basic block where one predecessor has the state
Span(I1) (r is in the predecessor part of immutability span I1) and the other
Span(I2) (r is in the other predecessor part of immutability span I42) for
local r. On joining that information we know that r is either part of I1 or
I42 at location l. Because we want to output a single immutability span for
a pair of local and location, the join operation is defined to return ⊤ (it is
”unknown” which immutability span(s) r is part of) in this case.

After running the analysis we get a set O : R × L × S, where R is the set
of locals and L the set of locations for the target body and S is the set of
possible lattice states (S = {⊥,⊤} ∪ {Span(Ii)|i ∈ N}). We use this set O
to create a collection of immutability spans as they were defined earlier in
this section. To do so we collect every (r, l, s) ∈ O which has identical local
r and identical s with s /∈ {⊥,⊤} in a set. This set is the set of locations of
the immutability span, with exception of the single location which has no
preceding location that is part of the set. This special location is used as the
start location of the immutability span and not part of the set of locations.
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Chapter 5

Evaluation

This chapter describes our evaluation, faced challenges and implementation.

In table 5.1 we link to our code repositories and provide information on
which versions we used for evaluation.

Static Analyses and
Optimisation

https://github.com/

janispeyer/rustc_alias/

Changes to Rustc https://github.com/

janispeyer/rust

Rustc commit our changes are
based on

1e926f0

Commits used for evaluation d95ed85 (rustc alias) and
f29fff9 (rust)

Table 5.1: Our Repositories and Important Commits

5.1 Testing

This section gives insight into how we tested the implementation.

5.1.1 Manual Testing

In this section we describe how we manually checked the different outputs
when running our optimisation compared to when the Rust compiler was
run without our changes. We will show how our optimisation is able to
remove instructions that the unmodified compiler will not and therefore
produce a more runtime efficient output. We will demonstrate this on a
version of our motivating example shown in listing 13.
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5. Evaluation

1 #[inline(never)]

2 fn lib(x: &u32) {

3 // Prevent the LLVM inferring that the argument is unused

4 println!("{}", x);

5 }

6

7 #[inline(never)]

8 fn mid(x: &mut u32, y: &mut u32) -> bool {

9 *x = 7;

10 *y = 42;

11 lib(x);

12 lib(y);

13 return *x == 7 && *y == 42;

14 }

15

16 fn main() {

17 let mut x = 1;

18 let mut y = 2;

19 println!("{}", mid(&mut x, &mut y));

20 }

Listing 13: Motivating Example Used for Manual Testing

This listing additionally defines a main function that calls our example func-
tion and also defines lib. This additional functions have to be defined to
make the example build. Moreover, main has to call our example function,
so that our function does not get eliminated by a dead-code elimination op-
timisation. For similar reasons we print x in the function lib to make sure
neither the parameter nor the call to lib get eliminated by optimisations.

Next we discuss the created assembly code presented in listing 14. On the
left hand side of the listing we show what was produced by the unmodified
compiler and on the right hand side what was produced by the compiler
with out optimisations. Both use the Rust code from listing 13 as input. Note
that we only discuss a shortened version of the assembly code here which
additionally has renamed labels for better readability. The full version of the
output can be found in appendix A.

In listing 14 we can clearly see that the version using our optimisation is
significantly shorter. The left hand side of the listing contains instructions
for comparing *x and *y to 7 and 42 starting at line 17. All those instruc-
tions for those comparisons are completely optimised away in the version
on the right hand side. This improvement was performed and enabled by
our optimisation.
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1 move_past_shared_borrow__mid:

2 .seh_proc

move_past_shared_borrow__mid↪→
3 push rsi

4 .seh_pushreg rsi

5 push rdi

6 .seh_pushreg rdi

7 sub rsp, 40

8 .seh_stackalloc 40

9 .seh_endprologue

10 mov rsi, rdx

11 mov rdi, rcx

12 mov dword ptr [rcx], 7

13 mov dword ptr [rdx], 42

14 call

move_past_shared_borrow__lib↪→
15 mov rcx, rsi

16 call

move_past_shared_borrow__lib↪→
17 mov eax, dword ptr

[rdi]↪→
18 xor eax, 7

19 mov ecx, dword ptr

[rsi]↪→
20 xor ecx, 42

21 or ecx, eax

22 sete al

23 add rsp, 40

24 pop rdi

25 pop rsi

26 ret

1 move_past_shared_borrow__mid:

2 .seh_proc

move_past_shared_borrow__mid↪→
3 push rsi

4 .seh_pushreg rsi

5 sub rsp, 32

6 .seh_stackalloc 32

7 .seh_endprologue

8 mov rsi, rdx

9 mov dword ptr [rcx], 7

10 mov dword ptr [rdx], 42

11 call

move_past_shared_borrow__lib↪→
12 mov rcx, rsi

13 add rsp, 32

14 pop rsi

15 jmp

move_past_shared_borrow__lib↪→

Listing 14: Assembly Output from Compiler Without (left) and With Our Optimisation (right)

rustc +nightly -Zmir-emit-retag --emit asm -C

llvm-args=-x86-asm-syntax=intel -C opt-level=3

tests\ui\eliminate_reads\move_past_shared_borrow.rs -o

original.s

↪→

↪→

↪→

cargo run -- -Zmir-emit-retag --emit asm -C

llvm-args=-x86-asm-syntax=intel -C opt-level=3

tests\ui\eliminate_reads\move_past_shared_borrow.rs -o

optimised.s

↪→

↪→

↪→

Listing 15: CommandLine

Figure 15 shows the two command-lines that were used to generate the
presented assembly outputs. The upper one was used to create the unop-
timised version, while the lower was used to create the optimised version.
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Noteworthy is that we used opt-level=3 to turn on the highest level of
optimisations and that we used the nightly version of Rust. Rust nightly
includes additional experimental optimisations which are not part of the sta-
ble version. This shows that our optimisation can perform improvements
that were previously not done in Rust.

Moreover we also tested Rust nightly with the additional flag -Zunsound-

mir-opts to turn on experimental features of the new constant propaga-
tion [14]. We write more about the new constant propagation in the related
work chapter. Using this flag resulted in the same unoptimised output as
the one on the left hand side of listing 14.

Another thing that can be seen nicely in listing 15 is that the crate containing
our additions can be directly used as if they were rustc: we use cargo run

to run our crate and pass rustc command-line arguments directly to it. This
is made possible by using rustc_driver which will be discussed in the
implementation section later on.

5.1.2 Automated Testing

To test the analyses and optimisation we created an automated test suite that
can be run when changes were made to check, if the change broke any part
of the system. The tests can be run using the command cargo test which is
commonly used for automated tests in Rust projects. We use the crate (Rust
package) compiletest_rs [5] to automate our tests.

Every compiletest_rs test consists of two files: one containing some Rust
code and the other the expected analysis output and expected optimisation.
The former can be any Rust program. Additionally, it can contain compile
flags and options in the form of comments to control how the test is run.
The latter contains the analysis information for every line of MIR (Mid-level
Intermediate Representation) and the MIR before and after performing opti-
misations.

If a change leads to a different analysis output or if it was optimised differ-
ently the test would me flagged as fail and could then be resolved by either
fixing the code if there was a bug or adjusting the test to match the change
in the analyses or optimisations. There is also a flag called bless that can
be used to generate the output files for all tests instead of testing the new
output against the files that are already present.

