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Abstract

Arrays and slices are the fundamental sequence types in the Rust pro-
gramming language. The ability to specify and verify properties about
them has the potential to benefit a wide range of programs.

Prusti is a Rust verifier. It supports automatic derivation of a core
safety and non-interference proof from information available to the com-
piler, thanks to the strong guarantees that Rust’s memory and thread
safety mechanisms provide. User-provided functional specifications can
be added on top of the core proof and verified with low effort.

Prusti lacks support for arrays and slices so far. In this thesis, we design
and implement support for specifying and verifying array programs in
Prusti. This includes not only support for encoding types and program
constructs related to arrays and slices, but also predicates as specifi-
cation constructs supporting Prusti’s full specification syntax including
quantification and implication to simplify reasoning about sequences.

Our approach integrates well with Prusti’s existing encoding technique.
We demonstrate its usefulness by showing the verification of a sort algo-
rithm for arrays.

Kurzfassung

In der Programmiersprache Rust sind Arrays und Slices die elementaren
Listendatentypen. Die Moglichkeit ihr Verhalten zu spezifizieren und zu
verifizieren hat das Potential, fiir eine grofle Bandbreite von Programmen
niitzlich zu sein.

Prusti ist ein Verifizierer fiir Rust-Programme. Dank der weitreichenden
Garantien, die die Speicher- und Aktivitéitstrager-Schutzmechanismen in
Rust bieten, unterstiitzt Prusti die automatische Ableitung eines grund-
legenden Beweises der Sicherheit und der Nicht-Beeintrichtigung aus In-
formationen des Rust-Ubersetzers. Dariiber hinausgehende funktionale
Spezifikationen kénnen durch die Benutzer hinzugefiigt und mit gerin-
gem Aufwand verifiziert werden.

Bisher bietet Prusti keine Unterstiitzung fir Arrays und Slices. In der
vorliegenden Arbeit wird die Unterstiitzung fiir Spezifikation und Veri-
fikation von Array-Programmen in Prusti konzeptioniert und implemen-
tiert. Das beinhaltet nicht nur Mechanismen zur Kodierung von Datenty-
pen und Programm-Konzepten mit Bezug zu Arrays und Slices, sondern
auch Préadikate als Spezifikations-Werkzeuge, welche die komplette Spe-
zifikationssyntax von Prusti inklusive Allquantifizierungen und Implika-
tionen unterstiitzen, um Beweisfithrungen {iber Listen zu vereinfachen.

Die Losung ist gut in die bestehenden Kodierungstechniken von Prus-
ti integriert. Thre Zweckmaéfigkeit wird anhand einer Verifikation eines
Sortieralgorithmus aufgezeigt.
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Chapter 1

Introduction

Rust [1] is a relatively new systems programming language with a strong static
type system, paired with a novel ownership and reference tracking system to
enforce memory and thread safety at compile time.

These strong guarantees greatly simplify verification efforts, making it pos-
sible to automatically deduce and encode the basic foundation of safety and
non-interference properties. Astrauskas et al. have implemented this auto-
matic deduction in their verification tool Prusti [2]. For advanced, functional
properties, further annotations by the user can be added.

Prusti is based on the Viper verification infrastructure [3]. It encodes the
semantics of Rust programs to the Viper language and uses Viper to verify
the result.

Given a simple Rust function like calculate in Listing 1.1, Prusti can check
for the absence of panics (unexpected exceptions in Rust). Conditions in which
a Rust program will panic include arithmetic overflows or division by zero,
accesses outside of array bounds or explicit invocations of the panic! macro.
In this case, as we have no further information about the inputs, a + b might
overflow and ¢ might be zero, leading to a division by zero. With further
annotations these conditions could be excluded, and callers would need to
make sure they only pass valid inputs.

fn calculate(a: i32, b: i32, c: i32) -> i32 {
(a+b)/c
}

Listing 1.1: Rust function operating on integers.

While this automatic derivation is well supported for scalar variables and some
aggregate types, support for sequences has been missing so far.
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1.1 Support for Sequence Types

Consider the sort function outlined in the following example:

/// Sorts the sequence a.

fn sort(a: &mut [i32]) {
/7

}

The comment declares that this function sorts the input sequence. But to
make sure it actually does, we would need to be able to specify and verify
that formally. In order to accomplish that using Prusti, we add support for
arrays and slices and specification constructs to talk about sequences of data
meaningfully.

1.2 Contributions

The main contributions of this thesis are:

o Syntax and implementation for freestanding specification items called
predicates which support extended syntax including quantification and
implication. This allows specifying properties like the sortedness of a
sequence.

e Design of an encoding for arrays and slices to the Viper verification
language [3]. Implementation of significant parts of the design in the
Prusti verifier.

o Verification of two sort algorithms on arrays, in addition to a large num-
ber of simpler test cases, showing suitability of our designed encoding
and implementation.

1.3 Outline

In the next chapter we present the necessary background on Rust, the Viper
verification infrastructure and the Prusti Rust verifier, concluded by a short
section on related work.

We then show the design of our encoding of array and slice types and opera-
tions as well as the new predicate syntax into Viper’s verification language in
Chapter 3.

In Chapter 4 we describe details of the implementation, which is evaluated in
Chapter 5. The thesis concludes with Chapter 6.



Chapter 2

Background

This chapter introduces the Rust programming language and in particular
its sequence types—namely arrays and slices. We then discuss the Viper
verification infrastructure and the Prusti Rust verifier based on it, and finally
some related work.

2.1 Rust

Rust is a relatively new systems programming language providing compile-
time checked safety via its type system and by tracking ownership and bor-
rowing of memory locations.

The focus in this section is to introduce some of Rust’s safety and type system
features, and go into more detail on its array and slice data types.

2.1.1 Ownership, Borrowing and Mutability

Rust’s safety guarantees are in large part based on the way ownership and
mutability of memory is handled. An object in memory always has exactly
one variable as owner. If the variable goes out of scope without transferring
ownership of the underlying memory, the memory will be deallocated. Access
to the object can be passed by shared (immutable) or exclusive (mutable)
reference, or by passing full ownership of the memory to or from function calls
or other variables. The compiler will statically check that exactly one owner,
at most one mutable reference or in the absence of a mutable reference, any
number of immutable references to the same memory location exist. Coupled
with Rust’s strong type system, this allows relatively fine-grained abstractions
with locally (function-scope) enforced rules and safe interfaces exposed.

Listing 2.1 shows an example of code the borrow checker rejects. In this small
example not much needs to change to make the compiler accept the program;
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let mut numbers = vec![1, 2, 3, 4];

let first = &numbers[0];

numbers.push(7);

println! ("The first number is: {}", first);

Listing 2.1: Example of code the borrow checker rejects: appending an element might
need to reallocate memory, invalidating the original reference first

reordering statements is enough. In general, safety mechanisms like the bor-
row checker encourage programming along data accesses and modeling closely
which operations need which level of access to data (immutable, mutable) in
type definitions and function signatures.

This fits well with Viper’s modular verification approach. Viper tracks mem-
ory permissions and verifies that all accesses happen with sufficient permis-
sions. It verifies for each method separately that given the preconditions and
permissions the postconditions will be fulfilled and returned resource permis-
sions are held at the end of a method body. Then the specification is used
in place of the body at call sites. Modular verification is also discussed in
Section 2.2.8.

2.1.2 Arrays and Slices

Rust has two fundamental sequence types: arrays and slices. Arrays are fixed-
size sequences. Both the element type and length are part of the data type;
an array of 5 signed 32-bit integers is written as [132; 5].

Slices are dynamically sized sequences, in the sense that their length is not
known at compile time. They can be thought of as windows into a part of
another array or slice. The type of slices of booleans is written [bool]. To
find the length of a slice, we need to call its 1len method. Neither arrays nor
slices support dynamic resizing.

The dynamically resizing sequence type Vec, which is part of Rust’s standard
library, makes significant use of a number of Rust features still unsupported
by Prusti.

Slices cannot be directly constructed (there is no slice literal syntax), but are
created by slicing a backing array or slice. That means they usually! only
exist as references to their backing sequence, that is as type &[T], where T
is the type of the elements. Examples of array and slice creation in Rust are
shown in Listing 2.2.

!There are cases in the Rust standard library where slices are created from other owned
data like a Vec’s contents through Vec::into_owned_slice. Here the result is a Box<[T]>,
a sequence of elements on the heap without length information in the data type.
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// initialize using explicit elements
let mut a = [1, 2, 4]; // type: [132; 3]

// slice: take a sub-range
let b = &al1..3]; /7 (2, 41, type: &[132]

// take a mutable reference to an element
let ¢ = &mut al[2]; // 4, type: &mut 132

Listing 2.2: Array and slice creation in Rust.

References to array elements—just like references to other memory locations—
can be mutable or immutable. At any given time, either one mutable or any
number of immutable references are permitted. As it is not in general clear at
compile time which values an index variable will have (so it is impossible to
determine at compile time whether references will access the same memory),
a reference into an array blocks the whole array?, as shown in the following
example:

let mut a = [1, 2, 3];

let b = &al[0]; // OK
let ¢ = &alll; // OK: multiple shared refs
let d = &mut a[2]; // Error: already borrowed immutably

println! ("{}", b + ¢);

2.2 \Viper

The Viper verification infrastructure [3, 4] is the foundation for a family of
verification tools. This section will summarize the parts of Viper and its
functionality relevant for this thesis: first a general overview of its architecture,
followed by a description of some of the language constructs that Viper offers
which we will use later on.

Figure 2.3 shows a schematic overview of Viper’s architecture in the context
of Prusti. A number of language frontends exist for Viper. Among these are
Prusti for Rust programs and Gobra for the Go language. These frontends
translate the semantics of programming constructs from their respective source
languages into the Viper intermediate language Silver. When we talk about
Viper programs we mean programs in the Silver language.

2Note that even if we could improve Prusti’s handling of arrays here, such that we could
prove indices distinct for some cases, we would still need the code to pass Rust’s borrow
checker. This means, in effect, that this is a limitation to be lifted by the Rust compiler,
not Prusti alone, should this ever be attempted.
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Viper provides different verification backends to verify such programs. Prusti
exclusively uses the Silicon backend, which is based on symbolic execution.
Both currently existing back-ends ultimately use the SMT solver Z3 to dis-
charge proof obligations.

Silver
Program

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.3: Overview of the Viper verification framework.

2.2.1 Structure of a Viper Program

Viper allows relatively high-level encoding of program behavior, resource per-
missions and verification conditions. A Viper program consists of functions,
methods, predicates and data type declarations.

Methods can be viewed as sequences of operations. They form a modular
boundary for the verification backend, in that behavior of methods is checked
to fulfill its postconditions given the preconditions, but users of the method
only interact with what is specified in pre- and postconditions, ignoring the
body. Details on these are explained in Section 2.2.8.

Functions can be viewed as abstractions over expressions. They may not
contain loops, but recursion is allowed. Functions cannot change any program
state, just access it. They are presented in Section 2.2.4.

Predicates can be viewed as abstractions over assertions. They are described
in more detail in Section 2.2.3.
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Data type declarations include field declarations and domain definitions.
They are explained further in the next subsection.

We discuss these in more detail in the following subsections, as well as a
number of other features available in the Viper language.

2.2.2 Builtin Data Types and Permissions

Viper supports primitive datatypes like Int (unbounded integers) and Bool,
some composite datatypes like Seq[T] for sequences of items of type T and
Multiset [T], and the special Ref and Perm types.

Ref is the type of references to objects. Objects have fields, which are de-
clared globally. Which fields a concrete instance can access is encoded using
permissions.

Perm is the type of permissions to memory locations. Permissions to a specific
location are given as a fractional value between 0 and 1, where 0 equals no
access, 1 means full (write) access, and any fractional value strictly between
0 and 1 amounts to read access. The symbolic names none and write are
predefined in Viper.

Listing 2.4 shows an example declaring appropriate permissions for what the
method increase_if_active needs. Note that permissions that are not
passed back to the caller via postconditions are consumed. The acc () function
denotes that we are talking about the permission to the named expression,
not the expression itself.

field amount: Int
field active: Bool

method increase if active(self: Ref)
requires acc(self.amount, write) && acc(self.active, 1/2)
ensures acc(self.amount, write) && acc(self.active, 1/2)

{
if (self.active) {
self.amount := self.amount + 1

Listing 2.4: Example method demonstrating permissions.

