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Abstract

Iteration is a fundamental part in every programming language. Rust is
no exception. The combination of functional programming idioms and
iterators allows for writing concise and expressive Rust code.

In this work, we investigate the specification and verification of Rust
iterators and implement our solution for Prusti, a deductive verifier for
Rust. We aim for modular verification: The specification and verification
of an iterator should be independent of its usage in clients.

We demonstrate our implemented solution by specifying a custom
iterator implementation and two iterators from the standard library of
Rust. Additionally, we show that these specifications can be used to
verify looping and non-looping clients.
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Chapter 1

Introduction

The concept of iteration is present in every programming language. In most
mainstream imperative languages iterators unfold their presence in loops to
traverse the elements of a container, for example a list or an array.

The Rust programming language is no exception. The strength of Rust
iterators lies in the iterator API of the standard library. This API heavily
relies on functional programming idioms which allows for writing concise
and expressive code. Often the use of iterators in Rust is not obvious at first
glance. Instead, iteration appears as part of a sequence of chained function
calls (map, filter, ...) which describe the iteration. Under the hood, Rust
creates a chain of iterators. This chain can then be used as part of a loop or
can be processed using aggregation functions (sum, max, ...).

The rise of deductive program verification in recent years demands for
techniques and tools to formally verify iteration in Rust. Prusti [1] is a front-
end verifier for Rust built on top of the Viper verification infrastructure [9].
By default, Prusti proves the absence of panics of a Rust program. Due to
Rust’s type system, this can be achieved with a high degree of automation.
Additionally, users can attach contracts to Rust code. Prusti then tries to
prove the validity of these contracts.

Prusti does not yet support the verification of code that uses iterators. This
work aims to make a first step towards that direction.

1.1 Goals
With this work we pursue the following goals:

Derive a framework for iterator specification We want to develop a frame-
work which can be used to specify Rust iterators. This framework
should be applicable to custom-written iterators and the iterators from
the standard library.
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1. Introduction

Modularity Specification and verification of iterators should be modular.
That is, iterators are specified and verified independently of their clients.
Likewise, the verification of clients should not rely on the actual imple-
mentations of the used iterators but only on their specifications.

Traversal of iterators with loops Provide tools and techniques to verify the
usage of iterators in loops.

Allow the specification of non-local types Many iterators that we consider
are part of the standard library of Rust. We do not want to copy the
code of these iterators in order to specify them.

1.2 Outline
The structure of this report is as follows:

• Chapter 2 introduces the needed background knowledge. Especially,
Rust iterators and the specification of Rust closures in Prusti are intro-
duced in detail.

• Chapter 3 describes our approach for iterator specification. We build
up these techniques gradually to motivate them.

• Chapter 4 contains implementation-specific information about the con-
cepts introduced in Chapter 3.

• Chapter 5 shows our specified iterators and the clients we verified.

• Chapter 6 concludes this work and discusses future work.

2



Chapter 2

Background

This chapter presents the necessary background information for this thesis.
We start by providing an introduction to the Rust programming language
in Section 2.1, continued by an in-depth explanation of Rust iterators in
Section 2.2. A short description about the deductive front-end verifier Prusti
follows in Section 2.3.

2.1 Rust

Rust is a multi-paradigm, general-purpose programming language which
puts a strong emphasis on performance via zero-cost abstractions and security
due to the aid of a strong, static ownership type system.

The ownership type system (whose core part is the borrow checker) is Rust’s
most distinguishing feature. The borrow checker imposes rules on memory
management and can be seen as an alternative to garbage collection (Java, C#),
reference counting (smart pointers in C++), or the RAII (resource acquisition
is initialization) idiom commonly used in C++. Borrow checking is executed
at compile time and induces no additional runtime overhead.

The borrow checker assigns a unique owner to every value in Rust which
usually is a variable. As soon as the owner goes out of scope the corre-
sponding memory location is freed. Ownership of a variable is transferred
when the variable is reassigned or passed to a function. In Rust, one can
create references (also called borrows in this context) to a variable. Creating
a reference does not transfer ownership – instead, it allows for readable or
writable access to the corresponding memory location. The borrow checker
ensures that at any point during the execution of the program there is either
at most one mutable borrow or any amount of immutable borrows of a value.
With these rules, Rust can statically prove the absence of aliasing, dangling
pointers and even the absence of data races in a multithreaded program.

3



2. Background

1 trait Incrementable {
2 fn increment_by_one(&mut self); // Required method
3

4 fn increment_by_two(&mut self) { // Provided method
5 self.increment_by_one();
6 self.increment_by_one();
7 }
8 }
9

10 struct Counter {
11 value: i32
12 }
13

14 impl Incrementable for Counter {
15 fn increment_by_one(&mut self) {
16 self.value += 1;
17 }
18 }

Listing 1: Defining shared behavior with traits.

2.1.1 Traits, generics, and bounds

Since Rust is not an object-oriented programming language, it does not
support inheritance on types. Instead, sharing behavior is achieved via traits.
Traits are comparable to interfaces in Java or C#, as they define methods
which a type must implement.

Traits may declare required methods which must be implemented on the im-
plementing type and provided methods with a body which can be overridden.

Listing 1 shows the declaration of a trait on Line 1. On Line 10, a user-typed
type Counter is defined which has a field value of type i32. Finally, the trait
is implemented on Line 14 on Counter.

One can then write a generic function, whose generic type parameter has a
bound on the trait as shown in Listing 2: The function fn inc is generic over
any type parameter T. On Line 1 we impose that types must implement the
Incrementable trait. Trying to invoke the function with a type that does not
implement Incrementable results in a compile error.

Type parameter bounds can be either written as a where clause at the end of
the function signature (as in Listing 2) or in-place where the type parameter
is declared (i.e. T: Incrementable)

4



2.1. Rust

1 fn inc<T>(incrementable: &mut T) where T: Incrementable {
2 incrementable.increment_by_one()
3 }

Listing 2: Trait bounds for generic type parameters.

1 trait Incrementable<T> {
2 fn increment_by(&mut self, val: T);
3 }
4

5 use std::ops::Add;
6 impl<T: Add<i32, Output=i32>> Incrementable<T> for Counter {
7 fn increment_by(&mut self, val: T) {
8 self.value = val + self.value;
9 }

10 }

Listing 3: Generic traits.

Polymorphic traits

Traits can be generic and thus support parametric polymorphism [13]. In
Listing 3 we declare a trait Incrementable<T> which is generic over some
type T. The implementor Counter then can implement the trait for any type
on which we can perform i32 addition.

Note that Counter could also simply just implement Incrementable<i32>
and provide a non-polymorphic implementation of the trait.

Associated types

Traits can declare associated types which must be specified by implementing
types as shown in Listing 4. We have already seen in Listing 3 that the
std::ops::Add trait from the standard library has an associated type Output
which we used as a bound in the generic implementation.

Monomorphization

Generics in Rust are fully resolved at compile time and do not induce a
runtime penalty. During compilation, the compiler analyzes every call to a
generic function and creates a copy of that function with the concrete used
type parameters. This process is called monomorphization and is important
for runtime speed and allows for further optimizations throughout the com-

5



2. Background

1 trait Incrementable {
2 type Result;
3 fn increment_by_one(&mut self) -> Self::Result;
4 }
5

6 impl Incrementable for Counter {
7 type Result = i32;
8 fn increment_by_one(&mut self) -> Self::Result {
9 self.value += 1;

10 self.value
11 }
12 }

Listing 4: Associated types in traits.

pilation stage, albeit slowing down compilation in the presence of (many)
generics.

2.1.2 Closures

Rust embraces idioms from functional programming by treating functions
and closures as first-class citizens. “Closures are anonymous functions which,
unlike ordinary functions, can capture the environment where they are
defined in” [7]. Additionally, they can be passed to higher-order functions.

The Fn, FnMut and FnOnce traits can be used in higher-order functions to
impose a bound on the expected closure type. Closures which do not mutate
any state automatically derive the Fn trait, whereas mutating closures derive
FnMut and closures which consume values derive FnOnce.

Listing 5 shows a closure on Line 9 which first increments the captured
variable count by one and then returns the sum of the new count and the
passed argument to the caller. The higher-order function fn hof on Line 1
accepts any closure which has one parameter of type i32 and returns an i32
value. fn hof calls the passed closure with the passed argument arg and
returns the result to the caller, as we see on Line 13 and onwards.

2.2 Iterators in Rust
Iterators in Rust, as in other programming languages, are used to traverse
the elements of some source. A common use case is the traversal of a Rust
vector Vec<T> which is an array-like container of items of type T:

1 let vec: Vec<i32> = vec![1,2,3];
2 for el in vec { // prints 1,2,3

6



2.2. Iterators in Rust

1 fn hof<F>(cl: &mut F, arg: i32) -> i32
2 where F: FnMut(i32) -> i32 {
3 cl(arg)
4 }
5

6 fn main() {
7 let mut count = 0;
8 let mut cl = |x: i32| {
9 count += 1;

10 x + count
11 };
12

13 assert_eq!(hof(&mut cl, 1), 1 + 1);
14 assert_eq!(hof(&mut cl, 5), 5 + 2);
15 assert_eq!(hof(&mut cl, 10), 10 + 3);
16 }

Listing 5: Demonstration of a closure and a higher-order function. The closure
captures and mutates state from its context. The high-order function takes a reference
to the closure and executes it.

3 print!("{el},");
4 }

Iteration is not limited to this use case: The unbounded range iterator
RangeFrom1, introduced with (start..) syntax, is an iterator which gener-
ates elements on the fly:

1 for el in (5..) { // prints 5,6,7,... indefinitely
2 print!("{el},");
3 }

Iterators are often used in combination with closures which allows for writing
code in a very concise and functional way as demonstrated in Listing 6.
The example starts by creating an unbounded range of integers on Line 1,
followed by a statement to double its entries on Line 2. We then filter the
result on Line 3 by only taking even values and dropping odd ones. The
take command on Line 4 then ensures that the infinite sequence of mapped
and filtered values is limited to only five elements. Finally, all five mapped
and filtered values from the original range are collected into a fresh vector
on Line 5. This resulting vector then contains the values 6,12,18,24,30.

1RangeFrom: https://doc.rust-lang.org/stable/std/ops/struct.RangeFrom.html
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2. Background

1 let values = (1..)
2 .map(|x| 3*x)
3 .filter(|x| x % 2 == 0)
4 .take(5)
5 .collect::<Vec<i32>>();

Listing 6: Illustrative example of Rust iterator usage.

Line 1 up to Line 4 each introduce a new iterator:

• Line 1 introduces the RangeFrom<i32> iterator.

• Line 2 introduces a Map<RangeFrom<i32>, M> iterator
where M: FnMut(i32) -> i32 is the type of the map closure.

• Line 3 introduces an Filter<Map<..., M>, F> iterator
where F: FnMut(i32) -> bool is the type of the filter closure.

• Line 4 introduces the terminal Take<Filter<..., F>> iterator.

Instantiating these iterators does not mean that any computation happens,
for otherwise creating an unbounded range iterator would never terminate.
Instead, computation is deferred until the collect method is called on Line 5.

2.2.1 The Iterator trait
The heart of Rust iterators is the Iterator2 trait. Implementing this trait on a
type allows the type to be used in loops and automatically enables chaining
as seen in Listing 6.

An abridged version is shown in Listing 7. The trait declares an associated
type which defines the type of the returned elements of the iterator. The
fn next method is a required method and when called returns the imme-
diate next element of the iterator. Furthermore, the trait has numerous
provided methods which nest the iterator inside another one as outlined in
Section 2.2.3.

In contrast to iterators in other programming languages, there is no such
method as has_next which indicates whether iteration is completed. Instead,
fn next returns a Option<Self::Item>. The Option3 enum is idiomatic in
Rust to indicate the absence of values (as opposed to a null type in other
languages). Returning Option::None indicates that iteration is over, whereas
returning Option::Some(...) indicates that there might be more elements
which will be yielded in future invocations. This implies, that an iterator

2Iterator: https://doc.rust-lang.org/std/iter/trait.Iterator.html
3Option: https://doc.rust-lang.org/std/option/enum.Option.html
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2.2. Iterators in Rust

1 trait Iterator {
2 type Item;
3

4 fn next(&mut self) -> Option<Self::Item>;
5

6 // methods with default implementations
7 }

Listing 7: Outline of the Iterator trait.

should never panic when it is depleted – instead when there are no more
elements, the iterator will simply always return None.

An illustration of an Iterator implementation can be found in Appendix A.1.

2.2.2 Fused iterators

Iterators can return interleaved sequences of Some and None values arbitrarily.
It is technically possible but also explicitly allowed in the documentation of
the Iterator trait. Fig. 2.1 illustrates the different behavior of a fused iterator
and a non-fused iterator when calling their fn next method six times. The
fused iterator always returns None after its first occurrence (and keeps doing
so), whereas the non-fused iterator does not need to follow this pattern.

Figure 2.1: Illustration of the behavior of a fused and a non-fused iterator.

Rust’s standard library has a marker trait FusedIterator to indicate that an
iterator keeps returning None after the first returned None. Any iterator can
be fused via the Iterator::fuse method.

Any iterator that we consider relevant for this work is a fused iterator. We
thus restrict our work to these only.

9



2. Background

2.2.3 Iterator adapters

Iterators which contain other iterators are called iterator adapters. Examples
from the standard library are the Map4 or Filter5 iterators illustrated in
Listing 6. Instantiating these adapters can conveniently be achieved via the
provided methods on the Iterator trait.

Consider the following code snippet, where a Map iterator adapts an Iter
iterator created from a vector of two elements:

1 let vec = vec![1,2];
2 let chain = vec.iter().map(|x| 2*x);
3 chain.next(); chain.next(); chain.next();

We visualize what happens for each fn next call of this iterator chain in
Fig. 2.2 on a timeline. When the caller calls Map::next, then Map simply
queries its nested iterator for more elements via a call to Iter::next. If the
nested iterator yields an element, say Some(el), then Map applies the passed
closure to the returned el and returns that result to the caller. Likewise, if
the nested iterator has no more elements, indicated by a returned None, then
Map returns a None as well.

Figure 2.2: Timeline for an iterator adapter when calling its fn next method.

An example implementation of Map can be found in Appendix A.2.

2.2.4 From collections to iterators

The Rust standard library provides the IntoIterator6 trait which can be
used to convert a type into an iterator. The main use for this trait is that

4Map: https://doc.rust-lang.org/stable/std/iter/struct.Map.html
5Filter: https://doc.rust-lang.org/stable/std/iter/struct.Filter.html
6IntoIterator: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
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2.3. Prusti

any type implementing IntoIterator can be used in a for loop. For conve-
nience, when a type implements Iterator it also automatically implements
IntoIterator.

A value of a type which implements IntoIterator is moved after a call
to into_iter and thus cannot be used afterwards. This is inconvenient
in scenarios where one only wants to traverse the elements of a collection
without moving it. Many types in the standard library thus provide iter()
and iter_mut() methods which allow for the iteration over shared references
and mutable references of that collection. Conversely, these types, say T, also
implement IntoIterator for &T and &mut T, respectively.

An example are vector types Vec<T>. A vector in Rust can coerce to a slice
of type &[T] via a process called deref coercion7. The slice itself provides
iter() and iter_mut() methods which return Iter8 and IterMut9 iterators
for immutable and mutable iteration respectively.

2.2.5 From iterators to collections

Having turned a collection into an iterator, it is also possible to go back from
the iterator to a collection. This is achieved via the FromIterator10 trait.
Often, this is used in combination with the collect method, provided by the
Iterator trait. An application was shown in Listing 6 on Line 5.

2.3 Prusti
Prusti [1] is a deductive verification tool for Rust built on top of the Viper in-
termediate verification infrastructure. Prusti by default proves the absence of
panics during runtime and memory safety of the Rust program by encoding
a core proof into the Viper language. Viper then tries to prove the encoding.