This approach also does not only test the correctness of the output but also
tests for things like crashes and indicates how much time our system takes
to run. If running the tests would for example show a large increase in
runtime we would quickly notice when running the tests and would be able
to resolve the issue as soon as it occurs.
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Optimisations Performed (Primitive Types)
Test File What is being tested?
eliminate_reads.rs Basic test with assignments to *x and reads to

*x that get eliminated.
immutability_span_

tuple_assignment.rs

Tests if more complicated assignments like tu-
ple destructuring get handled correctly in our
system.

immutability_span.rs Tests if immutabilty spans get constructed cor-
rectly for more complex CFGs with branching
and merging of control flow.

move_local.rs Test to check that assignments of more com-
plex expressions instead of a constant, such
as a read from another variable, get handled
correctly.

move_past_

shared_borrow.rs

Test that checks if the analysis can correctly
handle read elimination when a shared bor-
row of the target reference was created be-
tween the assignment and the read. This is
also the motivating example from the intro-
duction.

regain_of_

top_of_stack.rs

Tests that the analysis correctly detects that
an assignment to *x means that x is on top of
the borrow stack for the target location, even
if it was not before the assignment.

repeat_write.rs Test if a chain of assignments to *x gets han-
dled correctly. More specifically it checks, if
one assignment that is part of two immutabil-
ity spans (e.g. *x = *x;) is handled correctly.

Table 5.2: Automated tests and what they test: Optimisations Performed (Primitive Types)

There are a total of 25 files for automated tests, where each file tests a differ-
ent feature or syntax. Tables 5.2, 5.3, 5.4, and 5.5 show a list of all test files
and what they test.

5.1.3 Official Rust Test Suite

We also experimented with testing our system using the rustc test suite. On
the commit of rustc we based our changes on (without modifications) the
test suite passes 26’106 tests successfully before encountering a block where
every tests fails (181 failed tests).

When running the test suite with our modifications (analyses and optimi-
sation) all tests that passed without modifications passed again with them.
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Optimisation Not Allowed (Primitive Types)
Test File What is being tested?
call_return.rs Test to check that no optimisation is per-

formed for *x, if x is assigned to between the
assignment to and read from *x.

cast_to_pointer.rs Tests that no optimisation is performed for *x,
if x is cast to a pointer between the assign-
ment to and read from *x.

inline_asm.rs Tests that no optimisation is performed that
needs information that spans across asm (As-
sembly) blocks.

interior_

mutability.rs

Tests that references to types with interior mu-
tability are not involved in any of our optimi-
sations.

loop_with_

borrow_in_body.rs

Tests that mutable borrows of *x inside a loop
prevent optimisations from being performed
if they need information that spans across the
loop. Additionally, we checked here that the
analysis does not consider x to be part of any
immutability span in the statements inside
the loop but before the borrow of *x, because
that would be an error.

mem_replace.rs Test to check that using std::mem::replace

on x does correctly prevent optimisations if it
is located between the assignment to and read
from *x.

nested_reference.rs Test to make sure nested references are not
part of optimisations.

reborrow_by_

function_call.rs

and reborrow.rs

Contain tests that checks that creating a muta-
ble borrow of *x correctly prevents optimisa-
tions that need information that span across
that mutable borrow.

Table 5.3: Automated tests and what they test: Optimisation Not Allowed (Primitive Types)
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Optimisations Performed (Non-Primitive Types)
Test File What is being tested?
custom_tuple.rs Tests that optimisations are performed for

custom tuple types that implement the Copy

trait.
custom_types.rs Tests that optimisations are performed for

custom struct and enum types that imple-
ment the Copy trait.

enum.rs Tests that optimisations are performed for
primitive enum types (tag only enums) that
implement the Copy trait.

option.rs Tests that optimisations are performed for the
Option<T> type.

partial_access.rs Tests that reads from custom struct and tuple
types get optimised even if only a single field
is accessed instead of a full read of all the data.
(e.g. reading x.0 instead of *x) The optimi-
sation is only performed if the custom types
implement the Copy trait.

shared_reference.rs Shared references implement the Copy trait.
This test checks that optimisations are per-
formed for mutable references to shared ref-
erences. (e.g. for x: &mut &i32)

tuple.rs Tests that optimisations are performed for na-
tive tuple types. (i.e. for tuple types that are
not custom tuple types.) Note that optimisa-
tions for native tuple types are not yet per-
formed as this would require some refactor-
ing. This is discussed in the section about the
implementation.

Table 5.4: Automated tests and what they test: Optimisations Performed (Non-Primitive Types)

Optimisation Not Allowed (Non-Primitive Types)
Test File What is being tested?
internal_reference_

custom_type.rs

Tests that mutable borrows of fields of custom
types prevent optimisations if they need infor-
mation that spans across it.

internal_reference_

tuple.rs

Tests that mutable borrows of tuple elements
prevent optimisations if they need informa-
tion that spans across it.

Table 5.5: Automated tests and what they test: Optimisation Not Allowed (Non-Primitive
Types)
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Meaning all 26’106 tests passed again when running our analyses and opti-
misations. We appended a shortened version of the output of running the
test suite including our analyses and optimisations in the appendix B.

Running the tests with an optimisation that intentionally introduces errors
if applied made the test suite stop in the first test block were it found errors.
This shows that our code is actually run and would be able to introduce
errors that can be found by the test suite.

We were not able to create a profound certainty that our work is correct
from these tests. However, we could draw some conclusions: we learned
that our code can run on a large amount of Rust code without crashing.
Additionally, we could confirm that at least some optimisations are being
performed in the test suite and that the test suite does not find any error
with the performed optimisations.

5.2 Implementation

This section explains the details of our implementation and the challenges
we faced.

We first like to mention that the static analyses that are used to find im-
mutability spans are designed to be reused on their own. More concretely,
one of our design goals was to allow third parties to reuse the analysis with-
out having to also run our optimisations code. The idea behind this is that
software, like the formal verification tool Prusti [1] or IDE extensions that
improve the developer experience, could reuse our analysis information.

5.2.1 Architecture

In this section we will briefly discuss the architecture. This will serve as a
guide through the following chapters which contain class diagrams for each
part of the architecture.

Figure 5.1: Architecture

Figure 5.1 shows an overview of the architecture. The boxes symbolise mod-
ules and the arrows the flow of data between the modules. There are three
modules: two containing a static analysis each and one containing the im-
plemented optimisation.
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For each of these modules there is a section including its own class diagram,
because a combined class diagram would be too large and visually cluttered.
Moreover, the diagrams do not include life-times and have some parameters
and functions stripped away to improve clarity. To make the different di-
agrams form a bigger picture and to be able to see their relation to one
another there are some duplicated elements. Namely every class diagram
contains the Alias struct which runs the static analyses and optimisation in
its run_pass function.

In addition to the three modules discussed so far, there is also a section
about the compiler injection point. This is a change we did directly to the
compiler, which allows us to add our static analyses and optimisation as a
so-called MIR-pass into the Rust compiler. There was previously no way to
hook into the compiler like that to add additional MIR-passes.

5.2.2 Static Analysis: Top of Borrow Stack

Figure 5.2 shows the class diagram for the static analysis ”Top of Borrow
Stack”.