2.2.3 Named Permissions: Predicates

We can abstract over permissions using predicates. A predicate is a named
permission to an optional set of fields or other predicate permissions. A typical
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use case is to encode all permissions necessary to access a composite data type
from the source language into one logically grouped item. An example of a
predicate declaration for a tuple type looks as follows:

predicate tuple(self: Ref) {
acc(self.left, write) && acc(self.right, write)

3

When working with predicate permissions, acc(some_pred(self), write)
may be written as just some_pred(self).

Folding and unfolding. In Viper, a predicate instance is not directly equiv-
alent to the corresponding instantiation of the predicate’s body, but these
two assertions can be explicitly exchanged for one another. The statement
unfold P(...) exchanges a predicate instance for its body; fold P(...)
performs the inverse operation.

To minimize the necessary state space search, Viper requires this explicit
folding and unfolding. While this is useful to simplify the verifier’s task, we
will omit the folding and unfolding parts from now on to improve readability.

Abstract predicates. Predicates do not necessarily need to have a body,
that is, they do not need to name any fields or other permissions. We will use
this in Section 3.5.1 to encode an abstract permission to an array. Abstract
predicates are written as:

predicate Array(self: Ref)

They can be used just like regular predicates in pre- and postconditions, be
added, asserted or removed from the verifier state, but cannot be unfolded.

2.2.4 Named Expressions: Functions

Just as predicates are an abstraction over assertions, functions are an abstrac-
tion over Viper expressions. They allow referring to an expression by name,
including recursion in the function body. An example for a length function of
a linked-list type MyList is shown here:

function len(l: Ref): Int

requires MyList (1)
ensures result >= 0

l.next == null 7 0 : 1 + len(l.next)
}

Side effects. Function invocations are side-effect free; they are sometimes
explicitly called pure functions to differentiate them from related concepts.
They cannot modify permissions or values of variables.
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Abstract functions. Functions do not necessarily need to have a body; those
without a body are called abstract or uninterpreted functions. Invocations of
uninterpreted functions are treated as symbolic values.

2.2.5 The Magic Wand Operator

Besides the usual logical operators &&, | | and ==> for conjunction, disjunction
and implication, Viper supports the magic wand? operator ——* known from
separation logic [5, 6]. A magic wand A --* B represents a resource which, if
combined with resource A, consumes A and yields resource B.

A typical use case for magic wands in the context of encoding Rust programs
is when we have a reference to a struct instance and take a reference to a field
of that struct. The encoding of taking a reference to a field will add both the
new reference (resource A) and the ability to regain the original reference to
the full structure (resource A ——* B) to the state. Prusti encodes applying the
magic wand at the location that the reference to the field expires, restoring full
access to the original struct. This mirrors what the borrow checker enforces
in Rust into the encoding in Viper.

2.2.6 Quantification and Triggers

Viper supports universal quantification of expressions and permissions as
shown in this example:

forall i: Int :: { f(4) } i < £(1)

The expression inside the curly braces is called trigger and controls when
Viper instantiates quantified expressions. In particular, when a universally
quantified assertion is a hypothesis for a proof goal, the triggers cause the
SMT solver to instantiate the quantifier only when it encounters expressions
matching the trigger. When determining whether a trigger matches an ex-
pression, quantified variables act as wildcards.

Assuming the current proof goal is 2 * £(4) > 8 then i is matched to 4 and
the quantified fact is instantiated for this concrete case, allowing verification
of the goal. The function £ here might be any function on integers that we
do not know much about, other than its result being strictly greater than its
input.

Matching loops. Matching loops are infinite loops that occur when a trigger
expression immediately matches on an instantiation again. As an example,
consider the following Viper program snippet:

3 Also sometimes called separating implication, because it acts like an implication A = B
when disregarding resource assertions.
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domain MyInt {
function create(x: Int): MyInt
function get(a: MyInt): Int
function sum(a: MyInt, b: MyInt): MyInt

axiom MyInt_sum {
forall a: MyInt, b: MyInt :: { sum(a, b) }
sum(a, b) == create(get(a) + get(b))

Listing 2.5: Example of a custom integer type as a domain.

assume forall i: Int :: { magic(Z) }
magic(magic(i)) == magic(2 * i) + i

assert magic(magic(10)) == magic(12345) + 10

Verification of this snippet should fail, because our definition says nothing
about the equality we are asserting. But due to the trigger, the solver will in-
stantiate the quantified expression with i == magic(10), matching the outer
magic call on the left-hand side to the wildcard i.

As the instantiation immediately matches the trigger again, this results in an
infinite loop.

Quantifiers, triggers and matching loops are explained in more detail in [4,
Quantifiers Section].

2.2.7 Domain definitions

In order to define new datatypes in a Viper program, we use domains. A
domain consists of a name, a number of uninterpreted functions and a number
of axioms describing the behavior of the functions.

As an example, the Viper tutorial [4] shows the axiomatization of a custom
integer type, reproduced in Listing 2.5.

The axiom MyInt_sum puts the uninterpreted functions create, get and sum
in relation to each other.

2.2.8 Methods, Modular Verification and Program State

When verifying whether a method conforms to its specification, Viper (to be
more exact: Silicon, the backend used by Prusti) will start with an empty
program state. The program state includes the values of all variables in scope
and the permissions currently held. At the beginning of the verification of a
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method the resource and value assertions from the preconditions are added to
the program state.

Then the method body is interpreted step by step, applying modifications
to the program state or making assertions about it. Statements include as-
signments, labels, method calls, control structures like conditionals and loops,
assertion checking and state modification statements and the fold and unfold
statements which we have seen earlier.

Of particular interest are the inhale and exhale statements.
The informal semantics of inhale A is as follows:
e Add the permissions denoted by A to the program state.
o Assume that all value constraints in A hold.
The informal semantics of exhale A is as follows:
e Assert that all value constraints in A hold; if not, verification fails.

o Assert that all permissions denoted by A are currently held; if not, veri-
fication fails.

e Remove the permissions denoted by A.

These semantics match those of pre- and postconditions and make the same
functionality available within method bodies. They are intended to enable
the encoding of features of the verified source language that are not directly
supported by Viper.

Note that any information about values of expressions is only valid as long
as we have nonzero permission to access the respective expression. In other
words, giving up access to an expression simultaneously gives up any knowl-
edge about the expression.

Old expressions. It is possible to refer to an expression at an earlier point
in the program using old(x). Without any further information, this refers to
the value x had at the beginning of the current method.

It is often useful to refer to the state of the left-hand side of a magic wand just
before its expiry. This is what the implicitly defined label 1hs in magic wand
applications does: 01d[1lhs] (x) refers to the value of x just before applying
the magic wand.

2.3 Prusti

Prusti is a Rust verifier building on top of the Viper verification infrastructure.
It aims to abstract from the underlying verification language and allows users
to give specifications in (augmented) Rust syntax.

11
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This section gives an overview of how Prusti works and gives context to how
our contributions fit into its overall architecture. Figure 2.6 shows a schematic
overview of Prusti.

VPR Result
Prusti
; Error Span
Translation Translation
f
MIR,

Rust Compiler

X
|
|
|
|
|
|
|
|
|
|
|
|
|
I
i
I

[ prusti_contracts f---------4---------------- g

Rust
Source

Result

Figure 2.6: Prusti architectural overview.

When running Prusti on a Rust source file the following steps take place:

e Procedural macros and attributes (including for example
#[requires(..)]) provided by the prusti_contracts crate that is
part of Prusti) are evaluated by the Rust compiler. They may gen-
erate additional code, for example from pre- or postconditions, in order
to have the Rust compiler typecheck them. This is represented by the
dashed line from prusti_contracts through the Rust Compiler block
to the Translation block. An example of additionally generated code
can be found in Section 4.1.

e The Rust compiler runs compilation stages up until the generation of
MIR*?, an intermediate code format.

4For an overview of MIR, see the MIR chapter in the Rust Compiler Developer’s Guide

12
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o Prusti interprets the MIR, including the additional code generated by
the prusti_contracts macros, and outputs a Viper program consisting
of the core proof and translations of user annotations of the input Rust
program.

e The Viper verifier will try to verify the given program, returning a result
to Prusti containing an error or a success message.

e Prusti will translate errors, if any, back to Rust source locations, and
display them to the user.

Even without any user annotations, Prusti will generate a Viper output pro-
gram containing the so-called core proof. The core proof is the translation
of the semantics of the Rust program (and further information like borrow
analysis calculated from it) to Viper. Successful verification of the core proof
implies correctness of the Rust original with regard to memory safety. It
provides the foundation for additional checks such as panic (unexpected ex-
ception) freedom, absence of overflows and user-provided assertions.

Abstract read permission. We have introduced in Section 2.2 that any per-
mission amount strictly between 0 and 1 represents a read permission, and that
Viper has symbolic names none for no permissions and write for permission
amount 1.

For read permissions, Prusti does not follow the full model of fractional permis-
sions, where partial permissions are added up again to a full write permission.
Instead, an abstract read permission is used. This read permission is not ac-
tually added and subtracted, instead Prusti only models the permissions the
Rust compiler assigns to variables and references. In other words, a write
permission to a variable is regained when the last reference to it expires, not
by adding up fractional permissions. The abstract read permission is defined
like this:
function read(): Perm
ensures none < result && result < write

More details on why this is a sound way of encoding permissions can be found
in [2, Section 5.2].

2.3.1 Encoding of Rust Types

Prusti includes two ways of encoding types to Viper: Heap-based encoding
and Snapshot encoding. Heap-based encoding models ownership of memory
locations through permissions.

As not all operations in Viper are possible with heap-dependent data, there
is the alternative snapshot encoding. It encodes values, without permissions

at https://rustc-dev-guide.rust-lang.org/mir/index.html.

13
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or heap dependence. This allows types without direct Viper equivalents to be
used anywhere in Viper pure expressions (including quantifiers, postconditions
and pure function bodies).

Heap-based encoding using predicates. We will take a look at the encoding
of some Rust types to Viper by Prusti. While for some of Rust’s primitive
types equivalents exist in Viper, the heap-based encoding needs to account
for permissions and borrowing as well, so in this context all types are encoded
using predicates on Ref-typed variables and adding or removing permissions
to the respective fields. The usize type is the type of machine-word-sized
unsigned integers, used for example for array indexing and length.

predicate usize(self: Ref) {
acc(self.val_int, write)

}

All integer types use the val_int field for their contained value. When en-
coding references, we use the val_ref field.

predicate ref$usize(self: Ref) {
acc(usize(self.val_ref), write)

}

Notice how the permission to access a &mut usize includes the usize sub-
predicate’s permissions.

For composite types like tuples and structures, the encoding becomes more
elaborate, but still follows the same basic approach using Ref and predicates.
Given this Rust structure definition:

struct Range {
start: usize,
end: usize,

}

Prusti will encode the following predicate describing the type and its permis-
sions:

predicate Range(self: Ref) {
usize(self.f$start) && usize(self.f$end)
3

One thing to note here is that $ is a valid character in identifiers in Viper,
providing an easy way to avoid name clashes when encoding.

Snapshot-based encoding. For primitive types (all integer primitive Rust
types, including char and bool) their snapshot is just their value as an Int
or Bool, respectively.
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For composite types like tuples and structures, a corresponding snapshot do-
main® is generated.

The components of a snapshot domain for a Rust type T are:

e a domain type Snap$T representing deep copies of values of type T,

a constructor function cons$Snap$T that takes all components that
make up type T and returns a deep copy,

« domain axioms to make sure each instance of Snap$T corresponds to ex-
actly one instance of T, i.e. there is a bijection between heap-dependent
and heap-independent values® and

o for each field, a field access function and corresponding axioms specifying
the field access function’s behavior.

The snapshot encoding for the Range type is shown in Listing 2.7.

In addition to the domain definition itself, Prusti defines a function to take
the snapshot of a heap-dependent value at some point in the program.

