
Specifying and Verifying Sequences and Array
Algorithms in a Rust Verifier

Master Thesis Project Description

Johannes Schilling
Supervised by Prof. Dr. Peter Müller,

Aurel Bílý, Federico Poli
Department of Computer Science

ETH Zürich
Zürich, Switzerland

Co-Supervised by
Prof. Dr. Wolfgang Schröder-Preikschat,

Simon Schuster, Phillip Raffeck
Department of Computer Science

FAU Erlangen-Nuremberg
Erlangen, Germany

I. Introduction

Rust is a relatively recent systems programming language,
originally developed by Mozilla. Among its features are
fast execution speed and a strong, static type system,
paired with a novel ownership tracking system to enforce
memory and thread safety.

These strong guarantees greatly simplify verification ef-
forts, as shown by Astrauskas et al. [1]. This works es-
pecially well for the basic foundation of safety and non-
interference properties. For advanced, functional proper-
ties, further annotations for use with their verification tool
Prusti, are required.

In this thesis we will build on these previous efforts and
expand their work to support Rust’s built-in sequence
types and establish verification mechanisms for functional
properties of Rust traits, the interface specification mech-
anism in Rust. These building blocks will allow us to verify
functional correctness of e.g. sort algorithms on arrays and
slices.

A. Rust

While Rust’s strong type system is used in a novel way
towards implementing safety guarantees, it is also very
expressive from a conventional type system view.

Interface Polymorphism with Traits. So-called traits
allow specifying common behaviors or APIs. Every type
implementing a trait can be used similarly with respect
to the interface that the trait describes. Rust uses traits
– among many other uses – for specifying the behavior
of operators like equality checking or ordering (Eq, Ord
traits) or element access in vectors (Index, IndexMut).
Implementing a trait for a user-defined type allows using
the corresponding operator with instances of that user-
defined type. That means that early during compilation,

the compiler will translate various operators in a program
to calls to the respective trait functions, e.g. Ord::cmp or
IndexMut::index_mut. See listings 1 and 2 for an example
of the translation.

1 if a > b {
2 v[0] = 13;
3 }

Listing 1: Original code

1 if a.cmp(b) == Ordering::Greater {
2 let tmp = v.index_mut(0);
3 *tmp = 13;
4 }
Listing 2: Operators unfolded into trait method calls

B. Prusti

The Prusti Verifier [1] allows verifying functional and
safety properties of Rust programs.

Rust’s model of static guarantees provides a very good
foundation for verification. Where in other languages a
lot of work goes towards proving basic safety and non-
interference of different code parts before being able
to even start verifying functional properties, for Rust a
number of properties are already given by the language
semantics.

Prusti extends Rust with a way to provide functional
specifications of functions and also verify their validity. It
works by encoding Rust programs and their specifications
to Viper [2], an intermediate verification language and
framework, which ultimately proves their validity.

A number of basic properties can be derived from the
semantics that the Rust language gives to its constructs,
such as non-aliasing of two &mut exclusive references.

1

While many constructs are already supported, the built-
in Sequence types are not supported yet. To support them
in Prusti, we must implement the translation of the Rust
compiler’s intermediate representation to corresponding
Viper predicates.

Additional properties often need dedicated syntax and
parsing thereof in addition to producing Viper encoding.

II. Core Goals

Part of this Master Thesis is to make a plan and collect
usage examples beforehand, in order to have more input to
the design of the solutions and to support the evaluation
later.

Specifying and verifying sequences and sort algorithms ex-
ercises a number of functionalities that the Prusti verifier
does not yet have, namely specifying predicates including
quantification and implication, support for arrays and
slices and verifying invariants on traits behavior.

A. Collecting Examples of Code using Slices, Sorting or
relying on API Invariants

The first task is to collect examples of Rust code using the
features we are interested in here – Rust slices or arrays
and sorting them – and properties of traits that can’t be
ascertained using just the type system. These examples
will be useful in test cases and for the final evaluation, and
also to possibly catch missing corner cases in the design
early.