At the top of the diagram resides the previously discussed Alias struct. It
implements the MirPass trait from the rustc internals, which is used to rep-
resent an unit of code that analyses and modifies a MIR-body. For example a
optimisation such as constant propagation can be implemented as a MirPass.
Alias and MirPass are part of every of the following class diagrams to give
an orientation how the different diagrams fit together.

Alias uses a struct called PrintBodyVisitor which is used to print the MIR
to the standard output. This is used for the testing framework to print
the CFG before and after our optimisation is performed and then compare
that printed output against the expected output stored in a file on disk.
PrintBodyVisitor implements the Visitor trait from the rustc internals,
which is an implementation of the visitor design pattern [8] for MIR.

The static analyses use the built-in dataflow library of the Rust compiler.
This library already contains a function to iterate dataflow analyses to their
fixpoints, over useful ways to access analysis results, and generally provide
handy features and a framework to build dataflow analyses.
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visit_terminator_after_primary_effect(state: &FlowState, terminator: &Terminator)

PrintBodyVisitor

visit_body(body: &Body)
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terminator_effect(terminator: &Terminator)

TransferFunction

visit_body(body: &Body)
visit_*(element: &*)

TopOfBorrowStackVisitor

FlowState = lattice::Dual<BitSet<Local>>
top_of_borrow_stack: TopOfBorrowStackLocations

new() -> Self
visit_statement_after_primary_effect(state: &FlowState, statement: &Statement)
visit_terminator_after_primary_effect(state: &FlowState, terminator: &Terminator)
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Figure 5.2: Class Diagram – Static Analysis: Top of Borrow Stack
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In figure 5.2 we can see how the dataflow library is used to implement
the ”Top of Borrow Stack” static analysis. The easiest way to discuss the
diagram in that figure is to follow the execution path.

1. The run_pass function of Alias calls the function compute-

_immutability_spans. There the two static analyses get called after
each other, feeding the result of the first analysis as input to the second
one.

2. To compute the ”Top of Borrow Stack” analysis, the TopOfBorrowStack
struct is used. This struct implements the traits AnalysisDomain and
Analysis of the rustc internals. Those traits require that TopOfBorrow-
Stack defines a dataflow analysis and in turn allow us to pass TopOf-
BorrowStack to the dataflow library to be iterated to the fixpoint on a
MIR-body.

Note that TopOfBorrowStack does not implement the Analysis di-
rectly, but it implements the GenKillAnalysis trait which is a sub-
trait of Analysis and therefore also implements Analysis indirectly.
GenKillAnalysis is a specialised dataflow analysis that works on a
minimal non-trivial lattice which only contains ⊤ and ⊥. The dataflow
library uses a specialised algorithm to iterate to the fixpoint of GenKill-
Analysis which reduces runtime and memory usage.

3. TopOfBorrowStack uses our TransferFunction struct to define what
exactly has to happen for every element of a MIR-body. It also imple-
ments the Visitor trait, which we have already discussed in an earlier
paragraph, to do so.

4. After TopOfBorrowStack was used to iterate to the fixpoint, the
TopOfBorrowStackVisitor is used to collect the results in our data
structure TopOfBorrowStackLocations. TopOfBorrowStackVisitor im-
plements the ResultVisitor trait, which is an implementation of the
visitor design pattern [8] for dataflow analysis results. TopOfBorrowStack-
Locations contains for each Location every Local that is considered
”top of borrow stack” according to our static analysis.

5. The resulting TopOfBorrowStackLocations instance is then passed to
the ”Find Immutability Spans” static analysis, which is discussed in
the following section.
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Figure 5.3: Class Diagram – Static Analysis: Find Immutability Spans
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5.2.3 Static Analysis: Find Immutability Spans

Figure 5.3 shows the class diagram for the static analysis ”Find Immutability
Spans”. The structre of this dataflow analysis is analogue to the structure
of the ”Top of Borrow Stack” analysis we discussed previously. We will
discuss the structure again by following the execution path, but will keep
it brief and focus on the differences to the previously discussed dataflow
analysis.

1. Recall that the function compute_immutability_spans runs the ”Top
of Borrow Stack” analysis. The result of this analysis is then passed to
the ”Find Immutability Spans”, which the function runs next.

2. To compute the ”Find Immutability Spans” analysis, the FindImmuta-

bilitySpans struct is used. Similarly to the previous analysis this
struct implements the traits AnalysisDomain and Analysis. However,
here the Analysis trait is implemented directly, because the used lat-
tice is more complex and does therefore not fit the requirements for
GenKillAnalysis.

3. The lattice used by FindImmutabilitySpans is defined in the struct
ImmutabilitySpanLattice. To be used as lattice it has to implement
the JoinSemiLattice trait and define the join function which joins
two values of the lattice. To represent lattice values the Immutability-

SpanState enum is used.

4. After FindImmutabilitySpans was used to iterate to the fixpoint, the
ImmutabilitySpanVisitor struct is used to create the immutability
spans from the dataflow analysis result. compute_immutability_spans
uses this visitor to create the immutability spans and return them to
Alias which passes the immutability spans to the optimisation.

Note that the immutability spans can also be created without running
the optimisations. To skip optimisations the function compute_immuta-

bility_spans can be called directly instead of using the Alias struct
which runs the static analyses and optimisations both.

5.2.4 Optimisation

Figure 5.4 shows the class diagram for the optimisation ”Eliminate Reads”.

Using immutability spans performing this optimisation only requires very
little complexity to be performed and we see that reflected in the minimal
class diagram. Here again we will discuss the diagram by following the
execution path.

1. After creating the immutability spans for a body Alias calls the elimi-
nate_reads function. The immutability spans are passed as argument
to this function.
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Class Diagram
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visit
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EliminateReadsOptimisation

tcx: TyCtxt
body: &mut Body

run(immutability_spans: ImmutabilitySpans)

Uses

Uses

Uses

Figure 5.4: Class Diagram – Optimisation

2. The eliminate_reads function creates the EliminatereadsOptimisa-

tion struct and performs the optimisations by calling the run function
on this struct.

5.2.5 Compiler Injection

Figure 5.5 shows the class diagram for the compiler injection point.

All of our functions and structs we have shown so far are part of our own
crate which does not reside inside the Rust compiler and is not part of a
rust-lang repository [7]. We link our crate to rustc and use rustc_driver [9]
to run the compiler. This allows our crate to be run as if it was rustc with
all the usual command-line and configuration options.

The difference to running rustc directly is that we hook into the compiler to
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Figure 5.5: Class Diagram – Compiler Injection

run our static analyses and optimisation during the compilers optimisation
phase. To achieve this we had to modify rustc to allow injection of our static
analyses and optimisation into rustc when using rustc_driver.

This injection point is added in the form of a static location in rustc to which
a MirPass can be written. Recall that Alias which runs our static analyses
and optimisation implements the MirPass trait and can therefore be written
to this injection point. The main function of our crate does just that: it writes
Alias to the injection point and then runs rustc using rustc_driver.

To run the MirPass that is stored at the injection point we use the wrapper
design pattern (also known as adapter pattern [8]). This pattern is imple-
mented by the Wrapper struct which too implements the MirPass trait. The
Wrapper is then statically tied into the run_optimization_passes function
of rustc and for every function called on Wrapper it forwards the function
call to the MirPass stored at the injection point.
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Chapter 6

Related Work

This chapter discusses work that is related to this thesis.