The snapshot function for primitive types like usize is just unfolding its
predicate and extracting the contained value:
function snap$usize(self: Ref): Int
requires acc(usize(self), read())

{

unfolding acc(usize(self), read()) in self.val_int
}
2.3.2 Havocking: Erasing Knowledge about a Value

For some operations it is necessary or useful to explicitly erase all knowledge
about a variable’s contents. The operation to assign such an arbitrary value
to a variable is commonly known as havoc.

At the time of writing, Viper does not have an explicit havoc statement, but
we can build a method with the same effect:

method havoc_ref(): Ref

This method makes no guarantees or assertions about its return value. There-
fore that value is arbitrary; the solver can make no assumptions about it.

Similar methods can be defined for other types. In Prusti they are named
according to the return type, for example havoc_int or havoc_bool.

5The Prusti Developer Guide at https://viperproject.github.io/prusti-dev/
dev-guide/encoding/types-snap.html describes snapshot encoding in more detail.

Tn practice the injectivity axiom seems sufficient, so an axiom for surjectivity, encoding
that all values of type Snap$T must correspond to an application of the cons function, is
currently not generated.

15
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domain Snap$Range {
function cons$Range(start: Int, end: Int): Snap$Range

axiom injectivity {
forall s1: Int, s2: Int, el: Int, e2: Int ::
{ cons(s1, el), cons(s2, e2) }
cons(sl, el) == cons(s2, e2)
==> sl == 82 && el == e2

function field_start(self: Snap$Range): Int
function field_end(self: Snap$Range): Int

axiom field_start_read {
forall s: Int, e: Int :: { field_start(cons(s, e)) }
field_start(cons(s, e)) == s

axiom field end_read {
forall s: Int, e: Int :: { field_end(cons(s, e)) }
field_end(cons(s, e)) == e

function snap$Range(self: Ref): Snap$Range
requires acc(Range(self), read())
{
unfolding acc(Range(self), read()) in
cons$Range (snap$usize (self.f$start), snap$usize(self.f$end))

Listing 2.7: Snapshot domain for the Range type.

Another way of erasing knowledge from the program state is to (temporarily)
drop all permissions to a location. As discussed in Section 2.2.8, information
about values of expressions is only valid as long as nonzero permissions to that
expression are held.

2.3.3 Encoding of Rust Functions and Methods

Prusti contains two styles of encoding functions from Rust. By default, func-
tions from Rust are encoded to methods in Viper that capture the behavior
of the original Rust code. Rust expressions in specifications and in functions
with the #/[pure] attribute are encoded to Viper functions.

16
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Encoding inside a Viper method. When using the Range struct predicate
in encoding Rust statements (that is, in a heap-dependent encoding context),
Prusti creates a new variable of type Ref for each Rust variable. Adding the
correct predicate permission to the variable makes it usable as the intended

type.
let range = Range { lower: 3, upper: 5 };

Given this assignment, and the struct declaration from above, Prusti will
generate the following (simplified) encoding:

var lower: Ref

lower := havoc_ref()
inhale usize(lower)
lower.val_int := 3

var upper: Ref

upper := havoc_ref()
inhale usize (upper)
upper.val_int := 5

var range: Ref

range := havoc_ref()
inhale Range(range)
range.f$lower := lower

range.f$upper := upper

Fields are encoded with the £$ prefix to avoid name conflicts with struct
field names in Rust. The basic mechanism for initializing variables is similar
every time: a new variable is declared and initialized with an explicitly arbi-
trary value. Then we add predicate permissions for the target type and (with
the unfolding of the predicate omitted) assign the desired values to the now
accessible target fields.

As the encoding of this single statement is already much longer in Viper, we
do not show an example of a full function being encoded to a Viper method
using this encoding style.

Encoding a Viper function. A typical example for of a #/pure] function is
the maximum of two numbers:

#[pure]

fn max(a: i32, b: i32) —> i32 {
if a>b{a}else{b}

}

17



2.

BACKGROUND

18

This will be encoded to the following (simplified) pure function in Viper:

function max(a: Int, b: Int): Int {
a>b7a:b

¥

This concludes the background sections. We have introduced Rust and its
sequence types, presented an overview of Viper and Prusti and shown core
concepts. Finally, we have seen encodings of basic datatypes and functions
from Rust to the Viper language.

2.4 Related Work

This section will present some related work: the Gobra verifier and especially
its handling of arrays and slices and a short introduction of the Creusot Rust
verifier.

Arrays and Slices in the Gobra Verifier

Gobra [7, 8] is an automated, modular verifier for Go programs, based on the
Viper verification infrastructure.

Arrays and Slices in Go programs are nullable”. Gobra’s array axioms account
for that by only axiomatizing injectivity over the valid indices of the array,
and null arrays having length 0 trivially fulfill that.

Go’s arrays do not carry their length as part of the type (like arrays in Rust
do), so Gobra needs to keep track of the length for both arrays and slices
separately from the actual type.

Slices in Go allow re-slicing beyond the end of an existing slice, up to the
length of the underlying array. The length from the beginning of a slice to
the last valid index of the underlying array is called a slice’s capacity in Go.

In contrast to Prusti’s approach, permissions need to be handled explicitly by
the user in Gobra. This simplifies the definition of the actual array datatypes,
but in turn moves complexity to the user. On the other hand, due to the Go
language not tracking mutability, multiple references into the same backing
array are possible, and more than one of them may mutate elements.

Gobra has some different design constraints than Prusti, both due to the
different semantics of arrays and slices in the Go language compared to Rust,
and because of design choices such as making the user of the tool explicitly
annotate permissions.

" Nullable here means arrays in Go inherently behave somewhat like references, being
either null or an actual array.
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Creusot Rust Verifier

Creusot [9, 10] is a tool for deductive verification of Rust code. It translates
code—optionally annotated with specifications, invariants and assertions—to
Why3 and then semi-automatically solves these verification conditions.

It does not currently support handling of arrays or slices, and instead exclu-
sively uses linked lists for sequences of data.
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Chapter 3

Design

In the last chapter we have presented the background required for our contri-
butions: Rust and the semantics of its array and slice types, an overview and
some of the verification features of the Viper verification infrastructure and
finally how Prusti uses them in encoding Rust programs and specifications to
the Viper language.

This chapter describes the design and the encoding of the added constructs:
predicates as first-class items and arrays and slices as supported built-in Rust
types, both in code and in specifications.

3.1 Predicate Syntax

Prusti specification syntax is an extension to the existing Rust pure expres-
sion syntax that additionally allows specification constructs like quantification
and implications. While this syntax was available in pre- and postconditions
already, we now added predicates as freestanding, named, function-like con-
structs that support this extended syntax.

Predicates make sense in the context of adding array and slice support, as
sequences of elements are the prime example for quantified assertions. Speci-
fying properties about a sequence without using quantification is difficult (it
may be possible for fixed-size sequences by writing out all required properties
on elements by hand).

As there is already support for quantified expressions in Prusti as well as for
freestanding functions that can be used in specifications, the main design goal
for freestanding predicates is to both allow reusing existing code as well as
being intuitive to use.
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The existing #/[pure] functions in Prusti use function syntax, so predicates do
that as well but allow the extended specification syntax in the function body:

fn sorted(a: &[i32]) -> bool {
forall(|i: usize, j: usize| (0 <= i && i < j && j < a.len())
==> ali] <= aljl)
}

Another important driver for the decision to make predicates use Rust’s func-
tion call syntax is that it makes them usable in more contexts. The way the
parser for Prusti specification syntax currently works does not support the
extended operators in arbitrary positions, just the top level of the syntax tree.
It does not currently support constructs like result == (forall(..)). This
is a limitation in the current specification parser and will be lifted in the fu-
ture. With predicates as function-like freestanding items, we can already use
the extended syntax in arbitrary positions through the indirection of defin-
ing a predicate function: #/ensures(result == sorted(input))] is a valid
postcondition.

3.1.1 Desugaring to Precondition

Note that the semantics of a predicate are different from a pure function that
has the contained expression as a precondition. We initially considered this
simple desugaring as a possibility, because it would have meant fewer nec-
essary implementation changes. The reason this approach does not work as
expected is because an unfulfilled precondition immediately fails the verifica-
tion, whereas we want a boolean value as result. This is the desugared code
when encoding to a precondition:

#[pure]
#[requires (forall(/i: ustize, j: ustizel

(0 <=1 6851 < § &9 5 < a.len()) ==> ali] <= al5]))]
fn sorted_precond(a: &[i32]) -> bool {

true

}

Consider using both in a more complex expression like

#[requires (sorted(a)) || some_other_prop(a)]. While sorted only re-
turns a boolean value, sorted_precond will immediately error out if its pre-
condition is not satisfied, making this approach unusable.

As we want to be able to use predicates as parts of expressions, we need
to encode the actual assertion as the function body, not a precondition. We
want to encode the sortedness example to Viper as follows (the array encoding
shown here is just a placeholder, our encoding will be presented in the next
sections):
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function sorted_body(a: Array) -> Bool
{
forall i: Int, j: Int ::
(0 <=1 & i < j && j < a.len()) ==> alil <= alj]

The rest of this chapter will be about the encoding of arrays and slices.

3.2 Goals of the Array and Slice Encoding

Arrays and slices are ubiquitous in Rust code, so supporting them in Prusti
significantly increases its applicability to real-world code.

Integration with Prusti’s existing approach. We have seen the encoding
of an example structure in Section 2.3. The encoding we choose for array
operations integrates well with the existing approach for encoding data types
and functions to Viper. That includes a way to encode array operations both
in specifications and in regular code, that supports modeling permissions like
Prusti does for other composite data types and pure, value-only snapshots.

As another important type of integration, the code written as part of this
thesis should integrate well with the existing codebase.

General applicability. The encoding should work well with all constructs that
come up in encoding Rust’s array and slice operations. The typical operations
include creation, element lookup, taking references to single elements, shared
and mutable slicing and taking the length of a sequence.

3.2.1 Encoding of Arrays and Slices in Gobra

In Section 2.4 we have seen that Gobra has some different design constraints
from Prusti. Arrays and slices in Go are different from arrays and slices in
Rust in some aspects, and permissions in Gobra are not handled automatically
as in Prusti.

As it is possible in Go to have multiple references mutating arrays (directly
or through slices), Gobra models individual elements of arrays. Array alloca-
tion, slicing and lookups are fundamentally defined by uninterpreted functions
and axioms regarding length, capacity and offsets, backed by permissions to
elements quantified over these lengths.

In Rust the semantics are different. For mutable accesses, write access to the
whole array is needed. And even for read access, the whole array is relevant,
not just a single element: if a conflicting mutable reference exists, reading
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from the array is not allowed. Therefore we do not gain much from encoding
elements or element access separately in Prusti.

Nullability of arrays is not possible in Rust, so we do not need to account for
it in our encoding in Prusti.

3.2.2 Design Choices for our Encoding

We have seen in the previous subsection that we do not gain much for our
encoding of Rust arrays from modeling individual elements. Arrays and slices
in Rust act as one unit when we look at how references to elements block the
whole array or slice for modification, or in the case of mutable references for
any other reference.

Therefore, we base our encoding around arrays and slices as entities and not
single elements. We encode permissions and looking up or modifying elements
on these entities.

In practice Rust avoids some of the issues with blocking the whole array by
providing functions like split_at_mut on slices. The split_at_mut function
splits a mutable slice up into two mutable slices at a given index, as a safe
abstraction around unsafe code. Our approach supports this kind of methods
by adding support for arrays and slices in specifications.

3.3 Encoding of Arrays and Slices in Prusti

This section introduces the lookup_pure function which is at the heart of our
encoding of arrays and slices in Prusti. Starting from its definition we will
give an overview of the design of the encoding of arrays and slices, both in
regular code and in specifications.

3.3.1 Abstract Predicate Encoding of an Array and Lookup

The encoding is based on abstract predicates. While the resource predicates
for other types like structures and tuples name explicit fields, we cannot name
fields for arrays. Instead, we represent arrays or slices as a whole using an
abstract predicate. The abstract predicate for the Rust array type [i32; 3]
is:

predicate Array$3$i32(self: Ref)

This encodes the permission to use self as an array of size 3 with element
type 132.