As an example, Listing 8 has a main function which panics because 1 6= 2 and
a div function which panics when called with 0. Prusti is able to statically
show that these panics might happen when the program is executed and
thus returns an error to the user.

Prusti is also able to prove functional specifications provided by the user.
Functional specifications can be attached to functions as shown in Listing 9. In
that particular example, Prusti modularly verifies that the result of the function

7Slices can be seen as a contiguous sub-view to the underlying data of the vector. Since
a Vec<T> coerces to a slice &[T], we can invoke any method on a vector type that is also
available on the corresponding slice type. This process is automatically handled by the
compiler, and implemented for various standard library types.

8Iter: https://doc.rust-lang.org/std/slice/struct.Iter.html
9IterMut: https://doc.rust-lang.org/std/slice/struct.IterMut.html

10FromIterator: https://doc.rust-lang.org/std/iter/trait.FromIterator.html
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2. Background

1 fn divide(num: i32, by: i32) -> i32 {
2 num / by
3 }
4

5 fn main() {
6 assert!(1 == 2);
7 }

Listing 8: Rust code which panics during runtime.

increment indeed is num + 1 after assuming that num >= 10. Modular in
this context means that functions are verified independently, i.e., without
looking at the surrounding context. Likewise, the call in the main function
is verified modularly by not looking at the method body of increment, but
only its functional specification. Prusti therefore first asserts the precondition
to check whether the call is valid and then assumes the postcondition. This
modular reasoning about function calls is valid because Prusti separately
proves that the postcondition holds if the precondition is satisfied.

1 #[requires( num >= 10 )]
2 #[ensures( result == num + 1 )]
3 fn increment(num: i32) -> i32 {
4 num + 1
5 }
6

7 fn main() {
8 let num = increment(41);
9 assert!(num == 5); // Verification fails

10 }

Listing 9: A simple functional specification.

2.3.1 Closures

In a recent work [14, 15], Wolff and Bílý have demonstrated modular verifi-
cation of Rust closures and implemented it as an extension to Prusti. They
provide a way to modularly specify the behavior of a closure including
possible side effects due to captured state.

A major challenge in specifying closures comes from the fact that closures
are most often passed to higher-order functions, and it is not immediately
obvious how a higher-order function specification should look like. They
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thus introduced two novel specification concepts: Specification entailments and
call descriptions. Specification entailments are a way to describe the expected
behavior of a closure in the context of a higher-order function, whereas
call descriptions state that calls to a closure in a higher-order function have
happened.

We will now turn our attention to an example in Listing 10 to get an intuition
of these two concepts which is taken from the paper [14]. An in-depth
description can be found in the paper. Here, we will just summarize the
relevant parts which we will need for iterator verification. Therefore we
omit some details, such as history invariants to describe the evolution of the
captured state of the closure.

1 #[requires( cl |= |x: i32| {
2 requires( x > 0 ),
3 ensures( result > 0 )
4 })]
5 #[ensures(
6 exists(|rnd: i32| rnd > 0 &&
7 cl ~~> |arg: i32| -> i32
8 { arg == rnd }
9 { result == outer(result) }

10 ))]
11 #[ensures( result > 0 )]
12 fn hof<F: FnMut(i32) -> i32>(cl: &mut F) -> i32 {
13 let arg = random(); // whose result is > 0
14 cl(arg)
15 }
16

17 fn main() {
18 let dbl =
19 #[requires(true)]
20 #[ensures(result == 2 * x)]
21 |x: i32| -> i32 { 2 * x }
22 let res = hof(&mut dbl);
23 assert!(res % 2 == 0);
24 }

Listing 10: Closure specifications.

In the function fn main, we define a new closure dbl which doubles its
argument. Additionally, the closure has a precondition on Line 19 and a
postcondition on Line 20, i.e. the closure is always callable and ensures
that the result is double the passed-in argument. The higher-order function
fn hof takes a closure cl and calls it with a random argument which we
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assume to be always strictly larger than zero.

On Line 1 we see a declaration of a specification entailment. The specification
entailment describes the expected behavior that any closure passed to fn hof
must adhere to. In particular, such a closure must have a stronger speci-
fication than this expected behavior with respect to behavioral subtyping
rules [8]. The requirements in this particular case are indeed fulfilled, as
x > 0 =⇒ true and x > 0∧ result = 2x =⇒ result > 0 are valid.

In general, specification entailments for a closure have the form:

cl |= |a1, . . . , an|
{

requires
(

Pexp
)

, ensures
(
Qexp

)}
where a1, . . . , an are the parameters of the closure and Pexp, Qexp are pre- and
postconditions, respectively. The general rules for subtyping against concrete
closure specifications Pcl and Qcl are [14]:

Pexp =⇒ Pcl and old(Pexp) =⇒ (Qcl =⇒ Qexp)

The old statement is used to account for state changes during a closure call.

The call description on Line 7 is a way to specify that a call to the closure
has happened during the execution of fn hof. Note that we put the call
description inside an existential quantifier which represents the statically
unknown argument of the closure call (which is randomly selected). A call
description can describe the state before the closure call and the state after
the closure call in curly braces via prestate and poststate assertions. In the
example, the prestate assertion { arg == rnd } expresses that the argument
of the closure is equal to this existentially quantified random value and the
poststate assertion { result == outer(result) } denotes that the result
of the closure (result) is equal to the result of the higher-order function
(outer(result)).

Generally, call descriptions have the form

cl |a1, . . . , an| {P} {Q}

where a1, . . . , an are the type-annotated call arguments, and P and Q are pre-
and poststate assertions, respectively.

Putting everything together, the verifier gains the following knowledge:

1. fn hof’s postcondition on Line 11 is valid due to the specification
entailment on Line 1.

2. The call to fn hof on Line 22 is valid because the actual specification
of dbl is stronger than the expected specification of fn hof’s closure
parameter cl.
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3. The assertion on Line 23 is valid: We know from the call description
of fn hof that the result of fn hof is the result of a call to the closure
with a positive argument. Combined with the specification of dbl this
implies that res must be even.

2.3.2 Subtyping and Refinements

We now turn our attention to functional specifications in the context of traits
and their corresponding implementations.

Consider the following code outline, and assume the existence of a trait
method fT with preconditions PT and postconditions QT and an implementa-
tion of that method f I with pre- and postconditions PI and QI , respectively.

1 trait SomeTrait {
2 // requires PT
3 // ensures QT
4 fn f(&self, p: i32) -> i32;
5 }
6

7 struct SomeStruct;
8 impl SomeTrait for SomeStruct {
9 // requires PI

10 // ensures QI
11 fn f(&self, p: i32) -> i32 {
12 // ...
13 }
14 }

The standard rules of behavioral subtyping [8] apply in this scenario:

PT =⇒ PI and QI =⇒ QT

For the sake of the example, assume PT ≡ 0 ≤ p and PI ≡ p ≤ 0 which
violates the behavioral subtyping rules. Consider the following code:

1 fn client<T: SomeTrait>(x: T) {
2 x.foo(5)
3 }
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Modularly reasoning about client reveals no problem: We call x.foo with
the argument 5 which clearly satisfies the precondition of the trait. However,
if we call client with our wrongly subtyped implementation, the precon-
dition 5 <= 0 is clearly not satisfied and the method call x.foo(5) might
panic.

Prusti imposes11 behavioral subtyping rules on traits and their implementa-
tions. The process of collecting, checking and selecting the effective specifica-
tions which hold for a method call is called specification refinement.

Collection Whenever the specification of an implementation has been iden-
tified, the specification of the trait has to be identified as well.

Checking For every identified pair of trait / implementation specifications,
Prusti has to check whether the behavioral subtyping rules are satisfied.

Selection Computation of the effective specification that holds for a call to a
method. Modularly verifying fn client from above yields the effective
specification to be the one from the trait (since we do not know the
concrete type of x). A call to fn client however might depend on
another effective specification, since we know the trait’s specification
and the implementation’s specification. There are various strategies
to compute the effective specification in this scenario. Prusti uses a
strategy called selective replacement. Selective replacement always picks
the most specific specification which is available. A more detailed
discussion about this and the alternatives can be found in [4].

Providing no preconditions for a trait method is equivalent to annotating
it with #[requires(true)]. This has the advantage that one does not al-
ways have to provide a specific weaker precondition when the method is
called. If no precondition on a trait method would by default implicitly
mean that the precondition is #[requires(false)], then one would always
need to explicitly mark the implementation of such a trait method with
#[requires(true)] to make it callable.

Likewise, if no postcondition is defined on a trait method, Prusti treats this as
if there were an #[ensures(true)]. This is a reasonable assumption, because
it is the weakest postcondition possible and implementations may refine it as
they wish.

2.3.3 Loops
Prusti supports verification of loops with user-provided invariants. Invariants
can directly be declared inside the loop body via the body_invariant!(.)

11 Throughout this thesis, we identified some problems in that matter, especially when
generics are involved. It was however agreed upon that fixing them is out of scope for the
thesis: https://github.com/viperproject/prusti-dev/issues/1022
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macro.

Prusti verifies the loop invariant inductively, i.e. given a while loop of the
form:

1 while {
2 g = G;
3 g
4 } {
5 body_invariant!(I);
6 B;
7 }

Prusti checks that [11]:

• I holds initially upon entering the loop body, only when g evaluates to
true

• I is preserved throughout the execution of the body and the guard.
That is, after assuming that I is true and executing B; G, if g evaluates
to true again, then I must hold too.

These checks are needed according to the standard rules of Hoare logic.
Especially, in order to validate the inductive step (second point above), Prusti
forgets any prior knowledge about any variable that is written to in the guard
or the body. This process is called havocking of the loop targets.

Prusti is not able to handle borrows which cross the loop boundary. As a
consequence, it is in currently impossible to write a for loop over mutable
or immutable borrows such as:

1 let mut v = vec![1,2,3];
2 let mut iter = v.iter_mut();
3 for el in iter { /* ... */ }

2.3.4 Pure functions and predicates

Often, we want to use functions as part of specifications. This is problematic
when the function has side effects (e.g. mutates state) or is non-deterministic.
Functions in Prusti thus can be annotated with #[pure] to mark it as deter-
ministic and side effect free. Prusti checks and enforces these rules via various
checks, for example the function must not have a parameter which takes a
mutable borrow of a type.

Additionally, users can create predicate functions in Prusti with the predicate!
macro. Predicates can be considered a subset of all pure functions. The differ-
ence is that predicates support a superset of Rust syntax, such as quantifiers
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or the arrow notation ==> for implications inside the predicate body. A
consequence is, that predicates can only be used in specification code, as the
semantics of the additional syntax is not defined Rust.

2.3.5 Trusted functions
Functions can be annotated with #[trusted] which makes Prusti completely
ignore the body of the function. This is for example needed when the function
contains code which is not yet supported by Prusti. It is also convenient if
users want to write ghost functions; functions which only exists for the sole
purpose of verification.

2.3.6 Snapshots
Prusti has two strategies for encoding types: Heap-based encoding [10] and
snapshot-based encoding [12]. A snapshot can be thought of as a deep copy of
a value. Snapshots of a value can be compared in specifications using the
snapshot equality operator ===.

As an example, consider Listing 11 with a type Struct and a function
foo which uses the snapshot equality operator in a precondition on the
two parameters. The precondition states that the snapshot of the param-
eter s1 must be equal to the snapshot of the parameter s2 which in turn
means that the snapshots of their fields are equal, i.e., s1.0 === s2.0. Ulti-
mately, this will be encoded as an integer comparison in Viper. Thus calling
foo(Struct::new(1), Struct::new(1)) successfully verifies, whereas call-
ing foo(Struct::new(1), Struct::new(2)) yields a verification error.

Snapshot comparison can be confused with Rust’s partial equality operator
== which is syntactic sugar for the method PartialEq::eq. It is generally
not the same: PartialEq::eq can be arbitrarily implemented, whereas the
snapshot equality operator always compares snapshots of a value.

1 struct Struct(i32);
2

3 impl Struct {
4 #[ensures(result.0 == val)]
5 fn new(val: i32) -> Self { Struct(val) }
6 }
7

8 #[requires(s1 === s2)]
9 fn foo(s1: Struct, s2: Struct) { /* ... */ }

Listing 11: Demonstration of the snapshot equality operator === in Prusti.
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Chapter 3

Methodology

In this chapter we present our approach to specify Rust iterators and intro-
duce the necessary concepts to support them.

We will start by motivating our approach in Section 3.1 with a simple custom
iterator-like type and outline the challenge to leverage this specification to
real iterators implementing the Iterator trait.

In Section 3.2, we then address this challenge by introducing specification
extensions and a novel concept called type-dependent contracts in order to
assemble a unified approach for Rust iterator specification.

We continue by showing how iterator adapters (see Section 2.2.3) can be
specified with respect to their nested iterators in Section 3.3.

Finally, we discuss the specification of converting a data structure into an
iterator and converting an iterator into a data structure (see Section 2.2.4 and
Section 2.2.5) in Section 3.4.

3.1 Specifying iteration

3.1.1 A general framework for iterator specification

In their 2016 paper [5], Filliâtre and Pereira have showed a general framework
for specifying iteration. This framework is not limited to iteration over array-
like containers, but supports also iteration that is non-finite, non-deterministic
or the result from an algorithm (e.g. when we generate prime numbers on
the fly).

The core parts of their framework is a (ghost) sequence visited and the
two predicates enumerated and completed. These two predicates “act as an
abstraction barrier”[5] between iterators and their clients to enable modular
specification.
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The ghost sequence visited Represents the finite sequence of all elements
that have been visited so far throughout the iteration. Iterating clients can
use visited to refer to previously observed values, which is especially useful
when defining loop invariants as we will see later.

The completed predicate Describes whether the iteration is completed or is
still ongoing.

For example, if we iterate over an array-like container a (such as a Vec in
Rust), completed can be defined as [5]:

completed(v, a) , ‖visited‖ = a.len()

Here, completed has two parameters: v is the ghost sequence of already
visited values and a is the array that we are iterating over. The iteration is
finished as soon as the length of v is equal to the length a.

A similar definition follows for sets [5], where the termination criterion is
that the length of visited must be equal to the cardinality of that set.

For infinite iteration, this predicate simply states that the iteration never
terminates [5], i.e.

completed(v, a) , f alse

The enumerated predicate Describes the ghost sequence of already visited
values.

Again, for array-like containers, this predicate simply states that the already
visited values are a prefix of the whole container [5]:

enumerated(v, a) , ∀i. 0 ≤ i < ‖v‖ =⇒ v[i] = a[i]

For iteration over a set s, the enumerated predicate states that every visited
value is part of the set and that the visited values are all distinct [5]:

enumerated(v, s) , distinct(v) ∧ ∀x. x ∈ v =⇒ x ∈ s

3.1.2 First adaption to Rust iterators
In this section, we will conduct a first attempt to link the concepts introduced
in Section 3.1.1 to Rust and Prusti. We will not look at a real iterator which
implements the Iterator trait yet. Instead, we will look at a fake type which
exposes the same method as a real Rust iterator would and treat it as an
iterator anyway (i.e. pretend that it is usable in a for loop).

Listing 12 shows an iterator-like type VecIter with two fields pos: usize
and vec: Vec<i32>, a constructor method fn new and a method fn fake_next
which mimics Iterator::next. The behavior of VecIter is to iterate over
the vector, like Rust’s Iter iterator.
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1 struct VecIter {
2 vec: Vec<i32>,
3 pos: usize,
4 }
5

6 impl VecIter {
7 fn new(vec: Vec<i32>) -> Self {
8 Self { pos: 0, vec }
9 }

10

11 fn fake_next(&mut self) -> Option<i32> {
12 if self.pos < self.vec.len() {
13 let val = self.vec[self.pos];
14 self.pos += 1;
15 return Some(val);
16 }
17 None
18 }
19 }

Listing 12: A fake Iterator implementation.