6.1 Miri

Miri [11] is an interpreter for Rust’s mid-level intermediate representation.
It is a tool that was mainly developed for testing and can be used to find
memory-safety violations that occur because of bugs in unsafe Rust code.
For example it can detect out-of-bounds memory accesses and use-after-free
bugs.

Miri is relevant to this work, because Stacked Borrows checks are imple-
mented in it and Miri can detect undefined behaviour in Rust programs that
is caused by violating Stacked Borrows rules.

Miri performs all checks dynamically at runtime while interpreting the tar-
get Rust program. This is a fundamental difference to our approach, in
which we perform all checks and modifications statically at compile time.
Additionally, Miri tries to keep the target as-is, whereas we explicitly set out
to perform optimisations.

6.2 LLVM

LLVM [6] is a compiler infrastructure that provides a unified backend for
compilers such as clang (modern C/C++ compiler) and prominently the
Rust compiler. Rust uses the LLVM backend for code generation and to
optimise programs. LLVM is one of the most effective backends for optimi-
sations [3].

Therefore, few optimisations have to be performed in Rust directly and most
can be delegated to the LLVM backend. However, there are opportunities
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to leverage Rust’s unique ownership based typesystem to implement opti-
misations that cannot be performed by LLVM. The optimisation developed
in this thesis is such an optimisation which cannot be performed by LLVM,
because LLVM’s typesystem and model do not allow for such optimisations.

Note that a Rust user could force this kind of optimisation on a case-by-case
basis by using assume intrinsic statements. These statements can be used to
provide additional information to LLVM that allow it to perform the desired
optimisations. However, it is inherently unsafe to use these assume intrinsics,
as they can very easily introduce bugs and lead to memory-safety violations.
Their usage is comparable to directly injecting assembly instructions into
Rust code: the desired output is achieved but the approach is error prone
and could easily lead to memory-safety violations.

6.3 Constant Propagation

Recently a new constant propagation optimisation was added to the Rust
compiler [14]. Similar to this thesis it leverages the MIR dataflow library in-
ternals of rustc. Moreover, parts of it relies on properties of Stacked Borrows.
These parts are gated behind the command-line flag -Zunsound-mir-opts

because Stacked Borrows should still be considered an experiment until it is
officially integrated into Rust’s specification.

However, the constant propagation optimisation performs a different set of
optimisations than the optimisation that we developed in this thesis. Our
optimisation is alias based and operates on references where it tries to elim-
inate reads. Concretely, it can eliminate those reads for values that are not
constant.
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Chapter 7

Conclusion

This chapter concludes our work and elaborates future work, possibilities,
and opportunities.

In this thesis we created static dataflow analyses that leverage the Stacked
Borrows operational semantics [12]. Additionally, we created optimisations
to evaluate the quality of the static information generated by the analyses.
We tested the correctness of the analyses and optimisation with a suite of
tests that we manually created. Moreover, we run the analyses and opti-
misations on the official rustc test suite which contains thousands of test
programs.

We have shown how the Stacked Borrows operational semantics can be used
to generate static information which is relevant and non-trivial. We expose
a program interface that allows third parties to generate the static informa-
tion we call immutability spans. Importantly, the interface allows the static
analyses to be run without also performing our optimisation.

7.1 Future Work

This section describes possible future work and opportunities.

7.1.1 Tree Borrows

Very recently a variation of Stacked Borrows called Tree Borrows was intro-
duced [18]. Tree Borrows does not use a borrow stack per memory location
but instead uses a tree. The main purpose of the change is to reduce the
amount of undefined behaviour and, by doing so, supporting Rust appli-
cations that previously contained undefined behaviour when using Stacked
Borrows.
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7. Conclusion

This work could be improved by evaluating if our approach is still valid
when using Tree Borrows instead of Stacked Borrows. This would make our
work applicable to more Rust programs.

7.1.2 Increase Precision

The precision of our analysis could be further improved in several ways.
We could add support for shared references and generate static information
that include them. Another addition might be to support locals that are not
function parameters.

7.1.3 Additional Optimisations

Our work could be leveraged to implement additional optimisations. This
might be done without adjusting the static analysis. However, the static
analysis could also be extended to match the needs of new optimisations.

7.1.4 Extended Evaluation

The evaluation of our static analyses and optimisation could be extended
to achieve further certainty that our approach is correct or find bugs and
inconsistencies otherwise. An opportunity to extend the evaluation would
be to test our approach on published crates (Rust packages) or to run pub-
lic benchmarks and test suites with our static analyses and optimisation
enabled.

7.1.5 Benchmark Optimisation

We mainly created the optimisation to evaluate if the generated static infor-
mation is non-trivial and relevant and therefore did not consider the run-
time improvements that result from performing our optimisation. However,
it could be useful to analyse improvements to further examine the claim that
our approach is beneficial.

To measure runtime improvements official benchmarks may be used or a
custom benchmark could be created. Additionally or alternatively, the effec-
tiveness of the optimisation might be measured on existing Rust code.

7.1.6 Tooling Integration

Last we would like to suggest the integration of our static analyses into
existing tooling. Especially projects like Prusti [1] would benefit from static
analysis that leverages Stacked Borrows. By doing so the precision of formal
verification could be improved and unsafe Rust might be better supported.
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Appendix A

Rustc Test Suite Output

In this appendix we add the full assembly code that was created by the
unmodified compiler in section A.1 and the compiler that includes our op-
timisation in listing A.2. You can find a discussion of the parts that are
relevant to this thesis in the evaluation chapter under section 5.1.1.

A.1 Assembly Code Output from Unmodified Compiler

1 .text

2 .def @feat.00;

3 .scl 3;

4 .type 0;

5 .endef

6 .globl @feat.00

7 .set @feat.00, 0

8 .intel_syntax noprefix

9 .file "move_past_shared_borrow.d5f7624b-cgu. ⌋
0"↪→

10 .def _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17hf84105e2d4a26754E;↪→

11 .scl 3;

12 .type 32;

13 .endef

14 .section .text,"xr",one_only,_ZN3std10sys_ ⌋
common9backtrace28__rust_begin_short_ ⌋
backtrace17hf84105e2d4a26754E

↪→

↪→

15 .p2align 4, 0x90

16 _ZN3std10sys_common9backtrace28__rust_begin_short_ ⌋
backtrace17hf84105e2d4a26754E:↪→
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17 .seh_proc _ZN3std10sys_common9backtrace28__rust_begin_ ⌋
short_backtrace17hf84105e2d4a26754E↪→

18 sub rsp, 40

19 .seh_stackalloc 40

20 .seh_endprologue

21 call rcx

22 #APP

23 #NO_APP

24 nop

25 add rsp, 40

26 ret

27 .seh_endproc

28

29 .def _ZN3std2rt10lang_ ⌋
start17h5617b6987bc9a47cE;↪→

30 .scl 2;

31 .type 32;

32 .endef

33 .section .text,"xr",one_only,_ ⌋
ZN3std2rt10lang_start17h5617b6987bc9a47cE↪→

34 .globl _ZN3std2rt10lang_ ⌋
start17h5617b6987bc9a47cE↪→

35 .p2align 4, 0x90

36 _ZN3std2rt10lang_start17h5617b6987bc9a47cE:

37 .seh_proc _ZN3std2rt10lang_start17h5617b6987bc9a47cE

38 sub rsp, 56

39 .seh_stackalloc 56

40 .seh_endprologue

41 mov rax, r8

42 mov r8, rdx

43 mov qword ptr [rsp + 48], rcx

44 mov byte ptr [rsp + 32], r9b

45 lea rdx, [rip + __unnamed_1]

46 lea rcx, [rsp + 48]

47 mov r9, rax

48 call _ZN3std2rt19lang_start_ ⌋
internal17hfa9601e856a0d3d7E↪→

49 nop

50 add rsp, 56

51 ret

52 .seh_endproc

53
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54 .def _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E;↪→

55 .scl 3;

56 .type 32;

57 .endef

58 .section .text,"xr",one_only,_ ⌋
ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E

↪→

↪→

59 .p2align 4, 0x90

60 _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E:↪→

61 .seh_proc _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E↪→

62 sub rsp, 40

63 .seh_stackalloc 40

64 .seh_endprologue

65 mov rcx, qword ptr [rcx]

66 call _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17hf84105e2d4a26754E↪→

67 xor eax, eax

68 add rsp, 40

69 ret

70 .seh_endproc

71

72 .def _ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h38733ca35cc1a335E;↪→

73 .scl 3;

74 .type 32;

75 .endef

76 .section .text,"xr",one_only,_ZN44_ ⌋
$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h38733ca35cc1a335E

↪→

↪→

77 .p2align 4, 0x90

78 _ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h38733ca35cc1a335E:↪→

79 mov rcx, qword ptr [rcx]

80 jmp _ZN4core3fmt3num3imp52_ ⌋
$LT$impl$u20$core..fmt.. ⌋
Display$u20$for$u20$u32$GT$3fmt17h80da57ee0e46922aE

↪→

↪→

81

82 .def _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17h7bff86a46a4de388E;↪→

83 .scl 3;
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84 .type 32;

85 .endef

86 .section .text,"xr",one_only,_ ⌋
ZN4core3ops8function6FnOnce40call_once$u7b$$u7b$vtable. ⌋
shim$u7d$$u7d$17h7bff86a46a4de388E

↪→

↪→

87 .p2align 4, 0x90

88 _ZN4core3ops8function6FnOnce40call_once$u7b$$u7b$vtable. ⌋
shim$u7d$$u7d$17h7bff86a46a4de388E:↪→

89 .seh_proc _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17h7bff86a46a4de388E↪→

90 sub rsp, 40

91 .seh_stackalloc 40

92 .seh_endprologue

93 mov rcx, qword ptr [rcx]

94 call _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17hf84105e2d4a26754E↪→

95 xor eax, eax

96 add rsp, 40

97 ret

98 .seh_endproc

99

100 .def _ZN4core3ptr85drop_in_place$LT$std.. ⌋
rt..lang_start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hacdddc16b040c770E;

↪→

↪→

101 .scl 3;

102 .type 32;

103 .endef

104 .section .text,"xr",one_only,_ ⌋
ZN4core3ptr85drop_in_place$LT$std..rt..lang_ ⌋
start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hacdddc16b040c770E

↪→

↪→

↪→

105 .p2align 4, 0x90

106 _ZN4core3ptr85drop_in_place$LT$std..rt..lang_ ⌋
start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hacdddc16b040c770E:

↪→

↪→

107 ret

108

109 .def _ZN23move_past_shared_ ⌋
borrow3lib17h7ff9aeb2eb57efe8E;↪→

110 .scl 3;

111 .type 32;

112 .endef
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113 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow3lib17h7ff9aeb2eb57efe8E↪→

114 .p2align 4, 0x90

115 _ZN23move_past_shared_borrow3lib17h7ff9aeb2eb57efe8E:

116 .seh_proc

_ZN23move_past_shared_borrow3lib17h7ff9aeb2eb57efe8E↪→

117 sub rsp, 104

118 .seh_stackalloc 104

119 .seh_endprologue

120 mov qword ptr [rsp + 32], rcx

121 lea rax, [rsp + 32]

122 mov qword ptr [rsp + 40], rax

123 lea rax, [rip +

_ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h38733ca35cc1a335E]

↪→

↪→

124 mov qword ptr [rsp + 48], rax

125 lea rax, [rip + __unnamed_2]

126 mov qword ptr [rsp + 56], rax

127 mov qword ptr [rsp + 64], 2

128 mov qword ptr [rsp + 72], 0

129 lea rax, [rsp + 40]

130 mov qword ptr [rsp + 88], rax

131 mov qword ptr [rsp + 96], 1

132 lea rcx, [rsp + 56]

133 call _ZN3std2io5stdio6_ ⌋
print17h9b42b865ab0fe9c8E↪→

134 nop

135 add rsp, 104

136 ret

137 .seh_endproc

138

139 .def _ZN23move_past_shared_ ⌋
borrow3mid17h0db60ad6d5244510E;↪→

140 .scl 3;

141 .type 32;

142 .endef

143 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow3mid17h0db60ad6d5244510E↪→

144 .p2align 4, 0x90

145 _ZN23move_past_shared_borrow3mid17h0db60ad6d5244510E:

146 .seh_proc

_ZN23move_past_shared_borrow3mid17h0db60ad6d5244510E↪→

147 push rsi
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148 .seh_pushreg rsi

149 push rdi

150 .seh_pushreg rdi

151 sub rsp, 40

152 .seh_stackalloc 40

153 .seh_endprologue

154 mov rsi, rdx

155 mov rdi, rcx

156 mov dword ptr [rcx], 7

157 mov dword ptr [rdx], 42

158 call _ZN23move_past_shared_ ⌋
borrow3lib17h7ff9aeb2eb57efe8E↪→

159 mov rcx, rsi

160 call _ZN23move_past_shared_ ⌋
borrow3lib17h7ff9aeb2eb57efe8E↪→

161 mov eax, dword ptr [rdi]

162 xor eax, 7

163 mov ecx, dword ptr [rsi]

164 xor ecx, 42

165 or ecx, eax

166 sete al

167 add rsp, 40

168 pop rdi

169 pop rsi

170 ret

171 .seh_endproc

172

173 .def _ZN23move_past_shared_ ⌋
borrow4main17hd472ba83054a845eE;↪→

174 .scl 3;

175 .type 32;

176 .endef

177 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow4main17hd472ba83054a845eE↪→

178 .p2align 4, 0x90

179 _ZN23move_past_shared_borrow4main17hd472ba83054a845eE:

180 .seh_proc

_ZN23move_past_shared_borrow4main17hd472ba83054a845eE↪→

181 sub rsp, 120

182 .seh_stackalloc 120

183 .seh_endprologue

184 mov dword ptr [rsp + 48], 1

185 mov dword ptr [rsp + 52], 2
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186 lea rcx, [rsp + 48]

187 lea rdx, [rsp + 52]

188 call _ZN23move_past_shared_ ⌋
borrow3mid17h0db60ad6d5244510E↪→

189 mov byte ptr [rsp + 47], al

190 lea rax, [rsp + 47]

191 mov qword ptr [rsp + 56], rax

192 lea rax, [rip +

_ZN43_$LT$bool$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17hc1c69044d432a1aaE]

↪→

↪→

193 mov qword ptr [rsp + 64], rax

194 lea rax, [rip + __unnamed_2]