The semantics of operations on arrays are encoded via an abstract function
lookup_pure that is defined for each array type (i.e. element type and length)
similar to this one for [i32; 3]:
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function lookup_pure(self: Ref, idx: Int): Int
requires acc(Array$3$i32(self), read())
requires 0 <= idx && idx < 3

This function requires read access to the array, and needs the index to be
within bounds for the specific array type’s length. It returns the value at
position idx in the array. The return type is the snapshot of the indexed ele-
ment, which happens to be Int for i32. For an array of struct Foo { .. }
elements, the corresponding lookup_pure function would return a Snap$Foo.
We have seen an example of such a snapshot encoding in Section 2.3.1.

As it has no function body, similar to the abstract predicate,
lookup_pure(array, idx) is treated as an abstract, symbolic value of type
Int. We use this symbolic value to encode the semantics of other Rust con-
structs.

The intuition behind the name is that it looks up a value in an array at
a given index, and returns a pure, heap-independent representation of the
element. The _pure suffix also distinguishes it from the lookup_shared and
lookup_mut methods that we will define in Section 3.5.1 to encode shared and
mutable array access operations from Rust, respectively.

Note that even though there exists one such function per element type and
length (and slightly different ones for arrays and slices), we will use the same
identifier lookup_pure for readability.

3.3.2 Heap Independence: Snapshots

While the self parameter to lookup_pure is of type Ref, that is, it depends
on data on the heap, the index parameter and importantly the return value
do not. This way we can use them throughout specifications without having
to worry about permissions to the underlying array or index variable.

3.3.3 Operations on Arrays and Slices in Rust

The main operations we want to support are

Array creation let a = [0, 1, 2];

Element lookup let b = a[1];

Element referencing let ¢ = &mut alil;

Shared slicing let d = &al[1..3];

Mutable slicing let e = &mut al[2..4];

Sequence length let n = a.len();

Of particular interest when encoding mutable referencing and mutable slicing

operations is that they change the backing sequence’s values. In a compiled
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Rust program, this happens somewhat implicitly by writing to the correspond-
ing memory location. In Viper we need to encode this explicitly.

In the following sections we will discuss the encoding of array and slice types
and corresponding operations both snapshot-based and heap-based, corre-
sponding to specification and procedural code in more detail. Finally, we
will discuss how this approach generalizes to multidimensional sequences and
take a look at an alternative encoding approach centered around treating all
array operations like method calls and providing specifications for those.

3.4 Snapshot Encoding

We start with the snapshot encoding of types. The return value of the
lookup_pure function that we started with is a snapshot of the element at
the given index. In general, snapshots are used when encoding specifications.
This includes both internal specifications like the lookup_pure function we
use to describe the array and slice operations as well as user-added specifica-
tion annotations and specification functions (that is, those declared with the
#[pure] attribute or predicates).

We have seen the heap-independent encoding of composite types in Sec-
tion 2.3.1. The example there translated the Range type into a domain defi-
nition Snap$Range and a snapshot function snap$Range.

3.4.1 Snapshots of Arrays

When comparing to a struct like the Range type, we have some different
requirements for arrays. When encoding the values for an array type [T; NI,
we need to store the value of all elements in order to have a complete copy
of its contents. While each array has a fixed number of elements, we ideally
want to use an encoding scheme that works for any size, to be able to snapshot
arbitrary array types. Therefore, we use Viper’s builtin sequence type Seq to
store snapshots of the elements.

Listing 3.1 shows the snapshot domain definition for the array type [i32; 5].
The length of the snapshot is encoded in the snapshot’s type, just like the
length of the array in Rust is encoded in the array’s type.

Using the uninterpreted functions cons and read, we define in the axioms the
semantics of these functions and how they interact. The read function is to
a snapshot of type Snap$Array$5$i32 what lookup_pure is to a heap-based
array instance of type Array$5$i32: it looks up an element, given an index.

The read function works similar to how read_start and read_end are used
in the snapshot encoding for Range, with the difference of the additional index
parameter. The corresponding axiom looks similar as well: while the read ax-
ioms for Range specify which of the constructor parameters each read function
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domain Snap$Array$5$i32 {
function cons(data: Seq[Int]): Snap$Array$5$i32

function read(arr: Snap$Array$5$i32, idx: Int): Int

axiom injectivity {
(forall _1_data: Seq[Int], _r_data: Seql[Int]
cons(_1_data) == cons(_r_data) ==> _1_data == _r_data)

axiom read_indices {
forall data: Seq[Int], idx: Int ::
{ read(cons(data), idz) } { datalidz] }
read(cons(data), idx) == datalidx]

Listing 3.1: Snapshot domain definition for [i32; 5].

returns, the read axiom for the array snapshot domain specifies which element
is returned from the data sequence.

As length of the array is part of the type name, we do not need to encode
it separately. We will have to do that for slices later on, even though their
encoding is overall very similar to that of arrays.

Snapshot function. To take a snapshot of a heap-dependent array instance
at some point in the program, we define a snapshot function.

function snap$Array$5$i32(self: Ref): Snap$Array$5$i32
requires acc(Array$5$i32(self), read())
ensures forall i: Int ::
{ read(result, 1) } { lookup_pure(self, i) }

read(result, i) == lookup_pure(self, i)
{
cons (Seq(
lookup_pure(self, 0),
lookup_pure(self, 1),
/.
lookup_pure(self, 4),
)
}

To bridge the gap between the heap-based and snapshot-based world we have
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to collect all values before calling the cons function. For arrays we can just
encode calls to lookup_pure for indices from 0 to the length of the array
(which is encoded in from the array’s type). Remember that the return value
of lookup_pure is already of some snapshot type, so there is no need to call
snapshot functions for the elements.

The postcondition was added to solve certain triggering issues we found during
evaluation.

Tuple-like encoding of array snapshots. An alternative design we initially
considered would be to snapshot arrays similar to how we snapshot tuples or
structures—using one parameter to the constructor per element. This would
avoid constructing an intermediate Seq of the elements.

The cons function for Snap$Array$5$i32 would be:
function cons(x0: Int, x1: Int, x2: Int, x3: Int, x4: Int)

The read axiom would become significantly more complicated however, as we
can no longer pass on the indexing operation to the Seq.

We would either have to explicitly enumerate equalities for all allowed indices
like this:

axiom read_indices_enumerate {
forall x0: Int, x1: Int, x2: Int, x3: Int, x4: Int ::
{ /* triggers omitted */ }

let snap == (cons(x0, .., x4)) in
read(snap, 0) == x0 &&
read(snap, 1) == x1 &&

read(snap, 2) == x2 &&
read(snap, 3) == x3 &&
read(snap, 4) == x4

}

Alternatively, we could try to use just one read call with a dynamic index,
but that index would still need to be matched to its respective constructor
parameter. We would then end up with a large cascade of case distinctions:

axiom read_indices_ifelse {
forall i: Int, xO: Int, x1: Int, x2: Int, x3: Int, x4: Int ::
{ /* triggers omitted */ }

read(cons(x0, .., x4), i) == (4 == 0 7 x0
(i==17x1
(i == 2 7 x2

(i == 37 x3 : x4))))



3.4. Snapshot Encoding

As both of these are not ideal, the solution utilizing the Seq type makes
most sense in our eyes. It also seems the best of the alternatives in handling
large arrays, like buffers of 1024 or 4096 elements, common in Rust code that
interacts with streams of data.

3.4.2 Snapshots of Slices

Snapshots of slices work similarly to snapshots for arrays. The most significant
difference is that slices have dynamic length. That means that we need to add
a len function to our slice snapshot domain, along with axioms to specify
what it does:

domain Snap$Slice$i32 {
// parts similar to arrays omitted

function len(slice: Snap$Slice$i32): Int

axiom slice_data_len {
forall d: SeqlInt] :: { len(cons(d)) F} len(cons(d)) == |d|
}

// added to solve certain triggering issues discovered during
// evaluation
axiom len_positive {
forall s: Snap$Slice$i32 :: len(s) >= 0
3
b

While for the heap-dependent encoding we have a separate abstract function
Slice$len, for snapshots the length needs to be part of the Snap$Slice$i32
value. As the contained Seq[Int] already contains the length of the slice im-
plicitly, we encode that as an axiom. The syntax |d| designates the sequence
length of d.

Collecting Heap-Dependent Values for Snapshot Construction. When we
snapshot a slice, we cannot just take the length from the type like we did for
arrays and collect that many lookup_pure calls as the slice’s data. Instead,
we need to look up Slice$len(self) elements, with Slice$len(self) being
an uninterpreted function. To collect that dynamic number of elements, we
define a recursive function slice_collect shown in Listing 3.2. Note that
while idx is a parameter of the slice_collect function, we always collect a
full slice; in case we only need a subsequence of its elements, the slicing will
be applied on the resulting snapshot using snapshot slicing machinery.
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function slice_collect(slice: Ref, idx: Int): Seq[Int]
requires acc(slice$i32(slice), read())
requires 0 <= idx
ensures idx >= Slice$len(slice)
==> result == Seq[Int] ()
ensures idx < Slice$len(slice)

==> |result| == Slice$len(slice)-idx
ensures idx < Slice$len(slice)
==> result[0] == lookup_pure(slice, idx)

ensures idx < Slice$len(slice)
==> forall i: Int, j: Int ::
idx <= i &% i < Slice$len(slice) &&
0 <= j && j < Slice$len(slice)-idx && i == j + idx
==> lookup_pure(slice, i) == result[j]

(idx >= Slice$len(slice))
7 Seq[Int] ()
: Seq(lookup_pure(slice, idx))
++ slice_collect(slice, idx + 1)

Listing 3.2: Recursive element collection function for slice snapshots.

Once we have collected the elements, the slice snapshot is created just like an
array snapshot from the Seq of elements:

function snap$Slice$i32(self: Ref)
requires acc(Slice$i32(self), read())
{

cons(slice_collect(self, 0))

}

Now that we have seen the encoding of values as snapshots, we will take a more
in-depth look at the heap-based encoding. To recap, heap-based encoding is
used when encoding permissions is required, that is, encoding of all Rust
functions and methods outside of specifications.

3.5 Heap-Based Encoding

This section describes the encoding of array operations when we are encoding
in a heap-dependent method context; that means we encode arrays as Ref-
typed variables, to which we have abstract array predicate permissions.
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3.5. Heap-Based Encoding

3.5.1 Array Operations

This subsection will go over the basic operations we introduced in Section 3.3.3
and show how to encode them in heap-based encoding context.

Array creation. When encoding an array creation, we have a left-hand side
variable that we need make usable as an array with the contents given as the
right-hand side operands.

let a = [1, 3, 5];

We have seen in Section 2.3.1 when encoding the Range type’s initialization
that a variable is declared, then initially cleared using havoc and then the
correct access predicates are added. Assuming the local variable for a is _1,
this is what lines 1-2 do. Next we need to make the array’s contents known
in lines 3-5:

_1 := havoc_ref()

inhale Array$3$i32(_1)

inhale lookup_pure(_1, 0) == 1
inhale lookup_pure(_1, 1) == 3
inhale lookup_pure(_1, 2) == 5

Note that the right-hand side of these equalities is of the type of snapshots of
the array elements. For integer constants that does not change much, as they
are the same in Rust and Viper. If a right-hand side operand is not a constant,
we would see the snapshot application explicitly; the inhaled equality for the
local variable x: 132 encoded to Viper variable _3 would then be:

inhale lookup_pure(_1, 2) == snap$i32(_3)

This works the same way for primitive as for composite data types, making this
approach generally applicable and integrate well with the existing (snapshot)
encoding in Prusti.

Element lookup. When looking up a single element from an array, we have
an array and an index as inputs, the array with array predicate permission,
and the index with usize permissions. Rust only allows usize-typed indices
for arrays, so we can hardcode the usize predicate into the precondition.

The output is a Ref-typed variable holding the element at the specified index
in the array. The name lookup_shared expresses that we lookup from a
shared (that is, immutable) reference to an array here.
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method lookup_shared(self: Ref, idx: Ref): Ref
requires acc(Array$2$i32(self), read())
requires usize(idx)
ensures acc(Array$2$i32(self), read())
requires (0 <= idx.val_int && idx.val_int < 2)
ensures acc(i32(result), write)
ensures snap$i32(result) == lookup_pure(self, idx.val_int)

The method requires array permissions and returns those same permissions
again. This reflects the fact we can lookup from shared references, without
blocking the array for further shared lookups.