One interesting case from the Rust standard library is the
Hash trait, which specifies that if a type implements both
Eq and Hash, then the implementation must make sure
that instances comparing as equal under Eq::eq() must
produce the same Hash::hash() value.

B. Adding Syntax for Predicate Functions

In order to specify properties that can be reused later
e.g. when specifying transitivity of the Ord trait, we want
to be able to specify predicates in a Rust function-like
syntax, but using Prusti’s extensions to Rust’s syntax.
This allows for example quantifications and implication.
Predicates will be translated to Viper functions, which
will never be executed at runtime. A possible syntax for
these predicates is shown in listing 3.

1 #[predicate]
2 fn sorted() -> bool {
3 forall(|i : usize| (0 < i < list.len()
4 ==> list[i-1] <= list[i])
5 }

Listing 3: Transitivity Predicate

C. Adding Support for Arrays and Slices

Specification and Verification of code using Rust arrays or
slices is not yet supported in Prusti. The task here will
be to add Viper predicates such as Array(self: Ref)
and Slice(self: Ref) and to add support for them
throughout the whole verification pipeline.

We aim to support arrays and slices of primitive and
generic types, simple operations (at least get, set, len),
creation of arrays and creation of slices as windows into
arrays or other slices.

D. Annotation and Verification of Properties of Rust
Traits

Rust has two traits related to equality: PartialEq and
Eq. The first one allows for partial equality, for types
that do not have a full equivalence relation. For example,
in floating point numbers NaN != NaN, so floating point
types implement PartialEq but not Eq. The PartialEq
trait requires that the relation defined is symmetric and
transitive. The Eq trait defines no additional methods, but
inherits PartialEq and additionally requires reflexivity as
a property, making it an equivalence relation.

These properties can only be described in the documen-
tation in Rust. In this thesis, we want to design and
implement a way to

Specify the requirements that a trait has for its imple-
mentations

Verify that a trait implementation satisfies the require-
ments of the trait, i.e. upholds the guarantees that
the trait makes.

While not set in stone, a possible syntax for this could be
as shown in listing 4.

2

1 #[api_invariant(Eq::transitivity)]
2 trait Eq {
3 #[pure]
4 fn eq(a: &Self, b: &Self) -> bool;
5

6 #[predicate]
7 fn transitivity() -> bool {
8 forall |a : Self, b: Self, c: Self| {
9 (eq(a, b) && eq(b, c)) ==> eq(a, c)

10 }
11 }
12 }
13

14 struct Foo { ... }
15

16 impl Eq for Foo {
17 fn eq(a: &Self, b: &Self) -> bool { ... }
18 }

Listing 4: API Invariant of the Eq trait

When verifying, Prusti must instantiate the API invariant
for each type that implements the trait. For example,
Eq::transitivity must hold for the Foo::eq implemen-
tation.

E. Evaluation

The last step before writing the thesis report is to evaluate
the implementation. The samples collected earlier are a
valuable resource. We will evaluate whether it is actually
possible to apply the techniques implemented, and how
well. Time taken to verify, occurrences of unexpected run-
time errors and correctness of the results will be of interest.
Verifying a simple sort algorithm should be possible, given
all the building blocks described previously.

III. Extension Goals

A. Verifying Functional Correctness of the Rust Standard
Library Sort Algorithm1

The sort algorithm used by the Rust standard library is
a modified mergesort, borrowing some ideas from other
algorithms. While the code uses unsafe, it does so only
for performance optimizations, i.e. we can still verify a
functionally equivalent version.

B. Specification and Verification of Vec<T>

Arrays and slices are the Rust language’s built-in types for
fixed-size sequences and variable-length views into such

1Excluding the use of unsafe for performance reasons and other
small changes

sequences, respectively. The type for dynamically self-
expanding sequences (i.e. owning its backing memory) is
Vec<T>.

This extension goal is about specifying Vec<T> so that its
instances become more usable in verification as well. Some
parts can already be specified using trusted wrappers and
the #[extern_spec] mechanism, but that is limited and
not as user-friendly.

This should be somewhat analogous once the built-in types
work, but may contain additional pitfalls. Particularly, this
extension goal is not about complete support of generic
types.