Requirements We start by stating how we would like to use VecIter in
clients.

First, a client might use VecIter directly, i.e., without a loop:

1 let mut iter = VecIter::new(vec![13, 37]);
2 let el = iter.fake_next(); assert!(el.unwrap() == 13);
3 let el = iter.fake_next(); assert!(el.unwrap() == 37);
4 let el = iter.fake_next(); assert!(el.is_none());

A specification of VecIter should be strong enough that all assertions can be
proven, as well as that fn unwrap does not panic. To prove this, the verifier
needs to know whether the immediate returned result from fn fake_next is
an Option::Some or an Option::None. Furthermore, in the former case, the
verifier needs to know what the value of a returned Option::Some is.

Another use case is to use the iterator in a loop. For example, we would
like to compute the sum of every element yielded by the iterator and the
maximum value as follows:

1 let mut iter = VecIter::new(vec![13, 42, 37]);
2 let first = iter.next().unwrap();
3 let mut sum = first;
4 let mut max = first;
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5 for el in iter {
6 sum += el;
7 if el >= max { max = el; }
8 }
9 assert!(sum == 13 + 42 + 37);

10 assert!(max == 42);

Specification for non-looping clients A specification for non-looping clients
can be simple: We need to add postconditions to fn fake_next which
describe how the state evolves as we call the method and what the result
actually is:

1 #[ensures(self.vec === old(self.vec))]
2 #[ensures(old(self.pos < self.vec.len()) ==> (
3 self.pos == old(self.pos) + 1 &&
4 result == Some( self.vec[old(self.pos) ])
5 ))]
6 #[ensures(old(self.pos >= self.vec.len()) ==> (
7 self.pos == old(self.pos) &&
8 result == None
9 ))]

10 fn fake_next(&mut self) -> Option<u32> { /* ... */ }

The specification states that vec never changes throughout a call to fn fake_next
and that pos increases by one if and only if the iterator is not depleted. Fur-
thermore, the returned result is specified in both cases, such that Prusti safely
can assume that unwrapping the Option does not panic.

The specification about the non-changing vec is essential for verification:
fn fake_next has a mutable receiver, and since methods are verified mod-
ularly in Prusti, a client using this method does not know that the vector
remains the same. Dropping this postcondition would cause the verifier to
reject the second assertion in the non-looping client.

Specification for looping clients In order to verify the looping clients men-
tioned earlier, we need suitable loop invariants. For the "compute the
maximum" example, we need two invariants to state that the maximum
is computed as part of the loop body:

1 for el in iter {
2 body_invariant!(exists(|i: usize| i < self.pos ==>
3 max == iter.vec[i] ));
4 body_invariant!(forall(|i: usize| i < self.pos ==>
5 max >= iter.vec[i] ));
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6 /* ... */
7 }

However, there are two problems with these invariants: First, they rely on
iterator-internal fields (such as pos). Second, even if we had a specification
such as in the non-looping client, these invariants would be too weak.

To see why, we need to look at a different, but semantically equivalent version
of the loop, using while syntax with an explicit loop guard:

1 let mut next = None;
2 while {
3 next = iter.fake_next();
4 next.is_some()
5 } {
6 // ... invariants ...
7 let el = next.unwrap()
8 }

Recall from Section 2.3.3, that Prusti proves the two invariants inductively.
In the inductive step, Prusti havocs all loop targets, which includes iter, as
we make a mutable call to one of its methods. By havocking any knowledge
about iter, we also lose any knowledge about its state, namely the values of
vec and pos, even if they are part of the specification of fn fake_next.

We could try to manually frame this knowledge as part of loop invariants:

1 body_invariant!(self.vec == original_vec);
2 body_invariant!(self.pos == i);

where original_vec is a copy of the original vector and i is a running
variable that we manually manage in the loop.

Again, these additional invariants rely on the internals of the iterator. This is
undesirable because we want our specification be modular. Thus, to arrive at
a better solution, we will now adapt the technique from Section 3.1.1.

A ghost sequence of visited values As a start, we need a ghost sequence
of already visited values, ideally for all iterators. Prusti does not provide
such a ghost sequence yet. We will circumvent this by creating our own
GhostSeq<T> type1 which is to be considered an abstract, specification-only
type.

1A detailed explanation and implementation of GhostSeq<T> can be found in Ap-
pendix A.3. For now, we treat this type as if it were a real ghost type which can be created,
indexed, extended and compared to other ghost sequences.
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We provide GhostSeq<T> via a function fn visited defined on a trait which
is implemented via a blanket implementation on all iterators:

1 trait IteratorSpecVisited {
2 type Item;
3

4 #[pure] #[trusted]
5 fn visited(&self) -> GhostSeq<Self::Item> {
6 unimplemented!()
7 }
8 }
9

10 impl<I, T> IteratorSpecVisited for I
11 where I: Iterator<Item = T> {
12 type Item = T;
13 }

Predicate implementations The predicates completed and enumerated can
be implemented for VecIter as Prusti predicates. Recall from Section 2.3.4
that Prusti predicates support a superset of Rust syntax, allowing us to use
quantifiers inside enumerated to achieve the desired specification.

The completed predicate simply states that the iteration is over as soon as
pos is equal to the length of vec:

1 predicate! {
2 fn completed(iter: &VecIter) -> bool {
3 iter.pos == iter.vec.len()
4 }
5 }

The enumerated predicate first and foremost has to describe the ghost se-
quence of already visited values. However, we ultimately want it to be used
as part of loop invariants, meaning it ideally also describes the evolution of
the iterator’s state throughout an unknown amount of calls to the iterators
fn fake_next method. This means, that we want to establish a type invariant
with this predicate which is strong enough such that Prusti can prove a loop
invariant that uses the predicate inductively.

To achieve that, enumerated should be transitive, i.e. for an observed sequence
of iterator states I0, I1, . . . , In and any three states of that sequence Il , Im, Io
with l ≤ m ≤ o, if enumerated(Il , Im) and enumerated(Im, Io) holds, then
enumerated(Il , Io) must hold too.

enumerated thus takes two parameters: The current state of an iterator and
some previous state of that iterator. We then can describe the evolution of the
iterator’s state with respect to an older version of itself.
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1 predicate! {
2 fn enumerated(prev: &VecIter, iter: &VecIter) -> bool {
3 // Visited sequence
4 iter.pos == iter.visited().len() &&
5 forall( |i: usize| i < iter.visited().len() ==>
6 iter.visited()[i] == iter.vec[i] ) &&
7

8 // State evolution
9 iter.vec === prev.vec &&

10 iter.pos >= prev.pos
11 }
12 }

Notice that we require enumerated to be reflexive as well. We see why when
we add it to the specification of fn fake_next.

Adding specifications for VecIter Having set up the predicates and the
visited ghost sequence, we can provide a specification for fn fake_next,
shown in Listing 13. Note that we also updated the body of the method to
update the sequence of visited values on Line 26. The specification is divided
in three different blocks:

General specification Consists of specifications which are agnostic of the
actual iterator. That is, they solely rely on the defined predicates and
should be applicable to all iterators. Thus, this specification could be
part of the specification of the trait Iterator::next. Line 2 and Line 3
establish the enumerated invariant as a pre- and postcondition. Since
we can not use an old(.) expression as part of a precondition, we
simply pass the current state of the iterator twice into the predicate.
This is the reason for our reflexivity requirement for enumerated. On
Line 4 up to Line 8, we specify whether the returned result is an
Option::None or an Option::Some, as well as the condition that a
completed iterator remains completed2.

State update Contains iterator-specific specifications which specify the post-
state after a call to fn fake_next. Generally, we would state here that
vec does not change and pos increases by one if the iterator is not
completed. However, the former is already part of the enumerated
invariant, so we only strengthen the knowledge about pos on Line 11
and Line 14.

Result Specifies the returned value by concretizing the contained value of
the returned Option and linking it to the ghost sequence.

2See Section 2.2 about fused iterators: We generally assume that our iterators are fused.
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1 // General specification
2 #[requires( enumerated(self, self) )]
3 #[ensures( enumerated(old(self), self) )]
4 #[ensures(
5 ( !old(completed(self)) == result.is_some() ) &&
6 ( old(completed(self)) == result.is_none() ) &&
7 ( old(completed(self)) ==> completed(self) )
8 )]
9

10 // State update
11 #[ensures(!old(completed(self)) ==> (
12 self.pos == old(self.pos) + 1
13 ))]
14 #[ensures(old(completed(self)) ==> (
15 self.pos == old(self.pos)
16 ))]
17

18 // Result
19 #[ensures(result.is_some() ==> (
20 result == Some(self.vec[old(self.pos)])
21 ))]
22 fn fake_next(&mut self) -> Option<u32> {
23 if self.pos < self.vec.len() {
24 let val = self.vec[self.pos];
25 self.pos += 1;
26 self.visited.push(val);
27 return Some(val);
28 }
29 None
30 }

Listing 13: Specification for the fake VecIter iterator.

Verification of the method As one can easily check, the specification de-
scribes what fn fake_next does and thus Prusti successfully verifies the
method body against this specification. For simplicity, we omitted some
details. For example, Prusti would need more information about the visited
sequence update on Line 26.

Verification of non-looping clients Going back to our initially proposed
clients, one can also immediately see that the specification shown in List-
ing 13 is strong enough to verify the non-looping client as this specification
is just a generalization of the initial proposed simpler specification. In par-
ticular, Prusti also knows that Option::unwrap does not panic: We added a
precondition #[requires(self.is_some())] to this method (omitted in the
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listing), which is checked automatically when we call this method.

Verification of looping clients The invariants of the looping client can be
rewritten to take advantage of the enumerated predicate and the ghost se-
quence of already visited values. For example, computation of the maximum
can be achieved with the following code:

1 let mut iter = VecIter::new(vec![13, 42, 37]);
2 let snap_iter = snap(iter);
3 let mut next = iter.fake_next();
4 let mut max = next.unwrap();
5 while {
6 next = iter.fake_next();
7 next.is_some()
8 } {
9 body_invariant!(enumerated(snap_iter, iter));

10 let el = next.unwrap();
11 if el >= max { max = el; }
12 body_invariant!(exists(|i: usize| i < iter.visited().len()
13 ==> max == iter.visited[i]));
14 body_invariant!(forall(|i: usize| i < iter.visited.len()
15 ==> max >= iter.visited[i]));
16 }
17 assert!(max == 42);

Here, we manually keep track of a snapshot of the iterator, which stores the
state prior to the call to fn fake_next to be used as part of the invariant
enumerated.

We now informally reason why the specification is enough for the assert
on Line 17 to verify. We denote with Ii the state of iter after i calls to its
fn fake_next method. For example, after Line 1, iter has state I0 with
pos(I0) = 0. From the code, we also observe that snap_iter always refers to
state I0.

First, we assume that fn new has a suitable specification, such that we know
that after the construction of a VecIter ¬completed(I0) and enumerated(I0)
holds. Consequently, the call on Line 3 is valid. Furthermore, by the post-
condition of fn fake_next, we know that the returned value of this call is
Some(13), and thus can be unwrapped in Line 4 and assigned to the initial
maximum value.

Second, the invariants hold upon entering the loop: enumerated(I0, I1) holds
by the postcondition of fn fake_next. From the actual definition of enumerated,
we know that iter.visited().len() is equal to 1 and the value of this ele-
ment is 13. This implies that the other invariants hold too.
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Third, the invariants are preserved throughout the loop iteration. Assume
we are in the k-th iteration for some k > 0. From the induction base, we
know that enumerated(I0, Ik−1) holds as well as that max is the maximum of
iter.visited() and contained in it. We furthermore can assume everything
that happens as part of the loop guard, namely:

• There exists a new iterator state Ik, such that enumerated(Ik−1, Ik) holds.

• next.is_some() is true.

• The value val of next is the last element of iter.visited() (where
iter has state Ik).

From the loop body, we see that the first invariant is preserved because we do
not change any internals of the iterator and enumerated is transitive. For the
latter two invariants, we can perform a case distinction: If val < max, then
max remains the same and the second two invariants hold by the induction
hypothesis. If val >= max, we update max to be equal to val. Since val
is contained in visited at position pos(Ik−1), we deduce that max is also
contained in visited at position pos(Ik−1). It follows that all invariants are
preserved throughout a loop iteration.

Lastly, after the loop we know that next.is_none() holds and thus completed(In)
holds for some n. Combined with the transitive guarantees of enumerated,
we deduce that iter.visited() is equal to iter.vec. Most importantly, we
know as part of enumerated that iter.vec === vec![13, 42, 37]. Com-
bining this with the invariants, we know that max == 42 and the assertion
verifies.

3.1.3 Towards a generalized Rust iterator specification
In Section 3.1.1, we have introduced a general framework for specifying
iteration and in Section 3.1.2 we came up with a first adaption to Rust.

The adoption, however, is not enough: We did not really implement the
Iterator trait for VecIter, it just happened to be the case that VecIter has
a method with the same signature as Iterator::next. Instead, our iterator
should implement the trait itself with the same body.

To arrive at a real implementation of the Iterator trait for VecIter, we first
observe that we need a specification for Iterator::next: Recall from Sec-
tion 2.3.2 that Prusti enforces behavioral subtyping rules. VecIter::fake_next
has a precondition, namely #[requires(enumerated(...))]. Not annotat-
ing Iterator::next with a suitable precondition would immediately lead
to an invalid refinement of VecIter::next, as true =⇒ enumerated(. . . ) in
general is not valid for non-trivial definitions of enumerated.

One option is to annotate Iterator::next with #[requires(false)] which
solves the refinement problem. We can do more though: Recall from List-
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1 trait IteratorSpec: Iterator {
2 predicate! { fn completed(&self) -> bool; }
3 predicate! { fn enumerated(&self, prev: &Self) -> bool; }
4 predicate! { fn post(old_self: &Self,
5 new_self: &Self,
6 res: &Option<Self::Item>) -> bool; }
7 }

Listing 14: The trait IteratorSpec which introduces a specification-only abstraction
between the Iterator and its implementations.

ing 13 that we have divided the functional specification of VecIter::fake_next
into three different groups. The first group will look the same for every itera-
tor modulo the definitions of the predicates. If we treat the two predicates as
abstract placeholder predicates which will be defined for concrete iterators,
this specification could be generalized and attached to Iterator::next.

Another related open point is how we even specify Iterator at all, since
this trait is part of the standard library and can not be directly annotated
with specifications. For the remainder of Chapter 3, we treat these standard
library traits and types as if we could directly add specifications to them. We
present our solution to handle non-local code in Section 4.2.

3.2 Specification extensions
In Section 3.1.3, we came to the conclusion that we need a specification for
Iterator, for otherwise this will lead to invalid refinements on concrete
iterators.

The two predicates enumerated and completed already provide a suitable
abstraction between iterators and their clients. We can leverage this idea
and introduce an abstraction between the specification of the Iterator trait
and the specification of iterator implementations. Abstraction in Rust is
achieved via traits and we thus introduce the IteratorSpec trait, shown in
Listing 14. We call this trait a specification extension: The implementation
of the trait is specification code. This trait defines three abstract predicates,
fn completed, fn enumerated and fn post. An abstract predicate means that
the implementing type must implement this method as a Prusti predicate.
The first two predicates were already explained in Section 3.1.2. The third
predicate, fn post, may be used to specify the side effects of one call to
fn next, including a specification for the returned result of that call.