Note that we do not rely on the Rust compiler here more than anywhere else,
we just encode statements as they appear in the MIR. If it turns out we do
not have read access to the array at the point in the program where we want
to look up an element (and the Rust compiler made an error in encoding the
array access anyway ), the precondition will not be fulfilled and the verification
will consequently fail.

Note that we have full permissions for the resulting variable. This is because
we could have code like:

let a = [0; 3];
let mut x = al[il:
x += 3;

where a variable gets its initial value from a shared array lookup, but will
be modified later on in the program. This does not modify any of the values
inside the array.

Note that there is a distinction between taking a shared reference to an array
element and looking up an element by-value. For types that can be trivially
copied, both are permitted by the Rust compiler. For others, the lookup would
mean a transfer of ownership out of the array, so it is not permitted in that
case.

As far as Prusti is concerned, we encode the array access the same way for
both cases, resulting in a fresh temporary variable that holds the contents of
the array at the given index. Encoding a reference to that is encoded like any
other reference, using the val_ref field. For shared array element access we
do not have to encode any value update. For mutable element references, the
update mechanism is shown in the next paragraph.

Mutable element referencing. When we want to modify entries in an array,
we can do so in two ways: taking a mutable reference into the array and
assigning to that, or assigning to the array directly. These two work very
similarly from a design standpoint, but we can use a simpler encoding in the
second case, that is, if no temporary reference is created.
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method lookup_mut(self: Ref, idx: Ref): Ref
requires acc(Array$2$i32(self), write)
requires 0 <= idx.val_int && idx.val_int < 2
ensures ref$i32(result)

ensures lookup_pure(self, idx.val_int) == snap$ref$i32(result)

ensures ref$i32(result) --*
// regain array permission
acc(Array$2$i32(self), write) &&
// all other elements unchanged
forall i: Int :: { lookup_pure(self, i) }
0 <=1 &% i < 2 && i '= old(didx.val_int)
==> lookup_pure(self, i)
== 0l1d[1lhs] (lookup_pure(self, i)) &&
// indexed element updated
lookup_pure(self, old(idx.val_int))
== old[1lhs] (snap$ref$i32(result))

The first three items are very similar to the lookup_shared case, except that
we require full permission to the array now. This encodes the fact that by
Rust’s semantics a mutable reference into an array blocks the whole array.

Just like in the lookup_shared case we need to encode the value of the re-
turned reference.

The last ensures encodes what happens when the reference into this array is
expired. We have introduced the magic wand operator -—* in Section 2.2.5.
In this case it encodes the capability to exchange the result of lookup_mut
(the reference to the element) for the conjunction.

The magic wand instance is automatically applied by Prusti at the location
where the reference expires. It has three components: regaining permission to
the array, value equalities for all array indices other than the one looked up,
and finally one about the value of the indexed element.

The regained array access is the same as the one we initially consumed when
calling lookup_mut and it is regained at the point where the result reference
expires.

As we had temporarily lost any permission to the array, the verifier state has
also cleared any information about the array such as value equalities we had
previously established. To recover the values of the elements that remain un-
changed, we inhale equalities with their respective values before the method
call.

The indexed element may have been changed through the returned reference,
so we need to equate it to the last value the reference had before its expiry,
using old[1hs] in the magic wand.
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We need the 01d(..) around idx.val_int because we do not have permis-
sions to it anymore at the point where the magic wand is applied.

Direct array assighment. When directly assigning a new value into an array,
we could just encode it as a lookup_mut call followed immediately by applying
the resulting magic wand.

As there is no reference generated by the Rust compiler that could expire, we
can use an updated version of the method that does not generate an interme-
diate magic wand.

method update_array(self: Ref, idx: Ref, val: Ref)
requires acc(Array$2$i32(self), write)
requires 0 <= idx.val_int && idx.val_int < 2
requires acc(i32(val), read())

ensures acc(Array$2$i32(self), write)
// all other elements unchanged
ensures forall i: Int :: { lookup_pure(self, <) }

0 <=1 & i < 2 && i '= old(idx.val int)

==> lookup_pure(self, i)

== 0ld(lookup_pure(self, i))

// indexed element updated
ensures lookup_pure(self, old(idx.val_int)) == snap$i32(val)

We snapshot the value to be assigned, as always when inhaleing an equality
with a lookup_pure invocation.

This method is somewhat simpler in that in directly encodes the new state in
postconditions instead of encoding them in a magic wand and does not need
to encode the old value at the indexed array position in a returned reference.
It also makes sense to use this simpler variant because the Rust compiler does
not encode a reference for this case, so we would have to take care of applying
a magic wand ourselves.

Regarding its effects on the given array, this variant still has the same effect
as the previous version of lookup_mut and immediate expiry.

3.5.2 Slice Operations

To recall, slices are views into an underlying array or slice. They can be mu-
table or shared, just like single-element array references. In fact, the encoding
of the slicing operation is a generalization of the encoding of array indexing
to a range of indices.



3.5. Heap-Based Encoding

Abstract slice length function. As the length of slices is not known at com-
pile time, we need some other way to encode the length, for example in bounds
checks.

The slice length is encoded using an abstract function Slice$len. When
we create a slice, we have information about the value of the (symbolic) slice
length, so we can encode it in an inhale statement to make it known to Viper.

Encoding of shared slicing operation. The slicing operation is typically!
invoked by indexing an array with a range of indices. The encoding of this in
MIR passes the range as an instance of the Range type (or a similar type) we
have seen earlier. Given this slicing operation:

let s = &ali..jl;

We can encode the difference of the given variables as the newly created slice’s
length. This works even if we do not know at compile time what the values
of the indices are going to be.

For the elements, we can refer to what we know about the elements of the
backing array (or slice).

Using N as placeholder for the backing array’s length and T for the type, we
have for the encoding of the slicing method:

method slice_shared(self: Ref, lo: Ref, hi: Ref): Ref

requires acc(Array$N$T(self), read()) && usize(lo) && usize(hi)

requires 0 <= lo.val_int && lo.val_int <= hi.val_int
&& hi.val_int <= N
ensures acc(Slice$T(result), read())
ensures Slice$len(result) == hi.val_int - lo.val_int
ensures forall i: Int, j: Int ::
{ lookup_pure (self, i), lookup_pure® (result, j) }
lo.val_int <= 1i && i < hi.val_int &&
0 <= j && j < (hi.val_int - lo.val_int) &&
i ==3j + lo.val_int
==> lookup_pure®(result, j) == lookup_pure’(self, i)

Listing 3.3: Shared slicing operation.

The slice_shared method has some similarity with the lookup_shared method
shown earlier: both require read access to the backing array, and need the in-
dices to be within bounds. For encoding the length of the slice, we have the

'There are implicit conversions, for example when calling slice methods like .1en() on
an array. These are encoded as if the full length of the array was passed into the slice
operation.
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abstract function Slice$len, and define its value for this particular slice in
the postcondition.

The last ensures is to define the values of the slice elements. We map the
lookup_pure calls on the resulting slice to the corresponding shifted indices
on the original sequence.

Note that the two lookup_pure calls here are to different versions: one for
the array being sliced, the other for the new slice. We have annotated them
in Listing 3.3 using S and A for the slice and array variant, respectively.

The two quantified variables in the postcondition instead of just one serve to
avoid matching loops. Assume we encoded in the postcondition of slice_shared
an equality with just one index variable:

forall i: Int :: { lookup_pure! (self, i + lo.val_int) }
{ lookup_pure® (result, i) }
// indices
lookup_pure® (self, i + lo.val_int) == lookup_pure®(result, i)

Then having lookup_pure(result, i) asan expression instantiates the quan-
tified fact, yielding lookup_pure(self, i + lo.val_int). This will lead
to an instantiation of lookup_pure(self, i + lo.val_int + lo.val_int)
and so on. Having separate variables avoids this issue.

Encoding of mutable slicing operation. We have seen both the mutable
array indexing and the shared slicing. The mutable slicing is the combination
of those two: encoding lookup of multiple elements, including a magic wand to
encode the update of element values after the expiry of the slice. The special
case for assigning an array element without an intermediate reference does not
exist for slices, as there is no range assignment operation in Rust.

The code for the mutable slicing operation—shown in Listing 3.4—starts the
same way as that for slice_shared: require proper permissions for the inputs
and encode the values and length of the resulting slice.

The magic wand in lines 15-30 encodes regaining access to the original array
and the updated values when the slice expires. Similar to the magic wand for
a mutable reference into an array we need to encode that all elements that
were not referenced (inside the slice) have the same values as before the slicing
(lines 16-19 and 21-23). The elements inside the slice receive their new values
from the values at corresponding indices at the expiring slice just before the
expiry (lines 25-30). Note that while the old expression for the unchanged
elements does not mention any specific label, and so refers to the state at the
begin of the slice_mut call, the updated elements refer to old[1hs], that is
the state of the left-hand side of the magic wand just before it is applied.

36



[N= e = S L A

W NN NN NN NN NN e e
S © 0 N O Uk W N H O O 0N U W NN = O

3.5. Heap-Based Encoding

method slice mut(self: Ref, lo: Ref, hi: Ref): Ref
requires Array$N$T(self) && usize(lo) && usize(hi)
requires 0 <= lo.val_int && lo.val_int <= hi.val_int
&& hi.val_int <= N

ensures Slice$T(result)
ensures Slice$len(result) == hi.val_int - lo.val_int
ensures forall i: Int, j: Int ::
{ lookup_pure (self, i), lookup_pure’ (result, j5) }
lo.val_int <= i && i < hi.val_int &&
0 <= 3j && j < (hi.val_int - lo.val_int) &&
i ==3j + lo.val_int
==> lookup_pure’(result, j) == lookup_pure”(self, i)

ensures Slice$T(result) --* Array$N$T(self) &&
// 0..lo unchanged
forall i: Int :: { lookup_pure! (self, i) }
0 <= i &% i < old(lo.val_int) ==>
lookup_pure®(self, i) == old(lookup_pure®(self, i)) &&
// hi..end unchanged
forall i: Int :: { lookup_pure! (self, i) }
old(hi.val_int) <= i && i < N ==>
lookup_pure® (self, i) == old(lookup_pure”(self, i)) &&
// indexed updated
forall i: Int, j: Int ::
{ lookup_pure* (self, i), lookup_pure® (result, j) }
0ld(lo.val_int) <= i && i < old(hi.val_int) &&
0 <= j && j < old(hi.val_int - lo.val_int) &&
i == j + old(lo.val_int)
==> lookup_pure®(self, i) == old[1lhs] (lookup_pure®(result, j))

Listing 3.4: Encoding of mutable slicing operation to Viper.

Slicing a slice. When the backing storage for a slicing operation is not an
array but itself a slice, we need to account for that in the encoding. The basic
idea remains the same.

As we have seen for the other slicing operations, there is one lookup_pure
instance for each array or slice type. If the sequence being sliced is a slice
itself, we encode its respective lookup_pure function. We also need to replace
the permissions with corresponding array permissions, and the simple length
expression from the array type with a call to Slice$len(self). With those
changes, the rest of the slice_shared and slice_mut encodings are the same.
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3.6 Multidimensional Arrays

The design presented here works for multidimensional arrays as well, con-
tributing to the generality of our approach. We will outline in the following
subsections what the previously presented array operations look like for mul-
tidimensional arrays.

Note that in Rust there is no multidimensional slicing operation, that is, it is
not currently possible to slice each element in a slice of arrays in one go. In
separate statements, the encoding described for the slicing operation before
works as expected for each step.