C. Method for Importing external Prusti specifications

While this thesis focuses mainly on additions to Prusti
to support more verification use cases, there might be
a significant body of Rust standard library code that
could be – at least partially – supported already without
further mechanisms implemented in Prusti, but lacks some
annotations.

While the #[extern_spec] mechanism itself already ex-
ists, its feature set is limited. In particular, existing anno-
tations currently have to be copied to each file using them.
To allow more of the Rust standard library or external
crates to be verified, the #[extern_spec] mechanism
could be extended, laying the foundations for a library
of verification annotations.

D. Method for Specifying a Conversion of Rust Types to
Viper Types

The Viper verifier has a builtin Seq[T] type of sequences
with element type T. Rust has different types that concep-
tually represent a sequence of same-typed elements: both
[T] (arrays and slices), and Vec<T> (called vector), as well
as user-defined custom types. Similar conceptual equiva-
lences could exist for other types like sets or multisets.

There is already work in progress on Ghost Type Encod-
ings. What is missing is the concrete translation. This
extension goal is about creating a mechanism to describe a
translation from instances of concrete Rust types like [T]
to Viper/Silver types like Seq[T], so Viper’s operations
for those can be applied for the corresponding Rust types
as well.

It would also be really useful to have conversions for Rust’s
sequence types to Viper’s multiset, in order to specify
that sorting doesn’t change a sequence’s members.

3

https://doc.rust-lang.org/src/alloc/slice.rs.html#950
https://github.com/viperproject/prusti-dev/pull/181
https://github.com/viperproject/prusti-dev/pull/181

E. Pure Model Functions, Model Fields

This extension goal is about looking into a way to provide
model functions and model fields on data structures by
annotating them with #[model] attribute and making
them available for specification and verification.

The example in listing 5 shows such an example.
The actual interface for Iterator<T> has a method
next(&mut self) -> Option<T> which returns None
once no more elements are available, but notably does not
allow random access to single elements. The model state
does allow that, which might be useful in order to express
invariants about the elements that are impossible or much
more difficult to express otherwise.

1 trait Iterator<T> {
2 #[model]
3 #[pure]
4 fn at_index(idx: isize) -> T;
5 }
6

7 struct VecIterator<T> {
8 vals: &Vec<T>,
9 }

10

11 impl<T> Iterator<T> for VecIterator<T> {
12 #[model]
13 #[pure]
14 fn at_index(idx: isize) -> T {
15 self.vals[idx]
16 }
17 }

Listing 5: Ghost Code Example using Iterator

IV. Schedule

1 Week Core Goal: Collect Samples
2 Week Core Goal: Add Syntax for Predicate Functions
4 Weeks Core Goal: Add Support for Arrays and Slices
4 Weeks Core Goal: Annotation and Verification of

Properties of Rust Traits
4 Weeks Extension Goals
1 Week Evaluation
4 Weeks Write Report, Prepare Final Presentation

References

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers,
“Leveraging Rust types for modular specification and
verification,” in Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), vol. 3,
no. OOPSLA. ACM, 2019, pp. 147:1–147:30.

[2] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper:
A verification infrastructure for permission-based rea-

soning,” in Verification, Model Checking, and Abstract
Interpretation (VMCAI), ser. LNCS, B. Jobstmann
and K. R. M. Leino, Eds., vol. 9583. Springer-Verlag,
2016, pp. 41–62.

4

	Introduction
	Rust
	Prusti

	Core Goals
	Collecting Examples of Code using Slices, Sorting or relying on API Invariants
	Adding Syntax for Predicate Functions
	Adding Support for Arrays and Slices
	Annotation and Verification of Properties of Rust Traits
	Evaluation

	Extension Goals
	Verifying Functional Correctness of the Rust Standard Library Sort AlgorithmExcluding the use of unsafe for performance reasons and other small changes
	Specification and Verification of Vec<T>
	Method for Importing external Prusti specifications
	Method for Specifying a Conversion of Rust Types to Viper Types
	Pure Model Functions, Model Fields

	Schedule