195 mov qword ptr [rsp + 72], rax

196 mov qword ptr [rsp + 80], 2

197 mov qword ptr [rsp + 88], 0

198 lea rax, [rsp + 56]

199 mov qword ptr [rsp + 104], rax

200 mov qword ptr [rsp + 112], 1

201 lea rcx, [rsp + 72]

202 call _ZN3std2io5stdio6_ ⌋
print17h9b42b865ab0fe9c8E↪→

203 nop

204 add rsp, 120

205 ret

206 .seh_endproc

207

208 .def main;

209 .scl 2;

210 .type 32;

211 .endef

212 .section .text,"xr",one_only,main

213 .globl main

214 .p2align 4, 0x90

215 main:

216 .seh_proc main

217 sub rsp, 56

218 .seh_stackalloc 56

219 .seh_endprologue

220 mov r9, rdx

221 movsxd r8, ecx

222 lea rax, [rip +

_ZN23move_past_shared_borrow4main17hd472ba83054a845eE]↪→

223 mov qword ptr [rsp + 48], rax
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224 mov byte ptr [rsp + 32], 2

225 lea rdx, [rip + __unnamed_1]

226 lea rcx, [rsp + 48]

227 call _ZN3std2rt19lang_start_ ⌋
internal17hfa9601e856a0d3d7E↪→

228 nop

229 add rsp, 56

230 ret

231 .seh_endproc

232

233 .section .rdata,"dr",one_only,__unnamed_1

234 .p2align 3

235 __unnamed_1:

236 .quad _ZN4core3ptr85drop_in_place$LT$std.. ⌋
rt..lang_start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hacdddc16b040c770E

↪→

↪→

237 . ⌋
asciz "\b\000\000\000\000\000\000\000\b\000\000\000\000\000\000"↪→

238 .quad _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17h7bff86a46a4de388E↪→

239 .quad _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E↪→

240 .quad _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h03bd544d0f913043E↪→

241

242 .section .rdata,"dr",one_only,__unnamed_3

243 .p2align 3

244 __unnamed_3:

245

246 .section .rdata,"dr",one_only,__unnamed_4

247 __unnamed_4:

248 .byte 10

249

250 .section .rdata,"dr",one_only,__unnamed_2

251 .p2align 3

252 __unnamed_2:

253 .quad __unnamed_3

254 .zero 8

255 .quad __unnamed_4

256 .asciz "\001\000\000\000\000\000\000"
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A.2 Assembly Code Output from Compiler With Our
Optimisation

1 .text

2 .def @feat.00;

3 .scl 3;

4 .type 0;

5 .endef

6 .globl @feat.00

7 .set @feat.00, 0

8 .intel_syntax noprefix

9 .file "move_past_shared_borrow.4cc28df5-cgu. ⌋
0"↪→

10 .def _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17h07b15b46742f7420E;↪→

11 .scl 3;

12 .type 32;

13 .endef

14 .section .text,"xr",one_only,_ZN3std10sys_ ⌋
common9backtrace28__rust_begin_short_ ⌋
backtrace17h07b15b46742f7420E

↪→

↪→

15 .p2align 4, 0x90

16 _ZN3std10sys_common9backtrace28__rust_begin_short_ ⌋
backtrace17h07b15b46742f7420E:↪→

17 .seh_proc _ZN3std10sys_common9backtrace28__rust_begin_ ⌋
short_backtrace17h07b15b46742f7420E↪→

18 sub rsp, 40

19 .seh_stackalloc 40

20 .seh_endprologue

21 call rcx

22 #APP

23 #NO_APP

24 nop

25 add rsp, 40

26 ret

27 .seh_endproc

28

29 .def _ZN3std2rt10lang_ ⌋
start17h9fb9706d27b0a4a5E;↪→

30 .scl 2;

31 .type 32;

32 .endef
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33 .section .text,"xr",one_only,_ ⌋
ZN3std2rt10lang_start17h9fb9706d27b0a4a5E↪→

34 .globl _ZN3std2rt10lang_ ⌋
start17h9fb9706d27b0a4a5E↪→

35 .p2align 4, 0x90

36 _ZN3std2rt10lang_start17h9fb9706d27b0a4a5E:

37 .seh_proc _ZN3std2rt10lang_start17h9fb9706d27b0a4a5E

38 sub rsp, 56

39 .seh_stackalloc 56

40 .seh_endprologue

41 mov rax, r8

42 mov r8, rdx

43 mov qword ptr [rsp + 48], rcx

44 mov byte ptr [rsp + 32], r9b

45 lea rdx, [rip + __unnamed_1]

46 lea rcx, [rsp + 48]

47 mov r9, rax

48 call _ZN3std2rt19lang_start_ ⌋
internal17hae3a6cd3dffcbabdE↪→

49 nop

50 add rsp, 56

51 ret

52 .seh_endproc

53

54 .def _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE;↪→

55 .scl 3;

56 .type 32;

57 .endef

58 .section .text,"xr",one_only,_ ⌋
ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE

↪→

↪→

59 .p2align 4, 0x90

60 _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE:↪→

61 .seh_proc _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE↪→

62 sub rsp, 40

63 .seh_stackalloc 40

64 .seh_endprologue

65 mov rcx, qword ptr [rcx]

66 call _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17h07b15b46742f7420E↪→
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67 xor eax, eax

68 add rsp, 40

69 ret

70 .seh_endproc

71

72 .def _ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h56f17affb4d02bd2E;↪→

73 .scl 3;

74 .type 32;

75 .endef

76 .section .text,"xr",one_only,_ZN44_ ⌋
$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h56f17affb4d02bd2E

↪→

↪→

77 .p2align 4, 0x90

78 _ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h56f17affb4d02bd2E:↪→

79 mov rcx, qword ptr [rcx]

80 jmp _ZN4core3fmt3num3imp52_ ⌋
$LT$impl$u20$core..fmt.. ⌋
Display$u20$for$u20$u32$GT$3fmt17h621a09d895289ab4E

↪→

↪→

81

82 .def _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17hc631771b1b35eaa8E;↪→

83 .scl 3;

84 .type 32;

85 .endef

86 .section .text,"xr",one_only,_ ⌋
ZN4core3ops8function6FnOnce40call_once$u7b$$u7b$vtable. ⌋
shim$u7d$$u7d$17hc631771b1b35eaa8E

↪→

↪→

87 .p2align 4, 0x90

88 _ZN4core3ops8function6FnOnce40call_once$u7b$$u7b$vtable. ⌋
shim$u7d$$u7d$17hc631771b1b35eaa8E:↪→

89 .seh_proc _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17hc631771b1b35eaa8E↪→

90 sub rsp, 40

91 .seh_stackalloc 40

92 .seh_endprologue

93 mov rcx, qword ptr [rcx]

94 call _ZN3std10sys_common9backtrace28__rust_ ⌋
begin_short_backtrace17h07b15b46742f7420E↪→

95 xor eax, eax

96 add rsp, 40

97 ret
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98 .seh_endproc

99

100 .def _ZN4core3ptr85drop_in_place$LT$std.. ⌋
rt..lang_start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hc6a66a411ac5e918E;

↪→

↪→

101 .scl 3;

102 .type 32;