3.6.1 Creation
Given the following Rust code snippet:
let a: [[i32; 21; 2] = [ [0, 11, [2, 31 1;

We have three basic operations to encode: the creations of the two nested
arrays, and then the creation of a. This is also reflected in the MIR encoding
generated for this snippet by the Rust compiler:

2 = [const 0_i32, comst 1_i32];
3 = [const 2_i32, const 3_i32];
1 = [move _2, move _3];

We have already seen how to encode the first two statements in Section 3.5.1,
so we only show one of the two here:

_2 := havoc_ref ()

inhale Array$2$i32(_2)

inhale lookup_pure(_2, 0) == 0
inhale lookup_pure(_2, 1) == 1

// similar for _3

When encoding the creation of the outer array, we first remind ourselves that
the type of the lookup_pure invocation (i.e. the return type, and consequently
the type of the symbolic value of the invocation) is the type of snapshots of
the elements. That means that the lookup_pure instance for an array with
arrays as elements looks like this:

function lookup_pure(self: Ref, idx: Int): Snap$Array$2$i32
requires acc(Array$2$Array$2$i32(self), read())
requires 0 <= idx && idx < 2
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And with that we can encode the values at indices of the outer array as:

1 := havoc_ref ()

inhale Array$2$Array$2$i32(_1)

inhale lookup_pure(_1, 0) == snap(_2)
inhale lookup_pure(_1, 1) == snap(_3)

The application of the snapshot function on the right-hand side returns a
snapshot of a whole array here, as that is the element type of the outer array.
That is, the approach translates transparently to multi-dimensional arrays.

3.6.2 Element Lookup

Looking up values in multidimensional arrays has similar adjustments from the
single-dimensional case. When encoding this Rust fragment (in the context of
the array a created just before):

let b = a[l];

We again use a snapshot equality to encode the fact that a new local variable
now has certain contents:

// _1 is the MIR local wvariable for a
// _5 is the MIR local wariable for b
_5 := havoc_ref ()

inhale Array$2$i32(_5)

inhale snap(_5) == lookup_pure(_1, 1)

That means the snapshot equality in line 5 encodes the information that the
array _5 (now) has the contents that lookup_pure returned as snapshot of the
second entry in the outer array. From there a further lookup can be encoded
for the elements of _5 in the same way.

3.6.3 Mutation

When mutating elements in multidimensional arrays, we need to act step by
step. Accessing a nested element is encoded as step-wise access of sub-arrays,
one index operation per step, until we reach the inner array we want to modify.
Then modify that array in the usual way. It does not conceptually matter at
this point if we are replacing a complete sub-array or just an element, as both
amount to a single inhale statement. Then we encode the assignment of each
element (array or single value) into the next outer array as we did for single
elements, using snapshot equality.

So we encode the assignment a[i] [j] = new_val in three separate steps:

let mut tmp = alil;
tmp[j] = new_val;
alil = tmp;
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Encoding that to Viper looks like this:

// create and initialize tmp variable
tmp := havoc_ref ()

inhale Array$2$i32(tmp)

inhale lookup_pure(a, i) == snap(tmp)

// clear info about tmp's contents
label old_tmp

exhale Array$2$i32(tmp)

inhale Array$2$i32(tmp)

// encode updated info about contents
inhale forall k: Int :: O <= k & k < 2 & k != j

==> lookup_pure(tmp, k) == old[old_tmp] (Lookup_pure(tmp, k))
inhale lookup_pure(tmp, j) == snap(new_val)

// clear info about a's contents
exhale Array$2$Array$2$i32(a)
inhale Array$2$Array$2$i32(a)

// encode updated info about contents
inhale forall k: Int :: O <= k & k < 2 & k != 1

==> lookup_pure(a, k) == old[old_tmp] (lookup_pure(a, k))
inhale lookup_pure(a, i) == snap(tmp)

Mutable References. Taking a mutable reference into a multidimensional
array follows the same basic structure. We know how to encode taking a mu-
table reference into a one-dimensional array: encode the value of the reference
as in the immutable case, and encode a magic wand that will re-enable access
to the original array as well as encode that the indexed item in the array now
has a new value and all other values keep their previous values.

Given the array from earlier, encoding a reference like this:

let b = &mut ali] [j];
*b = new_val;

consists of the following steps:

let subarray = &mut alil;

let elem_ref = &mut subarray[j];
*elem_ref = new_val;

// elem_ref exzpires, updating subarrayl[j]
// subarray ezpires, updating ali]
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Encoding of the value of a single element to one lookup per dimension hap-
pens the same way as we have seen for the multi-dimensional lookup earlier.
Updating after the reference expires is encoded in corresponding magic wands,
just as we have done previously for mutable access. The change for the mul-
tidimensional case is that we have one magic wand per dimension, just as we
had to encode one lookup per dimension.

We encode the innermost array reference—elem_ref in the example—which
is a reference into a one-dimensional array, so we already know how to encode
it from Section 3.5.1. Its magic wand will update the referenced element in
subarray on expiry.

At this point we are left with subarray—a mutable reference to an element
of a—that is about to expire. But we already know how to encode the update
of an array when a mutable reference to an element expires: using a magic
wand. In fact, the same magic wand definition we used in Section 3.5.1, with
the element type specialized to the type of subarray.

This way we encode all nested updates. Each application of a magic wand
returns permissions and updated values of a subarray that we use in updating
the next array outwards.

As snapshots of elements and arrays work the same way with the lookup_pure
function on which we based our encoding, this design works on both equally
well and allows us to nest arrays in the way we have just shown.
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Chapter 4

Implementation

This chapter discusses the implementation of our design. It starts with an
overview of Prusti’s architecture and then show how each new part fits into
that architecture and which changes were made.

4.1 Prusti Architecture Overview

At a high level, Prusti is a plugin to the Rust compiler that converts Rust code
enriched with Prusti specifications into Viper code, verifies the code with an
external verifier, and then reports the results back to the user.

As shown in Figure 4.1, the first stage is the handling of the specification at-
tributes, which are implemented as Rust procedural macros in the proc-macros
stage. Depending on the type of specification, additional code is generated to
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Figure 4.1: Prusti implementation overview.
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typecheck the specifications. After the Rust compiler has performed all check-
ing and compilation steps up to the generation of MIR, the MIR is inspected
by the specification checker module and all specifications that were generated
for a function are collected for encoding.

The specification checker is a new module added during this thesis, it is de-
scribed in Section 4.2.

Specification attributes. The input file may contain annotations from the
prusti_contracts crate such as #/[requires(..)], #[ensures(..)] or
#[pure]. These are procedural macros that are evaluated by the compiler.
Procedural macros are one way of preprocessing available in Rust, described
in more detail in the Rust Reference!. In short, procedural macros are Rust
functions that receive a TokenStream, an early representation of Rust syntax
during parsing, as input, and generate a new TokenStream as output. The
output is fed back to the compiler and interpreted in place of the original
code.

Two main things happen in the procedural macro implementations: specifica-
tions are parsed from attributes and additional code is generated to typecheck
specifications and make them available for later stages.

To illustrate, let us look at an example of a simple function with a postcondi-
tion:

#[ensures(result == a + b)]

fn add(a: i32, b: i32) -> i32 {
a+b

}

The #[ensures(..)] macro will generate a new specification id, parse the
ensured expression and generate a new function with the purpose of having
the Rust compiler typecheck it, and later to be able to translate the resulting
MIR code snippet into Viper specifications. The result is shown in Listing 4.2.

Once the typechecking is done and Prusti starts processing the MIR, the
#[prusti::post_spec_id_ref = ".."]identifier references are used to match
generated specification snippets with the functions they are specifying. The
structure of the specification (in this case just one expression) is represented
in the #/[prusti::assertion] attribute, referencing the generated closures
by the generated spec_id and a sequential expr_id. This module is called
SpecCollector (see Figure 4.1).

"https://doc.rust-lang.org/reference/procedural-macros.html
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// generated to typecheck the asserted expressions

#[allow(unused_must_use, unused_variables, dead_code)]

#[prusti::spec_only]

#[prusti::spec_id = "cbac4263"]

#[prusti::assertion = "{\"kind\":{
\"Expr\":{\"spec_id\":\"cbac4263\",\"expr_id\":101}}}"J

fn prusti_post_item_add_cbac4263(a: i32, b: i32, result: i32) {

#[prusti::spec_onlyl
#[prusti::ezpr_id = "cbac4263_101"J
[| => bool { result == a + b };

// the actual function, with reference to specifications by id
#[prusti::post_spec_id_ref = "cbac4263"]
fn add(a: i32, b: i32) -> i32 {

a+b

}
Listing 4.2: Intermediate Rust code for the encoding of the add function.

Encoding of specifications and functions. Once all specifications have been
collected, they need to be encoded from MIR into Viper expressions, pre- and
postconditions, functions and methods. In the encoder, there are two main
modules relevant to our contributions: the pure_function_encoder which is
responsible for encoding MIR to the different kinds of Viper specifications,
and procedure_encoder, responsible for encoding MIR to Viper methods.
The procedure encoder will call out to the pure function encoder to encode
specification snippets. Both of these use the mir_encoder module to encode
common building blocks like single expressions or types from MIR to Viper.

The encoded program will be checked by Viper and the results reported back
to the user, mapping source locations and possible errors back to the respective
Rust code. While we did add an extra error variant for array and slice index
bounds checks, this part of Prusti was not our main focus.

The rest of this chapter will present the additions and changes made to incor-
porate predicate syntax as well as array and slice support.

4.2 Predicate Syntax

The ingredients for predicates as freestanding function-like items are already
present in Prusti: functions with the #/pure] attribute are encoded to Viper
functions and usable in specifications, just like we designed predicates to be.
The full Prusti specification syntax, including quantification and implications
is available in pre- and postconditions already. So to implement predicates,
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we need to bring these two existing concepts together. An extra step that we
need to add is a check that predicates are only used inside specifications.

4.2.1 Syntax

Ideally, we would have wanted predicates to use the #/predicate] attribute
for consistency with Prusti’s other specification attributes. This does not work
due to the way the Rust compiler handles procedural macro attributes. The
compiler performs a certain level of parsing (for example for name analysis) on
all toplevel items, even before procedural macro attributes are evaluated. The
extended Prusti syntax contains constructs that are not valid Rust expressions,
like the implication operator ==>, and thus would fail to parse. This parse
error would occur before our #/predicate] macro even applied, leading to a
compile error.

Instead, predicates use the predicate!{} syntax. Wrapping predicate func-
tions in this macro call prevents them from the very early parsing before the
macro is evaluated, so Prusti syntax can be parsed and rewritten.

4.2.2 Stages of Encoding

We have seen the stages of encoding a specification attribute in Section 4.1.
When translating a predicate instead of a postcondition, a similar sequence of
steps is performed.

Procedural Macro Translation. Using the function-like syntax to denote a
predicate function, we can translate this sortedness predicate:
predicate! {
fn sorted(a: &[u32]) -> bool {
forall(|i: usize, j: usizel|
(0 <=1i& i< j& j<a.len()) ==> alil <= aljl)
}
}

into the output of the predicate! procedural macro as shown in Listing 4.3.

The result of the procedural macro contains two functions: a generated func-
tion containing parts of the predicate body and a version of the original pred-
icate function without the body.

The generated function’s purpose is to have the compiler typecheck the con-
tained expressions and generate MIR for them. The #/[prusti: :assertion =
attribute in lines 4-13 preserves the structure of the predicate’s body in JSON
format, referencing the snippets by their expr_id attribute.

The body of the predicate function is replaced with unimplemented! (), to
make the function pass the Rust compiler’s parser and further checks. The

'II]
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#[prusti::pred_spec_id_ref] attribute ties the additional generated spec-
ification function back to the original predicate function, just like
#[prusti::post_spec_id_ref] did for the postcondition and its generated
function item.

Specification Checker. The difference between predicates and pure func-
tions is that predicates support Prusti’s extended syntax, which goes beyond
Rust’s side-effect free expression syntax. So while there is no reason not to
use #/[pure] functions outside of specifications as well—as they have clearly
defined semantics in Rust—this is not true for predicates.

We have added a new specification checker module (see Figure 4.1) to Prusti
that makes sure that predicate functions are only used within specification
code. We expect there to be further semantic checks on specifications that
the specification checker could perform in the future.