The idea is then the following: The specification of Iterator is abstractly
defined via the indirection of IteratorSpec. We then implement the spec-
ification extension for our desired iterator. On the callsite, for a call to
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1 trait Iterator {
2 #[type_contract(Self: IteratorSpec, [
3 requires( self.enumerated(self) ),
4 ensures ( self.enumerated(old(self)) ),
5 ensures ( !old(self.completed()) == result.is_some() ),
6 ensures ( old(self.completed()) == result.is_some() ),
7 ensures ( !old(self.completed())
8 ==> old(self.completed()) ),
9 ensures ( IteratorSpec::post(old(self), self, &result) ),

10 ])]
11 fn next(&mut self) -> Option<Self::Item>;
12 }

Listing 15: A type-dependent contract to conditionally provide a specification
for Iterator which is only active when an implementor of Iterator implements
IteratorSpec.

Iterator::next, this actual implementation is used to encode the method
call.

3.2.1 Type-dependent contracts for iterators
Having described the specification-indirection via the IteratorSpec trait,
we need to attach it to Iterator somehow. Not every iterator implements
IteratorSpec, but if it does, we want to strengthen the specification of
Iterator::next with this additional knowledge. To this end, we propose
to use a novel technique called type-dependent contracts to attach contracts to
methods conditionally.

Listing 15 shows a type-dependent contract for the Iterator trait. It consists
of two parts: A constraint and an unbounded amount of requires and
ensures clauses.

The constraint describes a condition for which types the nested specifications
should be active. It is syntactically equivalent to a Rust where clause (without
the keyword) and can access its surrounding context (e.g. generics of the
method or the trait). In the example we constrain the specification to hold
only if Self: IteratorSpec, i.e. for implementations of Iterator which
also implement IteratorSpec.

The requires and ensures clauses are just ordinary Prusti specifications.

Type safety

The specifications themselves are type-checked like every specification in
Prusti. That is, specifications inside a type-dependent contract are aware
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of the fact that they are only active if Self: IteratorSpec, and thus, the
specification can be successfully type-checked.

Subtyping

If an iterator SomeIter implements IteratorSpec and does not have any
separate annotations on SomeIter::next, then Prusti will automatically
inherit the specifications of Iterator::next. Since the condition of the type-
dependent contract is satisfied, these specifications will effectively be all
specifications which are part of the type-dependent contract. Subtyping is
then trivially satisfied.

Notice that if we had custom specifications on SomeIter::next this would
not automatically work: The refinement strategy of Prusti inherits the spec-
ifications of the trait only if the implementation has no specifications. In
this case, the specifications of the implementation would need to satisfy the
subtyping check.

On the other hand, if SomeIter does not implement IteratorSpec, then
there is nothing to check.

Encoding method calls

Encoding of method calls in the presence of type-dependent contracts works
analogously to encoding ordinary method calls. The only difference is that
we first statically determine whether the constraint of the type-dependent
contract is active or not. If it is active, we take the additional specifications of
this contract into account. It is important to mention though that the predi-
cates are not abstract anymore: At the callsite, we have precise knowledge
of the receiver of a call to Iterator::next, and thus we also know to which
concrete predicates the contract refers to.

3.2.2 Putting everything together: Specification of VecIter

With the given techniques, we are able to provide a specification for VecIter
in the new setting. The specification of the Iterator remains the same as
in Listing 15, and we only need to implement the specification extension as
shown in Listing 16.

The general procedure for a specification is then always the same: Implement
the specification extension which describes the already visited values as part
of the enumerated predicate and describe the termination criterion via the
completed predicate. Additionally, we add a specification to the iterator’s
fn next method which describes state changes as well as the value of the
returned Option result.
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1 impl IteratorSpec for VecIter {
2 predicate! {
3 fn completed(&self) -> bool {
4 iter.pos == iter.vec.len()
5 }
6 }
7

8 predicate! {
9 fn enumerated(&self, prev: &Self) -> bool {

10 // Visited sequence
11 iter.pos == iter.visited.len() &&
12 forall( |i: usize| i < iter.visited.len() ==>
13 iter.visited[i] == iter.vec[i] ) &&
14

15 // State evolution
16 iter.vec == prev.vec &&
17 iter.pos >= prev.pos
18 }
19 }
20

21 predicate! {
22 fn post(old_self: &Self,
23 new_self: &Self,
24 res: Option<Self::Item>) -> bool {
25 !old(self.completed()) ==>
26 ( self.pos == old(self.pos) + 1 ) &&
27 old(self.completed()) ==>
28 ( self.pos == old(self.pos) ) &&
29 res.is_some() ==>
30 ( res == Some(self.vec[old(self.pos)]) )
31 }
32 }
33 }

Listing 16: Implementation of IteratorSpec for VecIter.
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3.3 Describing effects of nested iteration

Iterator adapters (see Section 2.2.3) are heavily used in Rust code. In fact,
many of the standard library iterators are iterator adapters which take the
result of their nested iterator and refine it before returning it.

We want our specifications for iterator adapters to be modular, i.e. the
specification should be independent of the concrete nested iterator (and its
respective specification). To that end, we need a way to specify the result of
an adapter in relation to the result of the nested iterator.

Throughout this section, we will exemplify iterator adapter specification on
the Map iterator. An implementation is shown in Appendix A.2.

3.3.1 Introduction

As outlined in Section 3.1.1, modular specification of iterators is achieved via
the predicates enumerated and completed, which describe the already visited
elements of an iterator thus far. This remains the same for adapters: We
want to describe every element visited so far, but we now rely on the already
visited elements of the nested iterator.

To get a general idea about how this works, let VA
k be the visited values after

k calls to the adapter and VN
k the visited values after k calls to the nested

iterator. Consider iteration over a vector vec![1,2,3,4] using the Iter
iterator, nested inside a Map iterator which simply doubles all the elements.
The following table illustrates the evolution of the visited sequences after a
certain amount of calls to fn Map::next:

k 0 1 2 3 4

VIter
k ∅ 1 1, 2 1, 2, 3 1, 2, 3, 4

VMap
k ∅ 2 2, 4 2, 4, 6 2, 4, 6, 8

After the k-th call to Map’s next method, it holds that

∀i. 0 ≤ i < ‖VMap
k ‖ =⇒ VMap

k [i] = 2 ·VIter
k [i]

That is, Map’s i-th visited element is simply Iter’s i-th element, doubled.

Map might arguably be the simplest form of an iterator adapter because there
is a one-to-one relation of visited values: The amount of visited values always
matches the amount of visited values of the nested iterator, i.e. ‖VMap

k ‖ =
‖VN

k ‖.
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1 let mut count = 0;
2 let f = |x: i32| {
3 count += 1;
4 2 * x + count;
5 }
6 let res = vec![1,2,3,4].iter().map(f);
7 assert_eq!(res, vec![3, 6, 9, 12]);

Listing 17: Using Map with a closure that captures and mutates its surrounding
context by increasing count with every invocation.

There are more complicated scenarios though: For example, a Filter or a
Skip iterator yields at most as many elements as their nested iterator:

‖VA
k ‖ ≤ ‖VN

k ‖

In contrast, Repeat increases the amount of elements:

‖VA
k ‖ ≥ ‖VN

k ‖

3.3.2 State evolution of closures

Recall from Section 2.1.2 that closures can capture and mutate the surround-
ing context as shown in Listing 17 where the Map iterator does not only
double the passed value, but also adds count to it which is increased with
every invocation.

A specification of already visited values thus has to always take any captured
state of a closure into account.

k 0 1 2 3 4

VIter
k ∅ 1 1, 2 1, 2, 3 1, 2, 3, 4

VMap
k ∅ 3 3, 6 3, 6, 9 3, 6, 9, 12

To this end, let fk be the closure in its k-th state. Again, after k calls to Map’s
fn next method, we obtain the following description for the k already visited
elements:

∀i. 0 ≤ i < ‖VMap
k ‖ =⇒ VMap

k [i] = fk

(
VIter

i [i]
)

where fk(x) = 2 · x + k
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1 impl<I: IteratorSpec, ...> IteratorSpec for Map<I, ...> {
2 predicate! {
3 fn completed(&self) -> bool {
4 self.iter.completed()
5 } }
6

7 predicate! {
8 fn enumerated(&self, prev: &Self) -> bool {
9 // ...

10 self.iter.enumerated(&prev.iter) &&
11 self.visited().len() == self.iter.visited().len() &&
12 forall(|i: usize| i < self.visited().len() ==>
13 self.visited()[i] == 2 * self.iter.visited()[i]
14 )
15 // ...
16 } }
17

18 // ...
19 }

Listing 18: Specification for a simplified Map iterator.

3.3.3 A first specification for the Map iterator

We are now able to put together a first specification for the Map iterator. We
will focus on the definition of enumerated and completed.

First we look at a simplified version of Map where we assume that the used
closure simply doubles its value (and has no captured state). Furthermore,
we assume that Map has a field iter, the nested iterator. As a last assumption,
we assume that the nested iterator also implements the IteratorSpec trait.

A specification is shown in Listing 18 as part of an IteratorSpec trait
implementation of Map. This example, albeit not terribly exciting, shows how
we can specify VMap

k in the presence of a nested iterators visited sequence VN
k .

Generally, the specification can be seen as part of the k-th call to Map::next,
and our main goal is to describe VMap

k in the postcondition of that call.

First, on Line 3, we specify that Map is completed when the nested iterator
is completed. Next, in order that Map is enumerated, the nested iterator
must be enumerated as well, i.e. VN

k is fully determined according to the
specification of the nested iterator. Having that knowledge, we can then
proceed by connecting VMap

k and VN
k via a universal quantification over all

visited values.
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1 fn enumerated(&self, prev: &Self) -> bool {
2 // ...
3 self.iter.enumerated(&prev.iter)
4 self.cl_states.len() == self.visited().len() + 1 &&
5 forall(|i: usize| i < self.visited().len() ==>
6 F::call_mut ~~> |cl: F, arg: I::Item| -> B
7 { cl === self.cl_states[i] &&
8 arg == self.iter.visited()[i] }
9 { cl === self.cl_states[i+1] &&

10 self.visited()[i] == result }
11 )
12 // ...
13 }

Listing 19: Specification for the Map iterator with a closure.

Taking closures into account

We now turn our attention towards a more exciting example, where Map has
a real closure, potentially with captured state. As outlined in Section 3.3.1,
VMap

k is now dependent on the result of the closure in a certain state. In
particular, we need to connect every VMap

k [i] with the result of a call to the
closure in its i-th state (i.e., it has already been called i − 1 times), whose
argument was the result of the nested iterator.

We outline a specification in Listing 19. Notice that we require the existence
of a ghost sequence of closure states cl_states which is initialized properly.

First, we again universally quantify over all visited values of Map. What
follows inside the universal quantifier is a call description for the closure.
In the prestate assertion, we link the closure state to a sequence of observed
closure states. Furthermore, we constrain the argument to be VN

k [i], the i-th
visited value of the nested iterator. In the poststate assertion, we again link
the possibly changed closure state to the next position in the sequence of
observed closure states as well as linking the closure’s result to VMap

k [i].

This specification is not yet strong enough to be used in any clients. The
missing part is how the state of the nested iterator evolves for one call to
Map::next. This knowledge is needed: For example, if we used VecIter as
part of Map, we need to know that the pos field of VecIter increases by one
if we call Map::next (and there are more elements available). We can encode
this as part of the fn post specification function of Map:

1 fn post(old_self: &Self,
2 new_self: &Self, res: Option<Self::Item>) -> bool {
3 // ...
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4 exists(|nested_res: Option<I::Item>| {
5 IteratorSpec::post(
6 old_self.iter,
7 new_self.iter,
8 &nested_res
9 )

10 })
11 // ...
12 }

The specifications shown before, albeit syntactically simple, are very pow-
erful: First, they are modular as they do not depend on the nested iterator
and the concrete closure. The nested iterator is hidden behind the speci-
fication extension IteratorSpec and Map’s specification depends solely on
this extension, meaning we can use any nested iterator which provides an
implementation of that trait.

Second, the specification is powerful because after a certain amount of calls
to Map::next, we know the precise state of the closure and both visited
sequences of the two involved iterators. This is illustrated as part of the
following listing3:

1 let mut count = 0;
2 let f =
3 #[ensures(result = 2*x + count)]
4 |x: i32| -> i32 {
5 count += 1;
6 2 * x + count
7 };
8 let map = [0..].iter().map(f);
9 // We know as part of initialization of Iter and Map:

10 // cl_states = f0 where f0.count = 0
11 // VIter

0 = ∅
12 // VMap

0 = ∅
13

14 map.next(); ...; map.next(); // k times
15

16 // We know from Map's specification:
17 // cl_states = f0, . . . , fk+1 where fk.count = k
18 // VMap

k = f0(VIter
k [0]), . . . , fk(VIter

k [k])
19

20 // and from Iter's specification:
21 // VIter

k [i] = i

22 // =⇒ VMap
k = f0(0), . . . , fk(k)

23

3We hereby assume that Iter is specified.
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24 // and the specification of the closure:
25 // ck(x) = 2 · x + k
26 // =⇒ VMap

k = 0, . . . , 2 · k + k

3.3.4 Offsetting

In the previous sections, we have assumed that the i-th element of VMap
k is

always at the i-th position of VN
k as well as ‖VMap

k ‖ = ‖VN
k ‖. This is not

always the case, as illustrated in the following snippet:

1 let v = vec![1,2,3,4];
2 let mut iter = v.iter();
3 iter.next();
4 // VIter

1 = 1
5

6 let mut map = iter.map(|x| x);
7 map.next();
8 // VIter

2 = 1, 2
9 // VIter

1 = 2

If the nested iterator has already visited j elements, then using it as part
of an iterator adapter means that the adapter’s visited sequence is off by j
elements.

We can fix this by keeping an offset flag as part of Map. When Map is created,
we initialize this offset to be equal to the length of the visited sequence of the
nested iterator. Furthermore, the enumerated implementation of Map needs
to account for this additional knowledge:

‖VMap
k ‖ = ‖VIter

k ‖ − offset∧

∀i. 0 ≤ i < ‖VMap
k ‖ =⇒ VMap

k [i] = fk

(
VIter

i [i + offset]
)

3.3.5 Specification in the absence of IteratorSpec

In section Section 3.3.3, we have shown how we can specify an iterator adapter
by linking its ghost sequence of visited values to the nested iterators ghost
sequence of visited values. Concretely, our definition of Map::enumerated
relies on I::enumerated where I is the type of the nested iterator. We thus
implemented IteratorSpec for Map only if I also implements IteratorSpec,
indicated by a trait bound on the generic type parameter of the nested
iterator. With this additional information, we were able to ensure that the
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visited sequence of the nested iterator is properly specified as part of the
specification of the adapter.

In an ideal scenario, every iterator of the standard library would implement
this specification extension and all iterator adapter specifications can then
rely on this additional knowledge. This is highly idealized, and users might
come up with their own iterator implementations, forcing them to implement
IteratorSpec in order that they get a specification when it is nested inside
one of the (conditionally) specified adapters. This is too restrictive, and we
might need a better solution.

To this end, we get rid of the type parameter bound on the nested iterator (e.g.
I: IteratorSpec in Listing 18) for any iterator adapter specification exten-
sion implementation, say Map as our running example. This effectively means
that we have less information available for our iterator adapter specifications,
as we have no explicit knowledge whether the nested iterator implements
IteratorSpec or not. As a consequence, the specification of the adapter can
not enforce that the visited sequence of the nested iterator is fully specified.

Ultimately, we still want to specify the visited ghost sequence of Map as
part of its enumerated predicate implementation. We observe that given an
iterator is in some state Ik, and we call its fn next method, this will lead to
the following result: Either we get a None, which marks completion of the
iteration4, or we get Some value rk with a potential new state of the iterator
Ik+1. We denote this behavior as a configuration of the iterator Ck = 〈Ik, rk〉,
which can be read as: If the iterator is in some state Ik, it will return result rk.
We denote the absence of a returned value with ∅. Given a configuration Ck
and a call to Iterator::next(C_k), this induces a new configuration Ck+1,

denoted as Ck
next
 Ck+1.