103 .endef

104 .section .text,"xr",one_only,_ ⌋
ZN4core3ptr85drop_in_place$LT$std..rt..lang_ ⌋
start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hc6a66a411ac5e918E

↪→

↪→

↪→

105 .p2align 4, 0x90

106 _ZN4core3ptr85drop_in_place$LT$std..rt..lang_ ⌋
start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hc6a66a411ac5e918E:

↪→

↪→

107 ret

108

109 .def _ZN23move_past_shared_ ⌋
borrow3lib17hb6fd11e7c5dafdb5E;↪→

110 .scl 3;

111 .type 32;

112 .endef

113 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow3lib17hb6fd11e7c5dafdb5E↪→

114 .p2align 4, 0x90

115 _ZN23move_past_shared_borrow3lib17hb6fd11e7c5dafdb5E:

116 .seh_proc

_ZN23move_past_shared_borrow3lib17hb6fd11e7c5dafdb5E↪→

117 sub rsp, 104

118 .seh_stackalloc 104

119 .seh_endprologue

120 mov qword ptr [rsp + 32], rcx

121 lea rax, [rsp + 32]

122 mov qword ptr [rsp + 40], rax

123 lea rax, [rip +

_ZN44_$LT$$RF$T$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17h56f17affb4d02bd2E]

↪→

↪→

124 mov qword ptr [rsp + 48], rax

125 lea rax, [rip + __unnamed_2]

126 mov qword ptr [rsp + 56], rax

127 mov qword ptr [rsp + 64], 2

128 mov qword ptr [rsp + 72], 0
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129 lea rax, [rsp + 40]

130 mov qword ptr [rsp + 88], rax

131 mov qword ptr [rsp + 96], 1

132 lea rcx, [rsp + 56]

133 call _ZN3std2io5stdio6_ ⌋
print17hcf4262332c593811E↪→

134 nop

135 add rsp, 104

136 ret

137 .seh_endproc

138

139 .def _ZN23move_past_shared_ ⌋
borrow3mid17h39686d38a1877841E;↪→

140 .scl 3;

141 .type 32;

142 .endef

143 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow3mid17h39686d38a1877841E↪→

144 .p2align 4, 0x90

145 _ZN23move_past_shared_borrow3mid17h39686d38a1877841E:

146 .seh_proc

_ZN23move_past_shared_borrow3mid17h39686d38a1877841E↪→

147 push rsi

148 .seh_pushreg rsi

149 sub rsp, 32

150 .seh_stackalloc 32

151 .seh_endprologue

152 mov rsi, rdx

153 mov dword ptr [rcx], 7

154 mov dword ptr [rdx], 42

155 call _ZN23move_past_shared_ ⌋
borrow3lib17hb6fd11e7c5dafdb5E↪→

156 mov rcx, rsi

157 add rsp, 32

158 pop rsi

159 jmp _ZN23move_past_shared_ ⌋
borrow3lib17hb6fd11e7c5dafdb5E↪→

160 .seh_endproc

161

162 .def _ZN23move_past_shared_ ⌋
borrow4main17hd4f9d74737d1aea0E;↪→

163 .scl 3;

164 .type 32;
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165 .endef

166 .section .text,"xr",one_only,_ZN23move_past_ ⌋
shared_borrow4main17hd4f9d74737d1aea0E↪→

167 .p2align 4, 0x90

168 _ZN23move_past_shared_borrow4main17hd4f9d74737d1aea0E:

169 .seh_proc

_ZN23move_past_shared_borrow4main17hd4f9d74737d1aea0E↪→

170 sub rsp, 120

171 .seh_stackalloc 120

172 .seh_endprologue

173 mov dword ptr [rsp + 48], 1

174 mov dword ptr [rsp + 52], 2

175 lea rcx, [rsp + 48]

176 lea rdx, [rsp + 52]

177 call _ZN23move_past_shared_ ⌋
borrow3mid17h39686d38a1877841E↪→

178 mov byte ptr [rsp + 47], 1

179 lea rax, [rsp + 47]

180 mov qword ptr [rsp + 56], rax

181 lea rax, [rip +

_ZN43_$LT$bool$u20$as$u20$core..fmt.. ⌋
Display$GT$3fmt17hba3811e99eb3064bE]

↪→

↪→

182 mov qword ptr [rsp + 64], rax

183 lea rax, [rip + __unnamed_2]

184 mov qword ptr [rsp + 72], rax

185 mov qword ptr [rsp + 80], 2

186 mov qword ptr [rsp + 88], 0

187 lea rax, [rsp + 56]

188 mov qword ptr [rsp + 104], rax

189 mov qword ptr [rsp + 112], 1

190 lea rcx, [rsp + 72]

191 call _ZN3std2io5stdio6_ ⌋
print17hcf4262332c593811E↪→

192 nop

193 add rsp, 120

194 ret

195 .seh_endproc

196

197 .def main;

198 .scl 2;

199 .type 32;

200 .endef

201 .section .text,"xr",one_only,main
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202 .globl main

203 .p2align 4, 0x90

204 main:

205 .seh_proc main

206 sub rsp, 56

207 .seh_stackalloc 56

208 .seh_endprologue

209 mov r9, rdx

210 movsxd r8, ecx

211 lea rax, [rip +

_ZN23move_past_shared_borrow4main17hd4f9d74737d1aea0E]↪→

212 mov qword ptr [rsp + 48], rax

213 mov byte ptr [rsp + 32], 2

214 lea rdx, [rip + __unnamed_1]

215 lea rcx, [rsp + 48]

216 call _ZN3std2rt19lang_start_ ⌋
internal17hae3a6cd3dffcbabdE↪→

217 nop

218 add rsp, 56

219 ret

220 .seh_endproc

221

222 .section .rdata,"dr",one_only,__unnamed_1

223 .p2align 3

224 __unnamed_1:

225 .quad _ZN4core3ptr85drop_in_place$LT$std.. ⌋
rt..lang_start$LT$$LP$$RP$$GT$.. ⌋
$u7b$$u7b$closure$u7d$$u7d$$GT$17hc6a66a411ac5e918E

↪→

↪→

226 . ⌋
asciz "\b\000\000\000\000\000\000\000\b\000\000\000\000\000\000"↪→

227 .quad _ZN4core3ops8function6FnOnce40call_ ⌋
once$u7b$$u7b$vtable.shim$u7d$$u7d$17hc631771b1b35eaa8E↪→

228 .quad _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE↪→

229 .quad _ZN3std2rt10lang_start28_ ⌋
$u7b$$u7b$closure$u7d$$u7d$17h9f945db4ed42001eE↪→

230

231 .section .rdata,"dr",one_only,__unnamed_3

232 .p2align 3

233 __unnamed_3:

234

235 .section .rdata,"dr",one_only,__unnamed_4

236 __unnamed_4:
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237 .byte 10

238

239 .section .rdata,"dr",one_only,__unnamed_2

240 .p2align 3

241 __unnamed_2:

242 .quad __unnamed_3

243 .zero 8

244 .quad __unnamed_4

245 .asciz "\001\000\000\000\000\000\000"
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Appendix B

Rustc Test Suite Output

The following contains a shortened output of the rustc test suite when run
with the modified compiler containing our optimisations. Here we show
that thousands of test programs were run and passed while our static anal-
yses and optimisation were being run on all these tests. Note that the failed
tests at the end of the output are not caused by our additions but also appear
when running the tests on the unmodified version of the compiler. Read
more about these tests in the evaluation chapter under section 5.1.3.