Encoding to Viper. The next stage after the specification checker is the
specification collector. It will walk the whole typechecked MIR program and
collect assertion fragments into procedure contracts by their identifier refer-
ences. When encoding, a predicate will be encoded as the body of a Viper
function, instead of as a pre- or postcondition. The sorted predicate from
above is encoded by Prusti to this Viper function:

function sorted(s: Snap$Slice$u32): Bool

{
forall i: Int, j: Int ::
0 <=1 &% i < j && j < len(s)
==> (i < len(s)
==> (j < len(s) ==> read(s, i) <= read(s, j))
&& j < len(s))
&& i < len(s)
}

Which is equivalent to what we specified initially, with the length constraints
somewhat complicated. The extra roundtrip of requiring i < len(s) and
having it given later in the same expression is due to the bounds check that
the Rust compiler will insert.
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1 #[allow(unused_must_use, unused_variables, dead_code)]

2 #[prusti::spec_only]

3 #[prusti::spec_id = "ebd7aa"]

4 #[prusti::assertion = "{\"kind\":{\"ForAll\":[

5 {\"spec_id\":\"ebd7aa\",\"expr_id\":101,\"count\":2},

6 {\"kind\": {\"Implies\": [

7 N\ "kind\": {\"And\": [

8 {\"kind\": {\"Expr\":{\"spec_id\":\"ebd7aa\",\"expr_id\":102}}},
9 {\"kind\": {\"Expr\":{\"spec_id\":\"e5d7aa\",\"expr_id\":103}}},
10 A\ "kind\": {\"Expr\":{\"spec_id\":\"ebd7aa\",\"expr_id\":104}}}
11 133,

12 N\"kind\": {\"Expr\":{\"spec_id\":\"ebd7aa\",\"expr_id\":105}}}

13 133, 001337

14 fn prusti_pred_item_sorted_ebd7aa(a: &[u32]) {
15 #[prusti::spec_only]

16 #[prusti::expr_id = "ebd7aa_101"]

17 |i: usize, j: usize| {

18 #[prusti::spec_only]

19 #[prusti::ezpr id = "ebd7aa_102"]
20 [| => bool { 0 <= i };

21

22 #[prusti::spec_only]

23 #[prusti::ezpr_id = "ebd7aa_103"]
24 || =>bool { i< j};

25

26 #[prusti::spec_onlyl

27 #[prusti::ezpr_t1d = "ebd7aa_104"]
28 [| => bool { j < a.len() };

29

30 #[prusti::spec_only]

31 #[prusti::ezpr_id = "ebd7aa_105"]
32 || => bool { alil <= aljl };

33 };

34}

36 #lallow(unused _must_use, unused_wariables, dead_code)]
37 #[prusti::pure]

38  #[prusti::trusted]

39 #[prusti::pred_spec_id_ref = "ebd7aa"]

40 fn sorted(a: &[u32]) -> bool {

a1 unimplemented! ()

42 }

Listing 4.3: Intermediate Rust code for the encoding of the sorted predicate, as
generated by the predicate! procedural macro.
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4.3 Arrays and Slices

Adding support for arrays and slices requires changes mostly in the proce-
dure and pure function encoder modules. As we have seen in Sections 3.5.1
and 3.5.2, arrays and slices in the design we propose integrate well with
Prusti’s existing encoding technique.

We will put focus on a few key changes during the development, starting
with changes due to the fact that arrays are encoded using the lookup_pure
function instead of fields like on struct types. Section 4.3.4 will talk about
value preservation in loops, where special care is needed for arrays and slices
as compared to other variables, followed by error reporting changes for index
bounds checks in Section 4.3.5. Finally, Section 4.3.3 will discuss an alternative
implementation approach that we initially considered.

4.3.1 Places in the Rust Compiler

In the Rust compiler, an important type for holding memory locations are
Places. A place is a local variable with a (possibly empty) sequence of projec-
tions, such as field accesses, array element accesses or dereferences. In Prusti’s
encoding to Viper, most of the time a place is translated to a variable or a
field of a variable, as for example referencing and enums are encoded to fields
instead of as separate concepts.

With the way we designed the encoding of arrays and slices, we do not have
explicit variables or fields for each element, only knowledge through symbolic
lookup_pure or read calls mentioning the array. As these are encoded dif-
ferently depending on whether we are in procedure encoding or specification
encoding context, we added an abstraction between the common code in the
MirEncoder module and the consumer modules. As field accesses, dereferenc-
ing and array or slice indexing are all valid operations and can be grouped,
when encoding a place we get a possibly recursive structure as a result. The
common structure is called PlaceEncoding and shown in Listing 4.4.

4.3.2 Encoding Expressions into Statements

This change—while enabling encoding of array accesses—has two effects that
we need to adjust to. Code that previously expected a simple Expr now
needs to handle PlaceEncoding instances, and needs to either ignore cases
other than simple expressions and fields on them (that is, anything related to
arrays or slices) or encode the array and slice accesses, resulting in sequences
of statements in the encoding of procedures where we previously only had
expressions.

As an example, a struct field access like range.start on the right-hand side
of an assignment will be encoded to _3.f$start, in a Viper expression.
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enum PlaceEncoding {
Expr (Expr),
Field {
base: Box<PlaceEncoding>,
field: Field,
1,
Variant {
base: Box<PlaceEncoding>,
variant_field: Field,
3,
ArrayAccess {
base: Box<PlaceEncoding>,
index: Expr,
3,
SliceAccess {
base: Box<PlaceEncoding>,
index: Expr,
b
3

Listing 4.4: PlaceEncoding structure definition.

An array element lookup like a[i] on the right-hand side will be encoded to
the following, assuming the local variable holding the array is encoded to _1
and the index variable i is encoded to _5:

var _tmp: Ref
inhale usize(_tmp)
inhale _tmp.val_int == lookup_pure(_1, _5.val_int)

And the fresh variable _tmp being used as the resulting expression.

Due to every invocation creating new temporary variables, we need to make
sure to not rely on the encoding of a place to Viper being the same when
encoding it multiple times. It is possible to compare the PlaceEncoding
instead of the final sequence of statements if necessary.

4.3.3 Encoding as Methods with Specifications

A number of testcases for Prusti already contain a set of specifications for a
Vec-like type with operations including push, len, lookup and lookup_mut.
An initial idea for implementation of array and slice support was to encode the
required operations as method calls that specifications could be attached to.
We did end up not following through with the idea, for a number of reasons.
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Patching AST In order to encode array accesses as function calls, we would
have had to patch the program’s syntax tree at some point during the
compilation to insert function calls in places where array accesses hap-
pen.

o For the AST, the first syntax tree representation in the Rust com-
piler pipeline, we would have had the main issue that it is not clear
whether an array access is mutable or immutable, or even whether
an expression is related to arrays at all; the Index and IndexMut
traits allow overriding the sequence index operator for custom types
as well. Without that knowledge, it is impossible to patch in the
correct dummy function.

o The following intermediate representations—HIR and typed HIR—
are not intended for modification from outside the compiler (that
includes from plugins like Prusti).

e The MIR, the representation Prusti uses, already has array accesses
grouped up with other projections like field accesses and dereferenc-
ing, so preprocessing of the MIR would have been necessary before
the actual encoding, increasing the risk for errors during encoding.

Specification Mechanisms The current #/eztern_spec]/ mechanism that
in principle allows attaching specifications to methods outside the cur-
rent crate is not powerful enough to specify what we needed for arrays.
At the very least, there are currently issues with generics. In addi-
tion, support for the impl<T> [T] syntax for implementation blocks for
slices is missing in #/[exztern_spec/. This syntax seems to need the
#[lang = "slice"] attribute in the standard library. Introducing the
required specifications programmatically at the start of Prusti would
give up an important advantage of this approach by making it impossi-
ble to use the concise existing specification syntax directly.

Adaption to array types One part that cannot be specified in
#[extern_spec] annotations is choosing the specific matching
lookup_pure instance matching the array or slice type.

We agree that it would be great to reuse existing mechanics like those for
function specifications directly, but in practice we deemed it not worth the
effort. We are nonetheless reusing significant parts of the code.

4.3.4 Value Preservation in Loops

The encoding of loops in Prusti uses a rewriting where loops are replaced with
nested if statements and clearing of local variables to simulate an arbitrary
loop iteration. The transformation is described in more detail in [11]. In short,
a loop of the form:
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[}

while (b) {
body_invariant!(I);
B;

}

is rewritten into the following:

if (b) {
exhale I;
// havoc local wars
assume I;
if (b) {
assert I;
assume false;
}

assume !b;

}

The idea behind this is to make sure the invariant holds when initially entering
the loop (line 2). Then, havocking all local variables and assuming the loop
invariant emulates an arbitrary loop iteration by erasing all prior knowledge
about variables except for the invariant. The if in line 5 encodes the case that
the loop is entered another time, in which case we only need to make sure that
the loop invariant holds again. If that is the case, assume false will make
this branch of the verification succeed in any case, as we have already checked
the case for an arbitrary loop iteration. Otherwise, assume !'b will make sure
that after the loop, the invariant will hold, but the loop condition will not
anymore, the expected outcome when the loop has finished.

For regular variables, encoded as simple expressions, Prusti will just generate
calls to havoc_ref or havoc_int.

As we have seen earlier, the encoding of an array access is a fresh temporary
variable. Havocking those would not fulfill the intention here: we need to
clear information about array contents, not the temporary variables, in order
to match the behavior on other variables.

So the current solution is to treat array accesses separately when encoding
havocking of the local variables. Read accesses to arrays do not lead to any
havocking, as those cannot change across loop iterations. This is how variables
that are only ever read during the loop are treated as well. Write accesses
lead to the whole array being havocked, as we cannot tell which indices have
been written during the loop. This fulfills the requirements, but is overly
conservative, in that it might lose more information about the array contents
than necessary.
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4.3.5 Error Reporting

Prusti performs error translation from Viper errors back to the source location
in the original Rust program. This is done by creating a mapping of pairs of
locations in the generated Viper program and types of Viper errors to Prusti
errors that are returned to the user when a matching error has occurred at a
matching location in the viper program.

Adding support for arrays and slices also included adding a Prusti error kind
for failed bounds checks on a sequence. In the context of adding this, we
successfully contributed a small change? to the Rust compiler.

While the implementation does not cover all parts of the design yet, we have
added solid foundational support. We have highlighted in this chapter a num-
ber of additional topics that became relevant during implementation and how
we addressed them; what benefits or future work we see in them.

2https://github.com/rust-lang/rust/pull/84392
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Chapter 5

Evaluation

The main goal of this thesis was to add support for arrays and slices to Prusti,
and adding predicate syntax to improve and simplify specification of sequence-
using code.

We have implemented predicate syntax and significant parts of the array and
slice support we designed. This chapter will evaluate this implementation by
showing the verification of a sort algorithm and measuring the effect of added
support on the amount of real-world code that is supported by Prusti.

5.1 Implementation Status

Predicate syntax has been implemented as proposed. We can express sorted-
ness of an array or slice like this:

predicate! {
fn sorted(s: &[i32]) -> bool {
forall(|i: usize, j: usize|
(0 <=1 & i< j & j < s.len()) ==> s[i] <= s[j]

Arrays. Arrays are supported well in Prusti currently. In particular
e creation,
e both shared and mutable element lookup,
o mutation through references or directly and
e bounds checks and taking the length

are implemented for arrays both in specifications and in regular code. Support
for multidimensional arrays is not currently implemented.
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Note that taking the length of an array using a.len() involves a slicing op-
eration that the Rust compiler automatically inserts, as len is a method on
slices, not arrays.

We encode expressions containing array accesses using Viper statements (see
Section 4.3.2). There are some parts in the encoding of expressions that do
not handle the generated statements yet, so currently array or slice accesses
on the right-hand side of assignments are not supported in compound expres-
sions. That means that let b = a[i]l + 1 and ali]l += 1 (which is short for
ali] = a[i] + 1 arenot supported, but let tmp = alil; al[i] = tmp + 1
is.

Slices. Slices are supported in specifications—as we have seen above in the
sortedness example—and basic operations are implemented in regular code.
In particular,

e creation,
¢ element lookup,
o bounds checks and taking the length and
o explicit and implicit slicing of arrays and slices
are implemented for slices in specifications. In regular code,
o shared slicing of arrays,
o taking the length of slices and
e element lookup
are supported, while mutable slicing is not yet supported.
Integration into the main Prusti codebase. All of the features implemented
are merged or part of an open pull request to the Prusti git repository!. A

selection of changes is listed here, with 48 total pull requests merged and 2
still open.

e #390: Add predicate syntax Initial pull request to add predicate
syntax.

e #391: Check for extra parameters to #/pure/, #[trusted] at-
tributes Error message for invalid use like #/trusted (foo)].

e #435: Add section about predicates to the user guide

e #455: Builtins: add array lookup pure function This PR added
the lookup_pure function and array type predicates.