As an example, consider iteration over a vector with k elements using the
slice iterator Iter. We observe the following infinite trace of configurations:

〈I0, r0〉
next
 〈I1, r1〉

next
 . . . next

 〈Ik, rk〉
next
 〈Ik+1,∅〉 next

 〈Ik+2,∅〉 next
 . . .

Using Iter as a nested iterator inside a Map iterator, we observe the following:
After we have called Map::next k times without observing any None value,
we can assume a trace Tk+1 of the nested iterator with length ‖Tk+1‖ = k + 1
and arrive the following formula5 for Maps ghost sequence of visited values
VMap

k :

‖VMap
k ‖ = ‖Tk+1‖ ∧

∀i. 0 ≤ i < ‖VMap
k ‖ =⇒ VMap

k [i] = fk(ri) where 〈Ii, ri〉 ∈ Tk+1

4Recall that we assume that iterators are fused.
5We omit offsetting for the sake of simplicity.
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Notice at this point, that this formula is independent of VN
k ; the ghost

sequence of visited values of the nested iterator. It is purely based on the
observation of state changes induced by method calls, as well as their returned
result.

To derive a specification for this mathematical description, we need to de-
scribe the trace Tk+1 as part of the specification of Map. Concretely, we need

a way to describe a call next
 with its induced state changes as well as the

returned result. This is exactly what we can achieve with call descriptions for
closures: Recall from Section 2.3.1 that a call description cl  (args) {P} {Q}
describes that a call to cl happened, where P is an assertion which held prior
to the call and Q is an assertion which held after the call.

We can leverage closure call descriptions to generalized call descriptions,
which describe the call to any function, including trait methods. In our

running example, we can link two configurations 〈Ik, rk〉
next
 〈Ik+1, rk+1〉 with

a call description:

Iterator::next (iter) {iter = Ik} {iter = Ik+1 ∧ result = rk}

This call description describes that some call to the method Iterator::next
happened on some iterator instance iter. Prior to the call, this instance of the
iterator was in some state Ik, and after the call, the instance changed its state
to a new state Ik+1

6. Additionally, in the poststate assertion, we have access
to the returned value, and thus can link it with rk. Notice that some details
are omitted for simplicity, as result is actually an Option and not a concrete
value. We deal with such details later.

Generalized call descriptions

Generalized call descriptions are an extension of closure call descriptions
[14, 15] for any function call as opposed to closure calls. This includes
ordinary functions, associated functions or methods7.

Syntactically, there is nothing we need to change. A call to a method
foo.bar(arg1, arg2) where the type of the receiver foo is Foo can be
equivalently written as Foo::bar(foo, arg1, arg2). A generalized call
description thus syntactically has the form:

M  |recv∗, a1, ..., an| {P} {Q}
6The equality in iter = Ik can be interpreted as comparing a snapshot of the state of iter to

the (snapshot) state Ik.
7A method is an associated function whose first parameter is self, an associated

function is a function associated with a type (i.e. a function inside an implementa-
tion block), see https://doc.rust-lang.org/reference/items/associated-items.html#
associated-functions-and-methods
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where M is the identifier of the function (e.g., Type::method), recv∗ is the
receiver (only relevant if M is a method) and a1, . . . , an are the additional
arguments that M has been called with. As in closure call descriptions, P
is a prestate assertion that is evaluated prior to the call and Q a poststate
assertion that is evaluated after the call.

The encoding works as for closure call descriptions8. Assuming we have a
call description like before, this will be encoded like the following first-order
formula:

∃ recv, recv, a1, a1, a2, a2, . . . , r .
pre(recv, a1, . . . ) ∧ P(recv, a1, . . . ) ∧
post(recv, recv, a1, a1, . . . , r) ∧ Q(recv, recv, a1, a1, . . . , r)

where recv denotes the state of the receiver of the method call, a1, . . . , an are
the arguments, r is the result of the call and pre and post are the refined9

pre- and postconditions of the function. A bar (recv) indicates that this is a
pre-call value.

3.3.6 Specification of Map with call descriptions

We now are able to provide a specification for enumerated for Map using
generalized call descriptions.

The annotated specification is shown in Listing 20, where we again assume
the existence of a ghost sequence of closure states cl_states on the iterator,
as well as a ghost sequence of iterator states iter_states of the nested
iterator and a ghost flag completed which signals completion of the iterator.

Callsite monomorphization

Notice that the specification in Listing 20 is completely unaware of the fact
whether the nested iterator I implements IteratorSpec or not.

Assume we use two iterators as nested iterators for Map as shown in Listing 21.

Furthermore, assume that Iter1 does not implement IteratorSpec but has
a simple postcondition on its fn next method which states that all yielded
elements are positive. On the other hand, we assume that Iter2 implements
IteratorSpec. What do we know for the two calls on Line 6 and Line 7?

8Closures in Prusti can have invariants. Invariants on types do not yet exist in Prusti, so
we left that detail out in the encoding.

9For a plain function these are just the declared specifications. In case of a trait method im-
plementation, we pick the specification according to the refinement strategy, see Section 2.3.2
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1 fn enumerated(&self, prev: &Self) -> bool {
2 // ...
3 self.iter_states.len() == self.visited().len() + 1 &&
4 self.cl_states.len() == self.visited().len() + 1 &&
5 self.visited().len() == self.iter.visited().len() &&
6

7 // Describe a trace Tk of configurations for
8 // the k so far observed values: 〈I0, r0〉

next
 . . . next

 〈Ik, rk〉
9 forall(|i: usize| i < self.visited().len() ==> (

10 Iterator::next ~~> |iter: I| -> Option<I::Item>
11 { iter === self.iter_states[i] }
12 { iter === self.iter_states[i+1] &&
13 result.is_some() &&
14 // A call to the closure happened with the argument ri,
15 // leading to the i-th visited value of this iterator.
16 F::call_mut ~~> |cl: F, arg: I::Item| -> B
17 { cl === self.cl_states[i]
18 Some(arg) == outer(result) }
19 { cl === self.cl_states[i+1] &&
20 self.visited()[i] == result }
21 }
22 )) &&
23

24 // Iteration is completed after k calls iff the k + 1-th
25 // call led to a returned None:
26 // . . . next

 〈Ik+1,∅〉
27 self.completed == (
28 Iterator::next ~~> |iter: I| -> Option<I::Item>
29 { iter === self.iter_states[self.iter_states.len() - 1] }
30 { result.is_none() }
31 )
32 }
33

34 fn completed(&self, prev: &Self) -> bool {
35 self.completed
36 }

Listing 20: A specification of Map using generalized call descriptions.
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1 let mut iter1 = Iter1::new();
2 let mut iter2 = Iter2::new();
3 let mut map1 = iter1.map(|x| x);
4 let mut map2 = iter2.map(|x| x);
5

6 map1.next();
7 map2.next();

Listing 21: We nest two iterators Iter1 and Iter2 inside a Map iterator. The former
nested iterator does not implement IteratorSpec while the latter does. Since Map
uses call descriptions to describe the effects of its nested iterator, we get different
knowledge for both fn next calls.

1 let v = vec![1,2,3,4];
2 let mut iter = v.iter();
3 let mut map = iter.map(|x| 2*x);
4 let v: Vec<i32> = map.collect();
5 assert!(v == vec![2,4,6,8])

Listing 22: Conversion from a vector into an Iter, then a Map and collecting the
resulting values in a new vector.

For the former, we certainly know that a call to iter1.next() has happened.
We also know that the returned element is positive, since the call description
used in Map encodes the postcondition of Iter1::next.

For the second call, we know more though: Since Iter2 implements the spec-
ification extension IteratorSpec, we know that the type-dependent contract
on the specification of Iterator::next is active. Thus, when we encode
the call description of Map, we encode the active type-dependent contract
on Iterator::next, which will ultimately refer to the implementation of
IteratorSpec on Iter2. On the callsite, we thus additionally know every-
thing that is part of the specification Iter2::enumerated. Consequently, we
get information about the visited sequence of Iter2.

3.4 From collections to iterators and back

In this section, we discuss how we can turn a Vec<T> into an iterator and
turn an iterator into Vec<T>, as shown in Listing 22.

On Line 2, we create a new Iter iterator from a vector. We can specify this
fn iter function and initialize the resulting Iter accordingly. Likewise,
we could create a slice iterator via &v.into_iter(), to immutably traverse
the elements of the vector. We can also consume the vector by directly
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creating an IntoIter with v.into_iter(). For both of these cases we need a
specification for the IntoIterator trait for Vec<T> and &Vec<T>, respectively.

On Line 3, we create the iterator adapter Map. These iterator adapters are
usually created via provided methods on Iterator directly, and we must
initialize the adapter accordingly. This means that we must provide a specifi-
cation which establishes the type invariant enumerated of Map:

1 trait Iterator {
2 // ...
3

4 // Specs, which must imply Map::enumerated
5 fn map<B, F>(self, f: F) -> Map<Self, F>
6 where F: FnMut(Self::Item) -> B { ... }
7 // ...
8 }

Lastly, we collect the values of the resulting iterator chain on Line 4 which
we discuss next.

3.4.1 Collection
The method Iterator::collect is polymorphic and implemented via an
indirection: It takes anything that turns into an iterator (IntoIterator)
and returns a type which is known to be constructible from this iterable
(FromIterator):

1 trait Iterator {
2 // ...
3 fn collect<B: FromIterator<Self::Item>>(self) -> B {
4 FromIterator::from_iter(self)
5 }
6 // ...
7 }

To derive a full specification for Listing 22 and verify the assertion, we
need a specification for Iterator::collect and the implementation of
FromIterator on Vec<T>.

We start with the latter. A simplified implementation would iterate over the
provided iterator and store every returned element in the resulting vector.
We want to capture this behavior in our specification:

1 impl<T> FromIterator<T> for Vec<T> {
2 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3 let mut result = Vec::new();
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1 impl<T> FromIterator<T> for Vec<T> {
2 #[ensures(
3 exists(|iter_states: GhostSeq<I>| (
4 iter_states.len() == result.len() + 1 &&
5 iter_states[0] == old(iter) &&
6 iter_states[result.len()] == iter &&
7 forall(|i: usize| i < result.len() ==>
8 Iterator::next ~~> |state: I| -> Option<I::Item>
9 { state == iter_states[i] }

10 { state == iter_states[i+1] &&
11 result == Some(outer(result)[i]) }
12 )
13 ))
14 )]
15 fn from_iter<I: ...>(iter: I) -> Vec<T> { ... }
16 }

Listing 23: A specification for collecting the values of an iterator into a vector.

4 for el in iter { result.push(el) }
5 result
6 }
7 }

Again, upon calling fn collect, we may assume the existence of a trace T
of observed iterator states and results as fn collect traverses the iterator:

〈I0, r0〉
next
 〈I1, r1〉

next
 . . . next

 〈Ik, rk〉

We now want to combine this trace with the elements of the vector. We thus
propose the specification in Listing 23, which again as in Section 3.3.5 uses
call descriptions to link the configurations with the resulting vector.

Note again, that our knowledge of the resulting Vec<T> is dependent on the
strength of the specification of I. If I implements IteratorSpec, then we
have precise knowledge about the values of Vec<T>, as the call description
takes the activated type-dependent contract into account.

Finally, we need a specification for Iterator::collect itself. This can be
achieved with a call description again, where we simply link the result of
Iterator::collect with the result of FromIterator::from_iter:
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1 trait Iterator {
2 // ...
3 #[ensures(
4 FromIterator::from_iter ~~> |iter: Self| -> B
5 { iter == self }
6 { result == outer(result) }
7 )]
8 fn collect<B: FromIterator<Self::Item>>(self) -> B { ... }
9 // ...

10 }
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Chapter 4

Implementation

This chapter explains needed changes that we introduced to support our
methodology. We start by outlining implementation-specific aspects of speci-
fication extensions and abstract predicates in Section 4.1. What follows is a
discussion how we specify standard library code in Section 4.2. In Section 4.3
we discuss, as an extension to Section 4.2, how we deal with code that is
implemented in a way which is impossible to specify. As a last point, in
Section 4.4, we discuss implementation-specific details of type-dependent
contracts.

4.1 Specification extensions
The support for specifications, as we introduced them in Section 3.2, posed
several challenges during the implementation phase of the project. Our
iterator specification is polymorphic: The specification does not depend on
concrete assertions, but mostly refers to trait methods, whose implementation
provides the assertions.

In order to support such polymorphic specifications, we refactored and
extended how Prusti internally represents user-typed specifications and
interacts with them, for example when encoding a method call.

Prusti encodes each to-be-checked Rust method, hereby called procedure, into
a separate Viper file. This encoding includes all transitive dependencies of
the procedure. For example, if the procedure uses some struct (as part of
the body or the specification), this struct will be part of the encoded Viper
file as well. The logic in Prusti which orchestrates this process is called
ProcedureEncoder. It internally is structured in different modules. For
example, one module is the TypeEncoder which is responsible for encoding
types.

To better handle our specifications, we created a new specification module.

47



4. Implementation

This module acts as a facade for specifications. Each Rust function, internally
identified with a unique DefId1, has a specification which consists of the
following information2:

Preconditions A vector Vec<DefId>, where each element identifies a type-
checked precondition function.

Postconditions A vector Vec<DefId>, where each element identifies a type-
checked postcondition function.

Kind Defines whether the method is a predicate, pure or impure (repre-
sented as an enum). A method is a predicate if it is inside a predicate!
block. It is pure when annotated with the #[pure] attribute, and
impure if no annotation is present.

Trustedness A boolean flag indicating whether the procedure is trusted or
not.

When the ProcedureEncoder needs specifications, for example to encode
the pre- and postconditions of a method call, it will invoke a query to the
specification module. Such a query mainly3 consists of the DefId of an
item for which the encoder wants the specification. The specification mod-
ule then assembles the specification for the query. This assembly process most
notably returns refinement information: If the queried DefId is a trait method
implementation, the assembled specification will consist of the specification
of the trait method and the implementation method. The procedure encoder
then can use this refinement information to select the effective specification
for the call (and encode a check that the subtyping is valid).

Additionally, when the specification module builds the assembled specifi-
cation of a trait method and its implementation, it checks whether the kind
of the implementation specification is valid with respect to the kind of the
trait specification. This enforces that an abstract predicate4 defined on a trait
is indeed implemented as a predicate in the implementation. Likewise, a
pure trait method must not be impurely implemented. If the specification
module did not enforce this, the modular verification of a generic function
depending on some trait method would assume that this trait method has
no side effects. Calling the generic method with an implementation of the
method that has side effects then could lead to soundness issues. Table 4.1
shows the enforced rules.

1A DefId is a type of the compiler API which uniquely identifies an item, for example a
function or an implementation block, throughout the compilation process.

2This list is not exhaustive. For example, we also store information for error reporting.
3A query also includes a cause. For example, the cause for a query can be

MethodCallEncoding. This cause is mainly relevant for caching and performance.
4We talk more about abstract predicates in Section 4.1.1.
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Kind of

implementation method

Impure Pure Predicate

Kind of

trait method

Impure 3 3 7

Pure 7 3 7

Predicate 7 7 3

Table 4.1: Table of valid (3) and invalid (7) procedure refinements of a trait method
and its implementation. For example, it is possible to mark an impure trait method
as pure in the implementation. The converse is not possible: If the trait method is
pure, then the implementation must be pure as well.

As a summary, the specification module provides a uniform access to
(user-typed) specifications and especially enriches specifications with re-
finement information to better handle polymorphic specifications. The
ProcedureEncoder uses this module as part of its own encoding process
to encode polymorphic specifications.