Check compiletest suite=ui mode=ui

test result: ok. 13495 passed; 0 failed; 157 ignored; 0

measured; 0 filtered out; finished in 575.17s↪→

Check compiletest suite=run-pass-valgrind mode=run-pass-valgrind

test result: ok. 17 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 7.92s↪→

Check compiletest suite=mir-opt mode=mir-opt

test result: ok. 183 passed; 0 failed; 5 ignored; 0 measured; 0

filtered out; finished in 22.62s↪→

Check compiletest suite=codegen mode=codegen

test result: ok. 314 passed; 0 failed; 61 ignored; 0 measured; 0

filtered out; finished in 7.71s↪→

Check compiletest suite=codegen-units mode=codegen-units

test result: ok. 39 passed; 0 failed; 3 ignored; 0 measured; 0

filtered out; finished in 7.08s↪→

Check compiletest suite=assembly mode=assembly

61



B. Rustc Test Suite Output

test result: ok. 120 passed; 0 failed; 26 ignored; 0 measured; 0

filtered out; finished in 2.10s↪→

Check compiletest suite=incremental mode=incremental

test result: ok. 155 passed; 0 failed; 3 ignored; 0 measured; 0

filtered out; finished in 48.62s↪→

Check compiletest suite=ui-fulldeps mode=ui

test result: ok. 48 passed; 0 failed; 23 ignored; 0 measured; 0

filtered out; finished in 9.00s↪→

Check compiletest suite=rustdoc mode=rustdoc

test result: ok. 559 passed; 0 failed; 6 ignored; 0 measured; 0

filtered out; finished in 88.84s↪→

Check compiletest suite=pretty mode=pretty

test result: ok. 71 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 1.87s↪→

Testing ["alloc", "core", "panic_abort", "panic_unwind",

"proc_macro", "std", "test", "unwind"] stage1↪→

test result: ok. 373 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.11s↪→

test result: ok. 651 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.91s↪→

test result: ok. 448 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.40s↪→

test result: ok. 1493 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 1.00s↪→

test result: ok. 408 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.03s↪→

test result: ok. 930 passed; 0 failed; 4 ignored; 0 measured; 0

filtered out; finished in 12.32s↪→

test result: ok. 7 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.11s↪→

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 58 passed; 0 failed; 1 ignored; 0 measured; 0

filtered out; finished in 0.48s↪→
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test result: ok. 654 passed; 0 failed; 4 ignored; 0 measured; 0

filtered out; finished in 51.15s↪→

test result: ok. 3912 passed; 0 failed; 36 ignored; 0 measured;

0 filtered out; finished in 222.93s↪→

test result: ok. 1081 passed; 0 failed; 20 ignored; 0 measured;

0 filtered out; finished in 51.60s↪→

Testing ["rustc-main", "rustc_apfloat", "rustc_arena",

"rustc_ast", "rustc_ast_lowering", "rustc_ast_passes",

"rustc_ast_pretty", "rustc_attr", "rustc_borrowck",

"rustc_builtin_macros", "rustc_codegen_llvm",

"rustc_codegen_ssa", "rustc_const_eval",

"rustc_data_structures", "rustc_driver",

"rustc_error_codes", "rustc_error_messages", "rustc_errors",

"rustc_expand", "rustc_feature", "rustc_fs_util",

"rustc_graphviz", "rustc_hir", "rustc_hir_analysis",

"rustc_hir_pretty", "rustc_incremental", "rustc_index",

"rustc_infer", "rustc_interface", "rustc_lexer",

"rustc_lint", "rustc_lint_defs", "rustc_llvm", "rustc_log",

"rustc_macros", "rustc_metadata", "rustc_middle",

"rustc_mir_build", "rustc_mir_dataflow",

"rustc_mir_transform", "coverage_test_macros",

"rustc_monomorphize", "rustc_parse", "rustc_parse_format",

"rustc_passes", "rustc_plugin_impl", "rustc_privacy",

"rustc_query_impl", "rustc_query_system", "rustc_resolve",

"rustc_save_analysis", "rustc_serialize", "rustc_session",

"rustc_smir", "rustc_span", "rustc_symbol_mangling",

"rustc_target", "rustc_trait_selection", "rustc_traits",

"rustc_transmute", "rustc_ty_utils", "rustc_type_ir"] stage1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

test result: ok. 49 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 19 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 15 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.02s↪→

test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 8 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 162 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.01s↪→
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test result: ok. 8 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 47 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.01s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 11 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 37 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.10s↪→

test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.03s↪→

test result: ok. 32 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.17s↪→

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 8 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 10 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 22 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.01s↪→

test result: ok. 32 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.12s↪→

test result: ok. 200 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.01s↪→

test result: ok. 11 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 3 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 0.25s↪→
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test result: ok. 2 passed; 0 failed; 3 ignored; 0 measured; 0

filtered out; finished in 0.25s↪→

test result: ok. 10 passed; 0 failed; 4 ignored; 0 measured; 0

filtered out; finished in 0.93s↪→

test result: ok. 1 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 0.18s↪→

test result: ok. 22 passed; 0 failed; 1 ignored; 0 measured; 0

filtered out; finished in 1.62s↪→

test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.62s↪→

test result: ok. 5 passed; 0 failed; 6 ignored; 0 measured; 0

filtered out; finished in 0.37s↪→

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0

filtered out; finished in 0.19s↪→

test result: ok. 60 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 3.18s↪→

test result: ok. 94 passed; 0 failed; 19 ignored; 0 measured; 0

filtered out; finished in 3.55s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.51s↪→

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.05s↪→

test result: ok. 14 passed; 0 failed; 12 ignored; 0 measured; 0

filtered out; finished in 0.73s↪→

test result: ok. 4 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 0.31s↪→

test result: ok. 3 passed; 0 failed; 14 ignored; 0 measured; 0

filtered out; finished in 0.26s↪→

test result: ok. 2 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 0.23s↪→

test result: ok. 1 passed; 0 failed; 8 ignored; 0 measured; 0

filtered out; finished in 0.05s↪→

test result: ok. 4 passed; 0 failed; 10 ignored; 0 measured; 0

filtered out; finished in 0.29s↪→

test result: ok. 2 passed; 0 failed; 3 ignored; 0 measured; 0

filtered out; finished in 0.22s↪→

test result: ok. 3 passed; 0 failed; 14 ignored; 0 measured; 0

filtered out; finished in 0.25s↪→

test result: ok. 2 passed; 0 failed; 7 ignored; 0 measured; 0

filtered out; finished in 0.21s↪→

Testing rustdoc stage1

test result: ok. 87 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.01s↪→
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test result: ok. 3 passed; 0 failed; 5 ignored; 0 measured; 0

filtered out; finished in 0.64s↪→

Testing rustdoc-json-types stage1

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.00s↪→

test result: ok. 7 passed; 0 failed; 2 ignored; 0 measured; 0

filtered out; finished in 0.52s↪→

test result: ok. 7 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out; finished in 0.08s↪→

Check compiletest suite=run-make-fulldeps mode=run-make

test result: FAILED. 0 passed; 181 failed; 52 ignored; 0

measured; 0 filtered out; finished in 0.06s↪→
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