"https://github.com/viperproject/prusti-dev
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#466: Add arrays to TypeVisitor

#467: Work around AssertKind::description panicking for Bound-
sCheck

#470: Introduce PlaceEncoding machinery
#475: Implement obtaining array length

#476: Array access projection This PR added array element access;
the term projection is used by the Rust compiler for field access, array
and slice accesses and others like dereferences.

#478: Implement encoding of array creation
#484: Implement taking references into arrays
#489: Encoding of mutable array indexing
#495: Add the slice builtins

#505: Array snapshot encoding and specs

#521: Implement array initialization from repeat expressions
Repeat expressions are a shortcut for array initialization giving one copy-
able element and a count as in [0; 1024].

#532: Refactor array types encoding This PR added a separate
array_types_encoder module.

#537: Change predicate syntax to allow nested implications
This PR changed the syntax for predicates from the #/predicate] at-
tribute to predicate!{} to allow syntax rejected by the Rust compiler
(like ==>) inside predicates.

#538: Implement enough of array slicing to support .len()
calls The len method is a method on slices, so calling it on arrays
needs a minimum level of slice support for the conversion the compiler
automatically inserts.

#564: Add snapshot encoding for slices
#566: Verify selection sort

#568: Verify mergesort’s merge function on static arrays
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5.2

Verification of a Sort Algorithm

We provide a verification of a selection sort implementation, showing that our
design and implementation work. The code is shown in Listing 5.1.

Selection sort is a sort algorithm with a run-time quadratic in the number of
elements. The basic idea of selection sort is to go through the positions in the
array in ascending order. For each position i, select the next-smallest of the
remaining elements in a linear scan, then swap it to the position i and go to
position i + 1.

When verifying this sort algorithm, we need to encode the following conditions:

Array indices are within bounds. This is encoded by the invariants in
lines 6 and 20.

For the outer loop, we know that elements at previous indices (smaller
than i) are already sorted, while all remaining elements are bigger (or
equal) than those already sorted. This is encoded by the invariants in
lines 9-10 and 12-14 respectively.

To make sure these outer invariants are kept intact by the inner loop,
we need to repeat them in the inner loop as well (lines 20-25).

The inner loop has to find the next-smallest item among the remaining
elements. The control variable j must be between i and the length, and
the index min of the smallest element so found so far must be within
these bounds as well (lines 27-28).

While searching for the next-smallest element among the remaining ones,
we know that

— all previously sorted elements (indices below i) are smaller than
what we have as our currently smallest found element. This is
similar to the general invariant in line 12, but gives us specific
information about the value at index min, the currently smallest
element found (lines 30-31).

— among the not yet sorted elements that we already checked in our
search for the minimum, the element at index min is the smallest

(lines 35-36).

Therefore, at the end of the inner loop min is the index of the smallest
remaining element. Swapping it to the smallest remaining index i will
make the array sorted at the end of the outer loop.
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5.2. Verification of a Sort Algorithm

fn selection_sort(mut a: [i32; 10]) {
let mut min;
let mut i = 0;

while i < a.len() {
body_invariant! (0 <= i &% i < a.len());

// sorted below 1%
body_invariant!(forall(|kl: usize, k2: usize]
(0 <= k1 && k1 < k2 && k2 < i) ==> al[kl] <= al[k2]));
// all below % are smaller than all above 1%
body_invariant!(forall(|kl: usize, k2: usize]
(0 <= k1 && k1 < i && i <= k2 && k2 < a.len())
==> alkl] <= alk2]));

min = 1i;
let mut j = 1 + 1;
while j < a.len() {
// these three are the same as for the outer loop
body_invariant! (0 <= i &% i < a.len());
body_invariant!(forall(|kl: usize, k2: usize]
(0 <= k1 && k1 < k2 && k2 < i) ==> a[k1] <= a[k2]));
body_invariant!(forall(|kl: usize, k2: usize]
(0 <= k1 && k1 < i && i <= k2 && k2 < a.len())
==> alkl] <= alk2]));

body_invariant!(i < j && j < a.len());
body_invariant! (i <= min && min < a.len());
// all previously sorted are smaller than the current min
body_invariant! (forall(|k: usizel
(0 <= k && k < i) ==> alk] <= almin]));

// all not-yet-sorted checked so far are bigger
// than the current min
body_invariant! (forall(|k: usize]
(1 <=k && k < j && k < a.len()) ==> al[min] <= alk]));

if a[j] < almin] {
min = j;

3

j +=1;
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44 let a_i = alil;
45 let a_min = a[min];
46 ali] = a_min;
47 a[min] = a_i;
48 i+=1;
19 }
50

60

Listing 5.1: Verification of a selection sort implementation.

Necessary changes for Prusti support. In order to avoid features not yet
supported by Prusti, some changes from a canonical Rust implementation of
selection sort had to be made. These are

Array as input. Due to the implementation of slices not being as complete
as the one for arrays, namely around mutable slicing, the input to our
selection sort here is an array instead. The verification does not depend
on the fixed length in any way; we use a.len() in all conditions and
invariants.

Iterators. As iterators are not supported in Prusti, the loops are not written
more succinctly, for example as for i in (0..a.len()), but instead
use a separate variable that is manually incremented.

Element swap. The swapping of two elements in lines 44-47 only works in
this form (with temporary copies) for Rust types that can be freely
copied (that is, implement the Copy trait). For others the Rust standard
library provides a swap method on slices that exchanges the values at
two given indices without requiring them to implement Copy.

Generics The algorithm is monomorphized to i32 elements. As the only
operations on the elements are comparing and swapping, much the same
verification approach should work for any element type that has a total
order (that is, implementing the Ord trait).

Rust standard library sort. The sort algorithm in Rust’s standard library? is
a modified version of merge sort. It keeps track of sequences of already sorted
increasing and decreasing sequences and merges pairs of adjacent sequences.
Very short sequences are sorted in-place using insertion sort.

In order to verify its functional correctness, the following features would be
required in Prusti or the corresponding code rewritten without them in sort:

Unsafe code is used in multiple places throughout the algorithm for slice ac-
cess without bounds checks (as they have already been checked). These
parts can be rewritten relatively easy to avoid unsafe code.

2https://doc.rust-lang.org/std/primitive.slice.html#method.sort



5.3. Quantification of Improvements on Real-World Code

crate name before after total methods

siphasher 36 38 105
cre 13 13 37
libe 29 29 164

Table 5.2: Number of methods fully encodable in crates that previously had methods
unsupported because of missing array or slice support.

Loop conditions Matching on an Option in a loop condition is not sup-
ported yet, as are loop conditions involving iterators like for i in 2..v.len().
These can be rewritten as well.

Generics and Closures While there is support for both generics and clo-
sures in Prusti, there have been issues, so it might still be better to
monomorphize to one element type and replace the is_less closure
with a simple comparison.

5.3 Quantification of Improvements on Real-World Code

In this section we evaluate the impact that supporting arrays and slices has on
the amount of code supported at least to the degree that Prusti successfully
generates a corresponding core proof. As programming language constructs
are not usually used in isolation, this turns out to be difficult.

Prusti regularly runs checks on a number of Rust packages from the set of the
most downloaded packages on the official registry crates.io. These tests are
run using a mode where an unsupported construct does not abort a Prusti
run, but instead replaces the current function with an empty one and continues
with translation.

Of those crates where missing array or slice support was the reason for failure
to encode methods, we can report a slight increase in the number of success-
fully encoded methods.

On the remaining 35 crates, no change in the number of fully supported meth-
ods was measured. This is not surprising, as the reason they were not fully
supported yet was not array or slice support.

The reason for this small amount of change, we believe, is that methods are
still very coarse-grained units of measure when it comes to measuring the
amount of supported constructs like array accesses.

Consider for example the function make_table_crc16, taken from the crc
crate. While it seems like a prime example of code that should be fully sup-
ported, now that Prusti has array support, it still contains two types of con-
structs that are not supported yet: iterators and bitwise integer operations.
This makes the method as a whole not supported by Prusti yet.
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1 // from crc crate, utils.rs
2 pub fn make_table_crc16(poly: ul6) -> [ul6; 256] {
3 let mut table = [Oul6; 256];

4 for i in 0..256 {

5 let mut value = i as ul6;

6 for _ in 0..8 {

7 value = if (value & 1) == 1 {

8 (value >> 1) ~ poly

9 } else {

10 value >> 1

12 }
13 table[i] = value;

14 T
15 table

16}

Listing 5.3: An example method from the crc crate calculating a lookup table.



Chapter 6

Conclusion

Sequences of data are ubiquitous in a large amount of real-world software.
Adding support for foundational data structures like arrays and slices to the
Prusti verifier makes it applicable to a wider range of Rust programs.

We have shown that our design and implementation work on a suite of tests
and allow verifying nontrivial array programs such as sort algorithms.

Some aspects of the design are not yet fully implemented. Nonetheless, we
have shown an increase in the amount of real-world code supported in Prusti.

The nature of arrays and slices as foundational Rust types means supporting
arrays is an important step not just because of its immediate positive results
but also as a starting point for further progress.

6.1 Future Work

Apart from implementing missing parts of the design presented in this thesis,
there are further extensions that could be added in future projects.

6.1.1 Smarter Value Preservation of Arrays in Loops

Consider the code snippet in Listing 6.1, repeatedly modifying the same array
element in a loop.

Note that we only ever write to index O of the array. Due to the way loops are
encoded (see Section 4.3.4), we lose all information about the array between
loop iterations if any of the accesses is writing to any element.

A more fine-grained analysis of which loop indices are actually accessed could
help here. As a first step, if only constant indices are accessed, the remaining
unchanged indices could be preserved across loop iterations.
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fn foo() {
let mut a = [1, 2, 3];

let mut i 0;

while i < 3 {
al[0] = 0;
}

// true, but not wverifiable currently.
assert!(a[l] == 2);

Listing 6.1: Array element value preservation currently not verifiable.

A good design of such a preservation mechanism would have to be easily
explainable and follow user expectations.

6.1.2 Iterators and Automatic Loop Invariants

A common operation for arrays and slices is to iterate over their contents, and
especially now that Prusti has array and slice support, iterators are one of the
next hurdles to take.

This would add support for Rust syntax like for i in 0..N which is desug-
ared into an iterator over that range of indices.

Another step that would be possible then is to use the information the iterator
has to automatically add invariants to loops. Currently, a simple loop access-
ing an array fails to verify without annotations, because the information about
loop indices is lost (see the explanation of the loop rewriting in Section 4.3.4).
It could be worth investigating whether it is possible to automatically add a
loop invariant if the loop bounds are controlled only by an iterator like in this
example:

for i in O..array.len() {
array[i] = i-2;

by

6.1.3 Extern Specifications for Array and Slice Methods

We have discussed in Section 4.3.3 that we do not think encoding all array and
slice operations as function calls is the best approach. Therefore we encoded
the basic array operations directly, as other MIR constructs like field accesses
are encoded as well.

There are however a large number of methods defined on the builtin array and
slice types, many of them to avoid issues with mutability or lifetimes that are
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better solved once in the standard library. These include split_at_mut, a
method to return two mutable non-overlapping subslices, the sort and swap
methods that both need to reorder elements in-place and various methods to
construct different iterators over the slice’s elements.

As these are all method calls, it might be the best option for specifying them
to extend the existing #/eztern_spec] mechanism, now that the fundamen-
tals of arrays and slices are available. As an example, we have specified a
monomorphized version of split_at:

#[trusted]

#[requires (0 <= idz €9 idz < slice.len())]

#[ensures (result.0.len() == idz)]

#[ensures (result.1.len() == slice.len() - tdz)]

#[ensures(forall(/i: usize/ (0 <= i &4 4 < idz)
==> slice[t1] == result.0[t]))]

#[ensures(forall(/i: usize, j: usizel
(itdz <= 1 &4 1 < slice.len() &5 0 <= j &% 7 < result.1l.len())
==> slice[t1] == result.1[5]))]

fn split_at(slice: &[i32], idx: usize) -> (&[i32], &[i32]) {
slice.split_at(idx)

}
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