4.1.1 Abstract predicates

Abstract predicates are trait methods which implementors must implement
as a predicate. They are introduced with a surrounding predicate! { ... }
macro:

1 trait Trait {
2 predicate! {
3 fn pred(&self, args...) -> ReturnType;
4 }
5 }

It is not possible to use an abstract predicate in non-specification code,
because the implementor of the abstract predicate can use a superset of Rust
syntax as part of the body of the method. Consequently, Prusti will throw an
error when verifying the following code:

1 #[ensures(t.pred(...))] // Valid usage
2 fn foo<T: Trait>(t: T) {
3 t.pred(); // Cannot use abstract predicate here
4 }
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Refinement

We disallow that abstract predicates have a method body. Abstract predicates
thus are always required trait methods, as opposed to provided trait methods.
We impose this restriction because we can not modularly determine how
a predicate is used: It may be used as part of a pre- or postcondition, or
a combination of the two. If Prusti knew that an abstract predicate is only
used in preconditions, we could check that the body of the implementation
weakens the body of the trait method; a valid refinement. We could do
a similar strengthening check if the predicate appeared only as part of
postconditions. However, it would not be clear what refinements we should
allow if it were used as part of pre- and postconditions. We thus disallow
predicates with bodies on traits altogether.

As was already mention, we require that the implementor implements an
abstract predicate as a predicate, i.e., the following implementation of the
aforementioned abstract predicate is disallowed:

1 impl Trait for Struct {
2 // This is an impure method;
3 // an invalid refinement of Trait::pred
4 fn pred(&self, args...) -> ReturnType { /* body */ }
5 }

The method Struct::pred is impure and thus might have side effects. A
generic function foo like listed before would accept a pre- and postcondition
which uses the abstract predicate. However, calling this function with Struct
is unsound, because specifications must be side-effect free.

Likewise, we disallow implementing an abstract predicate as a pure function.
Not ensuring this would not immediately cause soundness issues, but it
would be rather inconsistent. An abstract predicate defines a function which
is only meant to be used in specifications. An implementor should respect
this fact with its implementation.

4.2 Specifying standard library code
This section discusses how specifications for non-local Rust types can be
provided. Non-local types are types which come from another crate, e.g. the
standard library or from crates.io.

This is needed for iterators: We want to specify various iterators from the
standard library (Map, Filter) and the Iterator trait itself. Copying the code
from the standard library and specify this copy is not an option. Eventually,
the standard library iterator specifications could be distributed as a part of
Prusti, and users could simply rely on these specifications when verifying
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1 struct Foo;
2 impl Foo {
3 fn produce(&self, x: i32) -> i32 {
4 x + 41
5 }
6 }
7

8 #[extern_spec]
9 impl Foo {

10 #[ensures(result == x + 41)]
11 fn produce(&self, x: i32) -> i32;
12 }

Listing 24: External specification for local type.

their iterator-based code (see Section 6.1). Copying the standard library
makes this impossible.

It is also a necessity in other cases: Rust code is rarely self-contained by
having no external dependencies, even if it only uses the standard library.
The need for external specifications thus not just arises for iterators, but in
almost every Rust program that is to be verified by Prusti.

4.2.1 Prior work and external specifications
External specifications are not a novelty in this work. The ideas and founda-
tions were developed by Karen Hong during an internship.

The core idea is that Prusti specification annotations do not need to be part of
the implementation. As a simple example, consider Listing 24 which contains
a user-written type Foo with one method that simply returns a constant
integer. Normally, we would add a postcondition directly to Foo::produce.
It is however possible, to use the #[extern_spec] procedural macro from
Prusti to declare a specification for Foo::produce in a different source code
region. The macro #[extern_spec] introduces a new external specification.
It is immediately followed by an impl block containing the to-be-specified
method produce in a bodyless form with the specification itself. This external
specification can be read as “attach this postcondition to the method produce
which is declared inside some impl Foo block”.

In this example, there is no difference from declaring the specification directly
on the method or as an external specification: The body of Foo::produce
will be checked against the postcondition and likewise, a client which calls
the method will refer to this specification.

Listing 24 seems a bit artificial, because Foo is locally defined, and an ex-
ternal specification is not needed. If Foo instead were really external type,

51



4. Implementation

1 use foo_crate::Foo;
2

3 #[extern_spec]
4 impl Foo {
5 #[ensures(result == x + 41)]
6 fn produce(&self, x: i32) -> i32;
7 }
8

9 fn main() {
10 let f = Foo;
11 let res = f.produce(1);
12 assert!(res == 42)
13 }

Listing 25: External specification for external type.

as in Listing 25, the external specification remains the same. The only im-
portant difference is that the specification is not checked against body of
Foo::produce, as it is not locally available. Nevertheless, Prusti uses the
defined external specification in fn main and can prove the assertion.

Prior to this thesis it was possible to provide external specifications for
inherent5 implementation blocks and for modules. While technically possible
to attach an external specification to a trait implementation, it failed in
certain scenarios. To properly support iterators, we need support for external
specifications in these scenarios as well.

4.2.2 Definitions, requirements, and usage scenarios

The block below the #[extern_spec] including the macro in Listing 24 is
called an external specification which attaches to the method Foo::produce.
This method is said to be externally specified. The impl Foo { ... } block is
called the context of the external specification.

Requirements

To further develop the already existing technique for external specifications,
we propose the following general requirements for external specifications:

5There are two kinds of implementation blocks in Rust: Inherent implementations
and trait implementations. Inherent implementation blocks are of the form impl Foo { },
whereas trait implementations are of the form impl SomeTrait for Foo { }. More infor-
mation can be found in the Rust reference: https://doc.rust-lang.org/reference/items/
implementations.html
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4.2. Specifying standard library code

Well-definedness An external specification is well-defined if it attaches to
an explicitly typed6 method (either local or non-local). It should not be
possible to declare external specifications for non-existing methods.

Coherency An external specification should clearly express whether it be-
longs to a trait method, an implementation of that method or a method
inside an inherent implementation block.

Uniqueness It should not be allowed that multiple external specifications
can be attached to the same method, as it then would not be clear which
specification should be active for a method call.

An external specification is said to be valid if all the above conditions are met.
If an external specification is not valid, this should be reported appropriately
to the user.

Usage scenarios and non-usage scenarios

To properly support iterators, we at least need to be able to attach external
specifications to the following items:

• Trait methods to specify the Iterator trait.

• Methods which appear as part of trait implementations to specify
iterator implementations.

• Methods which appear as part of inherent implementations to specify
other non-local types (e.g. Option<T>, the return type of any iterator).

We do not need to attach external specifications to free functions or Rust
modules, the latter of which is already supported in Prusti. Additionally,
versioning7 might be an interesting addition in the future.

4.2.3 Syntax
As discussed in Section 4.2.1, external specifications are introduced with the
procedural macro #[extern_spec] followed by the context of the external
specification. Rust procedural macros can only parse and interpret Rust
syntax8, so the context ideally is Rust syntax itself.

In Listing 26, we outline external specifications in all scenarios that were
mentioned earlier. We observe, that the context is the same code block that

6That is, it attaches to a method that is syntactically present in the source code. Consider
a generic method Foo<T>::foo. After monomorphization, there exist an arbitrary amount
of copies of this method, namely one for each monomorphized version. We do not consider
these as explicitly typed.

7 External crates can be imported with a specific version into a Rust project when using
Rust’s package manager Cargo. The need for version-dependent external specifications might
be needed in these scenarios.

8More precisely, everything that is supported by a proc_macro::TokenStream
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#[extern_spec]
trait Trait {

// Specs STrait
fn foo(&self, x: i32) -> i32;

}

#[extern_spec]
impl Trait for Struct {

// Specs STraitImpl
fn foo(&self, x: i32) -> i32;

}

#[extern_spec]
impl Struct {

// Specs SImpl
fn foo(&self, x: i32) -> i32;

}

Listing 26: Syntax for declaring external specifications.

the externally specified method was defined in. That is, from the context, we
can uniquely identify the externally specified method:

• Specs STrait are attached to Trait::foo.

• Specs STraitImpl are attached to <Struct as Trait>::foo.

• Specs SImpl are attached to Struct::foo.

4.2.4 External specifications and generics
As we have seen Section 2.1.1, traits, their implementations and even types
can be generic, and consequently, external specifications have to work in a
generic setting as well.

Type parameters in inherent implementations

First, we look at generic types. Assume a generic struct Foo<T> with
two implementation blocks impl<T> Foo<T> {} and impl for Foo<i32> {}
as shown in Listing 27. It must be possible to externally specify both
Foo<T>::foo and Foo<i32>::bar. In the same listing, we indeed provide
two external specifications for them which contain the same generics as
the implementation blocks themselves. This again allows us to identify the
correct to-be-specified methods.

Naturally, the question arises whether we should be allowed to provide an
external specification for Foo<T>::foo inside an impl Foo<i32> {} block
as shown in Listing 28. This specification might seem to be well-defined,
as it is attached to an existing method Foo<i32>::foo. However, this is
not true, because Foo<i32>::foo is actually a monomorphized version of
Foo<T>::foo. We disallow this, because the specification should describe
the behavior of the method for all monomorphized versions of it, not just a
specific one.
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1 impl<T> Foo<T> {
2 fn foo(&self) {}
3 }
4

5 impl Foo<i32> {
6 fn bar(&self) {}
7 }

1 #[extern_spec]
2 impl<T> Foo<T> {
3 // Specs ST

foo
4 fn foo(&self);
5 }
6

7 #[extern_spec]
8 impl Foo<i32> {
9 // Specs Si32

bar
10 fn bar(&self);
11 }

Listing 27: Syntax for externally specifying generic types.

1 #[extern_spec]
2 impl Foo<i32> {
3 // Specs Si32

foo
4 fn foo(&self);
5 }

Listing 28: External specification which does not match the generic signature.

One could argue that the specification Si32
foo for Foo<i32>::foo could be more

specific, because the type of T is known. It is questionable though why this
would be even needed. Even though Si32

foo could syntactically account for the
known type, we would still require that it is semantically equivalent in the
presence of ST

foo. If the latter was not present, this could be a possibility, but
it would violate the idea why the generic was introduced in the first place:
Defining a method, parametric over types which exposes some semantical
behavior that we would like to specify.

Type parameters appearing in trait implementations

We impose the same restrictions for generics appearing in trait implementa-
tions as for inherent implementations: The context of the external specifica-
tion must match the generic signature of the to-be-specified method.

Notice that it is not necessary, and thus disallowed, to specify the associated
type in such an external specification. Providing the same associated type
in the external specification as in the actual implementation is redundant.
Providing a different associated type is wrong, as the external specification
would not be well-defined anymore.
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1 impl<T: A, U: B> Trait<T> for Struct<U> { ... }
2

3 #[extern_spec] impl<T: A, U: B> Trait<T> for Struct<U>
4 #[extern_spec] impl<X: B, Y: A> Trait<Y> for Struct<X>
5 #[extern_spec] impl<T, U> Trait<T> for Struct<U>
6 #[extern_spec] impl<T: A+C, U: B+D> Trait<T> for Struct<U>
7 #[extern_spec] impl<T: A, U: B> Trait<U> for Struct<T>

Listing 29: External specification with bounds on the generic parameter.

Polymorphic traits

Once again, we uphold the same requirements as in external trait/inherent
implementations.

As for trait implementations, associated types need not be provided in the
external specification, as they provide no useful relevant information.

Type parameter bounds

What is left for generics in the context of external specifications are type
parameter bounds.

Consider Listing 29 which has a generic trait implementation. Importantly,
the generic type parameters have trait bounds. In the following lines, we have
provided various scenarios how a user might attach external specification to
this trait implementation.

The following behavior is expected and matched against our rules for external
specification:

• Line 3 is valid, because it precisely and uniquely identifies the correct
method.

• Line 4 is valid, because the name and the order of the type parameters
do not matter.

• Line 5 is invalid, because Trait<T> is implemented for Struct<U> only
if T: A and U: B.

• Line 6 is valid, even though the bounds are tighter.

• Line 7 is invalid for the same reason as Line 5 (the generics are swapped
and thus the trait bounds not satisfied).

• Any two-combination of valid lines is invalid, because the external
specification would then not be unique (e.g. Line 3 and Line 4).
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4.2.5 Ensuring well-definedness
How can we ensure that an external specification is well-defined, i.e., that it re-
ally attaches to an existing method? Technically, the compiler can help us here.
When Prusti verifies a file or crate, all macros including #[extern_spec] are
processed first, then the resulting code is compiled.

To ensure that an external specification is well-defined, we thus can insert
a fake call to the method that we think the external specification should be
attached to.

Consider again Listing 26 with different external specifications. For the
inherent implementation block, we generate code as follows:

1 struct Wrapper_UUID;
2 impl Wrapper_UUID {
3

4 // Specs SImpl
5 fn bar(_self: &Struct, x: i32) -> i32 {
6 <Struct>::foo(_self, x: i32);
7 unimplemented!()
8 }
9 }

The function inside the wrapper invokes a “call” to the externally specified
method. If this method does not exist, the compiler throws an error which
Prusti can intercept and report appropriately to the user.

The same happens in the desugaring of the trait implementation: The only
difference is that the method call explicitly refers to the trait method via
<Struct as Trait>::foo.

External trait specifications

Generating the wrapper for traits is a bit more involved. Notice that we add a
_self parameter to the wrapper function which represents the receiver of the
externally specified method. This is not possible for traits, as the implementing
type is not yet determined. To overcome this problem, we attach a special
type parameter to the wrapper:

1 struct<Prusti_Self> Wrapper_UUID(
2 std::marker::PhantomData<Prusti_Self>
3 );
4 impl<Prusti_Self> Wrapper_UUID<Prusti_Self>
5 where Prusti_Self: Trait {
6

7 // Specs STrait
8 fn foo(_self: &Prusti_Self, x: i32) -> i32 {
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9 <Prusti_Self as Trait>::foo(_self, x);
10 unimplemented!()
11 }
12 }

This approach allows us to check well-definedness even in the absence of a
concrete type. Furthermore, with this, we make sure that the specifications
STrait can be type-checked.

Generics

Generics appearing as part of a type or a trait block are also added to the
wrapper struct to ensure that the compiler can successfully type-check the
external specification.

4.2.6 Ensuring coherency

The aforementioned solution to check for well-definedness has a shadowing
issue. If Struct had no inherent implementation block with a foo method, the
external specification for Struct::foo would still be accepted by the compiler.
The compiler would assume that the fake call <Struct>::foo(_self, x)
refers to the method of the trait implementation.

This can be problematic in different ways. In the best case, this is just
confusing for the user and may result in non-unique external specifications.
There is a more important problem though: The inherent implementation
could be deleted from the external library. This would then mean that the
previously correctly attached external specification gets attached to the wrong
method (the trait implementation), leading to unexpected and probably
undesired verification results.

As a consequence, Prusti requires user-annotations to be very explicit and
ensures that the user-annotations are coherent with what Prusti understood.

To address this, we attach additional information to the wrapper method
about the source of the external specification. Concretely, we add an anno-
tation #[prusti::extern_spec = "X"] where X is either "inherent_impl",
"trait_impl" or "trait". We then analyze whether the fake method call
really refers to a method of this kind and report an error otherwise.

Additionally, we require that the generics match with the target method. For
example, the Vec::len method is defined inside the following block:

1 impl<T, A: Allocator> Vec<T, A> { ... }
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1 #[extern_spec]
2 impl Struct {
3 // Specs Sfoo
4 fn foo(&self);
5 }

1 #[extern_spec]
2 impl Struct {
3 // Specs S∗foo
4 fn foo(&self);
5 }

Listing 30: Duplicate external specifications.

If the user tried to externally specify this method without the generics, Prusti
will report an error.

4.2.7 Ensuring uniqueness
As already mentioned, we propose that external specifications must be
unique. It is thus not allowed to externally specify the same method twice
as in Listing 30 which would only cause no trouble if Sfoo ≡ S∗foo. Since it
generally does not seem useful to have two syntactical different specifications
which are semantically equivalent, we simply disallow this.

After the desugaring of all the external specifications, we thus check whether
there are any duplicated externally specified methods and report an error if
this is the case.

4.3 Type models
We now turn our attention towards the actual specifications for external
code. Consider the Iter iterator for which we want to specify its Iterator
implementation. A specification of that implementation certainly depends
on the internal state of Iter. Inspecting the struct definition and its fields
reveals hard-to-specify raw pointers. Even worse, the fields are not public
and can not be accessed by an external specification9.

To this end, we propose to use type models to introduce an abstraction between
the specification and the implementation (Fig. 4.1). This technique is not a
novelty, and for example also known in the Java Modeling Language [3, 2].
An abstraction between the specification and the to-be-specified type comes
with several advantages:

• Non-public internals are not a problem anymore, since the specification
depends on the model, defined locally.

• Complicated internals can be simplified.

• Changes of the implementation do not affect the specification.

9Remember that specifications are type-checked, which certainly will fail if we access a
non-pub field from an external crate in a local crate.
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IterModel

position: usize
data: & [T]

Iter<’a, T>

ptr: NonNull<T>
end: *const T
marker: PhantomData<&’a T>

impl<’a, T: ’a> Iterator for Iter<’a, T>

specification uses

models

Figure 4.1: Sketch for a type model of Iter which acts as an abstraction between its
implementation specification and the type.

Motivational example

We highlight type models in Listing 31, exemplified on the Iter iterator.
The type model is introduced on Line 3. For the Iter iterator, we need the
position to the element which will be returned by the immediately following
call to its fn next method, as well as the data of the slice.

The model can then be used in an external specification. On Line 9, we
initialize the model with suitable defaults and in Line 16 we provide an
overly-simplified specification how Iter’s model state evolves for a call to its
next method.

4.3.1 Syntax

The syntax for a type model is as follows:

The type model is introduced with the procedural macro #[model], followed
by the model itself in a struct code block. This block acts a container for the
model fields but also serves as a path to the type we want to model. As of
now, it is not possible to use an arbitrary Rust path, e.g., one can not write
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1 use std::slice::Iter;
2

3 #[model]
4 struct Iter<'a, T> where T: 'a {
5 pos: usize,
6 data: &'a [T],
7 }
8

9 #[extern_spec]
10 impl<T> [T] {
11 #[ensures(result.model().pos == 0)]
12 #[ensures(result.model().data == self)]
13 fn iter(&self) -> std::slice::Iter<'_, T>;
14 }
15

16 #[extern_spec]
17 impl<'a, T> Iterator for Iter<'a, T> {
18 type Item = &'a T
19

20 #[ensures(!old(self.completed()) ==>
21 self.model().pos == old(self.model().pos) + 1)]
22 #[ensures(old(self.completed()) ==>
23 self.model().pos == old(self.model().pos) + 1)]
24 fn next(&mut self) -> Option<Self::Item>
25 }

Listing 31: A type model for Iter, including external specifications which initialize
and update the model.

std::vec::Vec for a model definition. Instead, the type must be imported
first with use std::vec::Vec.

Type models support modelling generic types. That is, we can either create
a type model for all generic type instantiations of a type or a concrete
monomorphized version (or a combination of the two). We must indicate
this with the #[generic] and #[concrete] annotations per type parameter.
In the example above, we create a type model for ModelledType whose first
type parameter implements the trait A and whose second type parameter is
an i32.

4.3.2 Implementation

The #[model] macro first parses a type model:
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1 #[model]
2 struct Foo<#[generic] T: Copy, #[concrete] i32> {
3 field_1: u32,
4 field_2: T,
5 }

And then generates the following code:

1 trait FooToModel_UUID<T: Copy> {
2 #[pure]
3 #[trusted]
4 fn model(&self) -> FooModel_UUID<T>;
5 }
6

7 struct FooModel_UUID<T: Copy> {
8 field_1: u32,
9 field_2: T,

10 }
11

12 // ... Copy implementation ...
13 // ... Clone implementation ...
14

15 impl<T: Copy> FooToModel_UUID<T> for Foo<T, i32> {
16 #[pure]
17 #[trusted]
18 fn model(&self) -> FooModel_UUID<T> {
19 unimplemented!()
20 }
21 }

We see that the #[model] macro is just syntactic sugar for creating a struct
(the model) and implementing a method which returns that struct on the to-
be-modelled type. This model function is part of a trait, as the to-be-modelled
type may be an external type (which is usually the case for iterators). Notice,
that this trait needs to be generated as part of the macro desugaring: It is
not possible that there exists a general ToModel trait (e.g., as part of Prusti),
because in Rust it is not possible to implement non-local traits on non-local
types10.

From this desugaring mechanism, we can observe the following limitations
for type models:

10This is called the orphan rule in Rust. We could restrict that to-be-modelled types need
to be local and one could apply Rust’s newtype pattern to still model external types. However,
we concluded that this is too cumbersome, as we generally want to model external types
when specifying iterators.
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• A type model needs to be Copy, as it is used as part of a pure method.
Likewise, if a type model uses generics, those are also restricted to be
Copy types (thus the bound in the example above).

• Only one type model can be created for a type (for any generic instanti-
ation). While we technically can create multiple type models, we are
not able to use them, as we would have multiple fn model functions
and the Rust compiler does not know which one the user meant to use.

• A type model must not and can not be used outside of specification
code, since it panics during runtime. This is enforced by Prusti, similar
to the check that predicates are only used in specifications. The source
of any knowledge about a type model is thus always a trusted function.

4.3.3 Encoding

The encoding of a type model is no different from ordinary Prusti encoding.
There is one important subtlety though: On the Viper level, the model struct
is encoded using Prusti’s snapshot-based encoding (see Section 2.3.6) and
as a consequence, the model is encoded as a Viper domain with suitable
functions and axioms to ensure there exists exactly one snapshot for every
possible state of the model.

Likewise, the fn model method is encoded as a bodyless Viper function,
which maps from a snapshot of the modelled type to the snapshot of the
model.

A consequence of the snapshot encoding is that both the model and the
modelled type need to have at least one field. If this were not the case, Prusti
could not set up a bijective relation between a snapshot of the model and a
snapshot of the modelled type, which can lead to unsound verifications as
outlined in Appendix A.5.

4.4 Type-dependent contracts

In this section, we discuss implementation-related details of type-dependent
contracts which were introduced in Section 3.2.1.

4.4.1 Syntax

As already illustrated in Section 3.2.1, a type-dependent contract is introduced
with the type_contract procedural macro:
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This macro has two parameters: A constraint and a constrained specification.
The constraint denotes under which condition the constrained specification
should hold. It is syntactically a where clause which appear in Rust when
we add bounds to generics (see Section 2.1.1). The constrained specification
consists of an unbounded number of pre- and postcondition assertions,
appearing inside requires(.) and ensures(.) expressions.

4.4.2 Limitations
Before we look at implementation details, we emphasize that the current
implementation is a prototype, and the usage of type-dependent contracts is
limited:

• It is disallowed to have multiple type-dependent contracts on the same
function.

• Type-dependent contracts must not appear as a part of trait method
refinements.

• Type-dependent contracts can only appear on trusted functions.

These restrictions are permissive enough to allow us to use type-dependent
contracts in our iterator setting.

The reason for disallowing multiple type-dependent contracts on a function
is that their constraints could overlap: For a callsite, multiple type-dependent
contracts could be active11, and we would need to implement a strategy to
pick one of the contracts.

The reason for disallowing type-dependent contracts on non-trusted functions
is that this would raise many questions for modular verification. Assume
we had a non-constrained specification and a constrained specification on a
function. It is not immediately obvious which of the two specifications should
be used for verifying the function. Furthermore, we would need to define how
the non-constrained specification and the constrained specification are related.
Generally, we require that the constrained specification is a strengthening of
the non-constrained specification, but we do not yet enforce this.

11A type-dependent contract is active for a callsite when its constraint is satisfied on the
callsite.
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As a consequence, type-dependent contracts are highly experimental and
users need to explicitly enable them with a feature flag.

4.4.3 Desugaring and type-checking

The type_contract macro desugars the type-dependent contract into Rust
code which contains enough information such that it can be type checked
and that Prusti can enable it on callsites.

Consider the following function with a type-dependent contract:

1 #[type_contract(T: A, [requires(x >= 5), ensures(result >= 7)])]
2 fn foo<T: B>(x: i32) -> i32 { ... }

The desugarring of the macro leads to the following code:

1 #[prusti::spec_only]
2 #[prusti::spec_id = "UUID_PRE"]
3 #[prusti::type_dep_contract_trait_bounds_in_where_clause]
4 fn prusti_pre_item_foo_UUID_PRE<T: B>(x: i32) -> bool
5 where T: A {
6 !!((x >= 5): bool)
7 }
8 #[prusti::spec_only]
9 #[prusti::spec_id = "UUID_POST"]

10 #[prusti::type_dep_contract_trait_bounds_in_where_clause]
11 fn prusti_post_item_foo_UUID_POST<T: B>(x: i32, result: i32) -> bool
12 where T: A {
13 !!((result >= 7): bool)
14 }
15 #[prusti::pre_spec_id_ref = "UUID_PRE"]
16 #[prusti::post_spec_id_ref = "UUID_POST"]
17 fn foo<T: B>(x: i32) -> i32 { ... }

This is mostly the same as ordinary specification desugaring. There are two
important distinctions: First, the constraint is attached as a where clause to
the specification function on Line 5 and Line 12. Second, there is a marker
attribute on Line 3 and Line 10 which indicates that the where clause is to be
interpreted as a constraint of a type-dependent contract.

This desugaring enables automatic type-checking of type-dependent con-
tracts. Since the constraint is part of the desugared Rust program, using a
method of trait A as part of a specification successfully type-checks.
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4.4.4 Collection

After having desugared all macros, Prusti collects user-annotated specifi-
cations per function. When collecting the specification for such a function,
Prusti partitions it into a base specification and a constrained specification.
This partitioning is based on the marker attribute attached to the specification
function.

Since we currently can not annotate a method as pure or trusted as part of a
type-dependent contract, we simply inherit these properties from the base
contract. Additionally, all postconditions are automatically copied to the
constrained specification. Copying the postconditions is merely a convenience
feature to require less annotation overhead12. These details might need to be
reworked as this current prototype implementation matures.

After collection, we have a mapping from Rust functions to a base spec-
ification and a constrained specification which contains at least the same
information as the base specification (modulo preconditions). The constraint
is not explicitly part of the constrained specification. Instead, it is inherent to
the specification functions themselves, as part of their function signature.

Example

Consider the following specifications for a function foo:

1 #[requires(x >= 10)]
2 #[ensures(result >= 0)]
3 #[type_contract(T: A, [
4 requires(x >= 5),
5 ensures(result >= 7)
6 ])]
7 fn foo<T>(x: i32) -> i32 { ... }

As we have seen in Section 4.4.3, we get two specification functions for each
pre- and postcondition of the type-dependent contract, say fn foo_pre_c
and fn foo_post_c13. We furthermore get two specification functions for
the base contract, say fn foo_pre_b and fn foo_post_b.

The function-to-specification mapping will then contain the following infor-
mation, as shown in Table 4.2.

12While still maintaining behavioral subtyping rules, because then the postcondition only
gets stronger. We do not do this for preconditions, as this would certainly lead to invalid
weakenings.

13In the previous listing, this was prusti_pre_item_foo_UUID_PRE_C and
prusti_post_item_foo_UUID_POST_C.
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Function Base specification Constrained specification

foo Kind Impure

Trusted false

Preconditions foo_pre_b
Postconditions foo_post_b

Kind Impure (*)

Trusted false (*)

Preconditions foo_pre_c
Postconditions foo_post_b (*)

foo_post_c
... ... ...

(*) Inherited from base specification

Table 4.2: Mapping of functions to specifications with type-dependent contracts.

4.4.5 Resolving
Resolving to the correct specification when encoding a method call is imple-
mented as part of the specification module (see Section 4.1).

The query to get a specification for encoding a method call contains infor-
mation that is available on the callsite, for example the bounds that appear
on a generic parameter. With this information, the specification module
can check whether the constraint is fulfilled for this specific callsite. If this is
the case, then the constrained specification is returned, otherwise the base
specification.
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Chapter 5

Evaluation

In this chapter, we qualitatively outline what we have achieved throughout
this work by showing the specification and verification of a custom-written
iterator and the standard library iterators Iter and Map.

For all following iterator evaluations, we externally specified Option<T> as
shown in Appendix B.1.

5.1 Custom-written iterator

The custom-written iterator Counter that we verify counts from 0 up to a
user-provided bound. The implementation is listed in Appendix B.3, the
specification in Appendix B.4.

Verification of implementation

Due to a bug in the predicate encoding of Prusti we were unable to verify the
implementation of Counter against the specification of Iterator::next. We
thus verified the implementation against an equivalent specification which
does not contain predicates.

The implementation itself was adjusted slightly such that the verification
succeeded: As part of Counter::next, we update the ghost sequence visited
as we observe a new value.

Verification of clients

We verified three clients using Counter which are all shown in Appendix B.5
appearing in the same order as they are described in this section.
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The looping clients for Counter were all written in loop { ... } syntax1.

For the first client we create a new Counter with a bound of 3 and then
invoke its fn next method four times. We unwrap the first three results and
check the contained value. For the last returned value we check that it is a
None. Prusti is able to prove that fn unwrap does not panic. Prusti is also
able to prove the converse, namely that calling the fn unwrap method on
a Counter with a bound of 1 panics on the second element returned from
fn next.

The next client uses a loop to iteratively compute the sum of all values of
a Counter with a concrete bound. We use a helper function sum_rec which
calculates the sum of a GhostSeq recursively. This helper function is then
used as part of the invariants of the loop. After the loop, we can recover the
value of the iteratively computed sum with the help of this function.

In the last client, we iteratively compute the maximum of a Counter with a
concrete bound. We store the index of the maximum value and the maximum
value itself as we observe new values from the Counter and can thus recover
the value with our provided loop invariants after the loop.

It is important to note that the looping clients are not using internals of
Counter. All used invariants either refer to Counter::enumerated or to the
visited sequence of the iterator.

5.2 Specification of Iter

The specification for the Iter iterator, including the verified client is shown
in Appendix B.6.

We additionally included a specification for the creation of Iter from a slice
type &[T]. Our non-looping client takes a slice with a known size and known
values, creates an Iter from that slice and then uses the iterator to iterate
over the slice.

A major challenge for this iterator was the fact that Iter returns references.
References as part of data structures are known to be not fully supported in
Prusti2. A concrete problem we encountered during our evaluation was that
matching an Option<&i32> currently causes a Prusti crash. We circumvented
this issue with a combination of OptionPeeker (described in Appendix B.2)
and a custom snapshot type Snap.

1The compiler converts for... in ... { ... } or while ... { ... } expressions
automatically to loop { ... } expressions. Even though for loops are most commonly seen
as part of iterator traversal, we can use all three equivalently to accomplish this task.

2For example, Prusti currently does not support the reborrowing of a field of a struct
which is passed as a borrow to a function.
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5.3 Specification of Map

As a last iterator, we specified Map. The specification is shown in Ap-
pendix B.7. The specification does not use the generalized version of the
iterator adapter specification (see Section 3.3.6). Instead, we use the en-
coding described in Section 3.3.3, and we thus require that nested iterators
implement IteratorSpec as well.

Call descriptions for closures are not yet fully integrated into Prusti. As a
consequence, we model closures as custom structs. The imitation of closures
with these fake closure structs is a reasonable workaround: Internally, the Rust
compiler represents a closure as a type “approximately equivalent to a struct
which contains the captured variables”[6]. We then model state changes of
the captured closure state via specification functions, which are attached
to the struct. In the specification of Map, we then use these specification
functions in a way equivalent to call description encoding. Details about this
workaround are explained in Appendix B.7.2.

As for the clients, we used Map in non-looping clients with non-capturing
and capturing closures. We used an Iter iterator as the nested iterator. In
the following, we list the verified clients3.

Map with non-capturing state closure This client uses a Map which simply
doubles every element. The closure thus has no captured state:

1 let vec = vec![3, 6, 8];
2 let mut iter = vec.iter().map(|x| 2*x);
3 assert!(iter.next().unwrap() == 6);
4 assert!(iter.next().unwrap() == 12);
5 assert!(iter.next().unwrap() == 16);
6 assert!(iter.next().is_none());

Map with captured state closure For the second and third client, we tested
whether our specification can handle captured state as part of the closure of
a Map iterator.

The following client adds the value of a captured value to every element
prior to increasing it:

1 let vec = vec![3, 6, 8];
2 let mut count = 5;
3

4 let mut iter = vec.iter().map(|x| {

3The actual clients we verified are syntactically different due to the mentioned
workarounds.
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5 let res = x + count;
6 count += 1;
7 res
8 });
9

10 assert!(iter.next().unwrap() == 3 + 5);
11 assert!(iter.next().unwrap() == 6 + 6);
12 assert!(iter.next().unwrap() == 8 + 7);
13 assert!(iter.next().is_none());

The following client shows that we can imitate an accumulator as part of the
Map iterator:

1 let vec = vec![3, 6, 8];
2 let mut acc = 0;
3

4 let mut iter = vec.iter().map(|x| {
5 acc += x;
6 acc
7 });
8

9 assert!(iter.next().unwrap() == 3);
10 assert!(iter.next().unwrap() == 9);
11 assert!(iter.next().unwrap() == 17);
12 assert!(iter.next().is_none());

Captured and non-captured state In our fourth client, we tested whether
we can nest a Map inside a Map iterator:

1 let vec = vec![3, 6, 8];
2 let mut count = 5;
3

4 let mut iter = vec.iter()
5 .map(|x| {
6 let res = x + count;
7 count += 1;
8 res
9 })

10 .map(|x| 2*x);
11

12 assert!(iter.next().unwrap() == 2*(3 + 5));
13 assert!(iter.next().unwrap() == 2*(6 + 6));
14 assert!(iter.next().unwrap() == 2*(8 + 7));
15 assert!(iter.next().is_none());
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Offsetting The fifth client tests whether our specification supports offsetting
as described in Section 3.3.4:

1 let vec = vec![3, 6, 8];
2

3 let mut iter = vec.iter();
4 assert!(*iter.next().unwrap() == 3);
5

6 let mut iter = iter.map(|x| 2 * x);
7 assert!(iter.next().unwrap() == 2*6);
8 assert!(iter.next().unwrap() == 2*8);
9 assert!(iter.next().is_none());

Different output type It is not uncommon that Map yields elements which
are not of the same type as the input elements. We thus verified a client
which converts integers to booleans:

1 let vec = vec![1, 2, 3];
2

3 let mut iter = vec.iter().map(|x| *x >= 2);
4

5 assert!(iter.next().unwrap() == false);
6 assert!(iter.next().unwrap() == true);
7 assert!(iter.next().unwrap() == true);
8 assert!(iter.next().is_none());

73





Chapter 6

Conclusion

In this thesis we have made a first step towards supporting iterator verification
in Prusti by adapting a general framework from Filliâtre and Pereira [5].

Our specification extension trait IteratorSpec can be seen as a framework
for iterator specification in Rust. Type-dependent contracts allow for a
modular plug-in architecture of these specifications.

Using call descriptions in combination with type-dependent contracts allows
for assembling the combined specification of an iterator adapter and its nested
iterator at callsites while still maintaining modularity of the specifications.

With external specifications we can specify iterators from the standard library
without needing to copy their implementation to the to-be-verified crate.
Additionally, type models introduce an abstraction between specifications
and implementations. This is needed as part of external specifications when
the external code is impossible or hard to specify.

We demonstrated and evaluated our approach on three iterators. The first
iterator is a custom iterator implementation. We verified the implementation
and the usage of this iterator in looping and non-looping clients. Next,
we specified the two iterators Iter and Map from the standard library with
external specifications and verified several non-looping clients with these
specifications.

6.1 Future Work

In this section we talk about points which were not implemented or discussed
as part of this work. They are nevertheless important for iterator verification.
These points can be built on top of this thesis as part of future work.
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Specifications for more standard library iterators

We have demonstrated how to apply our methodology on the standard
library iterators Iter and Map. This gave us confidence that our approach
works in general. Nevertheless, these are arguably simpler iterators in terms
of the expected specification complexity.

We thus propose to specify more involved iterators such as Filter, Take,
Repeat, or Zip.

Verify implementations of standard library iterators

As an addition to the last point we suggest to check whether these spec-
ifications of the standard library iterators can be used to verify their im-
plementation. In our work we only have verified the implementation of a
custom-written iterator.

The verification of the implementation would contribute in the following
two points: First, we would know that the specifications indeed describe the
behavior of the iterators. Second, the specifications become more reliable.
Currently, a wrong specification causes soundness problems on the client-
side which can only be circumvented with excessive testing. Knowing that
the implementation verifies against the specification decreases this risk.

Library of iterator specifications

Ideally Prusti users do not need to specify standard library iterators them-
selves. These specifications can become quite large and, by the nature of
external specifications, are easily to get wrong because they are not verified
against their implementation.

Therefore, we suggest shipping iterator specifications as part of a specification
library to Prusti users. As a consequence, users do not need to write spec-
ifications for the iterators themselves but can verify their code which uses
iterators.

Better support for loops

We experimented mainly with plain loop loops and to some extent with
while loops in this thesis. Using for el in iter syntax is currently not
supported in Prusti. Even though the former loop types are ‘equivalent’ to
for loops, it would be cumbersome if Prusti was not able to support the latter
because these are the ones commonly appearing in the context of iterators.
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Mutable iteration

We have only considered immutable traversal of iterators in our work. The
support for mutable traversal would be a good addition, because it is a
common use case in Rust programs.

Stabilize type-dependent contracts

Our implementation of type-dependent contracts is minimal and experimen-
tal (see Section 4.4.2) and thus gated behind a feature flag. As a first step, we
propose to evaluate in which other scenarios type-dependent contracts are
applicable, and then generalize and stabilize the current implementation.

One specific challenge that we think is a suitable use case for type-dependent
contracts is shown in Appendix A.4.

Experiment with non-fused iterators

Our approach relies on the fact that iterators are fused. The adaption to
non-fused iterators poses several challenges:

• How should the visited ghost sequence of a non-fused iterator look
like?

• How can we formulate the termination criterion in the generalized
specification which uses call descriptions in an iterator adapter?

All of these challenges, and probably many more, induce an adaption of our
general approach for iterator verification.
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Appendix A

Supplementary material

A.1 An implementation of the Iterator trait

In the following, we illustrate the implementation of Iterator on a custom
type BoundedCounter. This iterator starts by counting from 0 to the given
bound. The implementation of the trait on Line 12 is straightforward; when-
ever the current count is strictly smaller than the provided bound, return
the count and increase it by one. Otherwise, return None for all successive
calls. Also note that since BoundedCounter implements Iterator and thus
IntoIterator, we can use it in a loop as shown on Line 27.

1 struct BoundedCounter {
2 count: u32,
3 bound: u32,
4 }
5

6 impl BoundedCounter {
7 fn with_bound(bound: u32) -> Self {
8 // initialize with provided bound and count = 0
9 }

10 }
11

12 impl Iterator for BoundedCounter {
13 type Item = u32;
14

15 fn next(&mut self) -> Option<Self::Item> {
16 if self.count < self.bound {
17 let count = self.count;
18 self.count += 1;
19 return Some(count);
20 }
21 None
22 }
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23 }
24

25 fn use_counter() {
26 let mut c = BoundedCounter::with_bound(3);
27 for el in c {
28 print!("{el}, ");
29 }
30 }

A.2 Implementation of a Map iterator

In the following, we illustrate how a Map iterator adapter can be implemented.
The implementation is similar to the implementation in the standard library.

1 struct Map<I, F> {
2 iter: I,
3 cl: F,
4 }
5

6 impl<B, I, F> Iterator for Map<I, F>
7 where
8 I: Iterator,
9 F: FnMut(&I::Item) -> B,

10 {
11 type Item = B;
12

13 fn next(&mut self) -> Option<B> {
14 let n = self.iter.next();
15 match self.iter.next() {
16 Some(next) => self.cl(next),
17 None => None,
18 }
19 }
20 }

A.3 GhostSeq<T>

The following listing shows our implementation of GhostSeq<T>. Notice
that we have added useful helper predicates to GhostSeq<T> which can
decrease the specification overhead for iterators significantly. However, there
is currently a bug in Prusti which causes that deeply nested predicates will
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not be encoded. However, we still show our specifications with the use of
these predicates.

1 pub struct GhostSeq<T> {
2 phantom: std::marker::PhantomData<T>,
3 }
4

5 // Implementation of `Clone` and `Copy` omitted.
6

7 impl<T: Copy + PartialEq> GhostSeq<T> {
8 #[pure]
9 #[trusted]

10 #[ensures(result >= 0)]
11 pub fn len(&self) -> usize {
12 unimplemented!()
13 }
14

15 #[trusted]
16 #[ensures(self.len() == 0)]
17 pub fn initialize(&self) { unimplemented!() }
18

19 #[pure]
20 #[trusted]
21 #[requires( 0 <= i && i < self.len() )]
22 #[ensures(self.contains(result))]
23 pub fn lookup(&self, i: usize) -> T {
24 unimplemented!()
25 }
26

27 #[trusted]
28 #[ensures(self.len() == old_seq.len() + 1)]
29 #[ensures(forall(|i: usize|
30 (0 <= i && i < prepush_self.len()) ==> (
31 self.lookup(i) == old_seq.lookup(i)
32 )))]
33 #[ensures(self.lookup(self.len() - 1) == val)]
34 pub fn push(&self, old_seq: &Self, val: T) {
35 unimplemented!()
36 }
37 }
38

39 // Helper predicates for specifications
40 impl<T: Copy + PartialEq> GhostSeq<T> {
41 predicate! {
42 pub fn equals(&self, other: &GhostSeq<T>) -> bool {
43 self.len() == other.len() &&
44 forall(|i: usize|
45 (0 <= i && i < self.len()) ==>
46 (self.lookup(i) == other.lookup(i)))
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47 }
48 }
49

50 predicate! {
51 pub fn is_prefix_of(&self, other: &GhostSeq<T>) -> bool {
52 self.len() <= other.len() &&
53 forall(|i: usize| (0 <= i && i < self.len()) ==>
54 (self.lookup(i) == other.lookup(i)))
55 }
56 }
57

58 // Specifies that the ghost sequence increases by
59 // exactly one element if `increases` is true.
60 // Otherwise, ensures that `self` is equal to `old_self`.
61 predicate! {
62 pub fn seq_increases_if(&self,
63 increases: bool,
64 old_seq: &GhostSeq<T>) -> bool {
65 (increases ==> (
66 self.len() == old_seq.len() + 1
67 && old_seq.is_prefix_of(self)
68 )) &&
69 (!increases ==> (
70 old_seq.equals(self)
71 ))
72 }
73 }
74 }

A.3.1 Pushing new values to GhostSeq<T> in iterators

Notice that the fn push method has a special parameter old_seq. Currently,
we only need fn push to verify an iterator implementation (see Appendix B.3
for an example). The visited sequence of an iterator is accessed via the
fn visited function, defined on IteratorSpecVisited. This function re-
lates one iterator state with one visited sequence. When we mutate the state
of the iterator as part of fn next, the visited sequence after the state update
loses the information of the visited sequence prior to the state update. We
thus need to frame the old visited sequence (prior to the state update) of the
iterator around the state update. We can then use this additional knowledge
as part of fn post to assemble the new visited sequence.
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A.4 Other use cases for type-dependent contracts

There are other interesting applications for type-dependent contracts which
are not directly tied to iterator verification.

One use case are marker traits which either act as additional information
for the compiler (think of the Copy trait) or act as an untyped contract for the
implementor.

One such example is the ExactSizeIterator1 trait. Its documentation
states that any type implementing this trait must uphold the guarantee
that fn Iterator::size_hint2 does not panic and returns a tuple (a,a),
i.e., that the size of the iterator is exactly known. There is no way of checking
this statically and implementors need to make sure that this guarantee is
uphold.

Let us now look at the method at the Extend3 trait which is implemented for
vectors and the following code snippet:

1 let mut v1 = vec![1,2,3,4];
2 let v2 = vec![3,4,5];
3 v1.extend(v2.into_iter());
4 assert!(v1.len() == 7)

How should a specification for fn extend look like such that the assertion ver-
ifies? This method can take any iterator, even ones which have an unknown
size (think of a Filter iterator). The best guarantee that a specification thus
can provide is that the size of the receiving vector is non-decreasing. This
guarantee could be strengthened with a type-dependent contract: We could
conditionally strengthen the specification if the passed iterator implements
ExactSizeIterator:

1 impl<T, A> Extend<T> for Vec<T, A> {
2 #[ensures(self.len() >= old(self.len()))]
3 #[type_contract(I::IntoIter: ExactSizeIterator, [
4 ensures(self.len() == old(self.len()) + iter.len())
5 ])]
6 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I);
7 }

1ExactSizeIterator: https://doc.rust-lang.org/stable/std/iter/trait.
ExactSizeIterator.html

2fn Iterator::size_hint: https://doc.rust-lang.org/stable/std/iter/trait.
Iterator.html#method.size_hint

3Extend: https://doc.rust-lang.org/stable/std/iter/trait.Extend.html
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Notice that this does not work yet: The type parameter I is not directly an
Iterator, but a type which can be turned into an iterator. Hence we would
need a type-dependent contract for the associated type I::IntoIter.

A.5 Unsoundness when dealing with type models
We impose the restriction that type models and the modelled type has fields.
In the following listing, we create a model for a type where the type has no
fields, which leads to unsound verification.

1 struct Foo; // This type has no fields!
2

3 #[model]
4 struct Foo {
5 val: i32,
6 }
7

8 #[trusted]
9 #[ensures(result.model().val = val)]

10 fn create_foo(val: usize) -> Foo {
11 Foo {}
12 }
13

14 fn main() {
15 let foo1 = create_foo(0);
16 let foo2 = create_foo(1);
17

18 // foo1.model() and foo2.model() refer to the same
19 // snapshot of the Foo model, say S.
20 // As a consequence, the inhaling of the postcondition
21 // assumes Sval = 0∧ Sval = 1; a contradiction.
22 assert!(false); // Verifies
23 }
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Evaluation code

B.1 Option<T> specifications
In our evaluation, we used the following external specifications for Option<T>.
Notice that reasoning about Option<&T> currently requires certain workarounds
which are described in Appendix B.2.

1 #[extern_spec]
2 impl<T: PartialEq> std::option::Option<T> {
3 #[pure]
4 #[ensures(matches ! (* self, Some(_)) == result)]
5 pub fn is_some(&self) -> bool;
6

7 #[pure]
8 #[ensures(self.is_some() == ! result)]
9 #[ensures(matches ! (* self, None) == result)]

10 pub fn is_none(&self) -> bool;
11 }
12

13 #[extern_spec]
14 impl<T: PartialEq + Copy> std::option::Option<T> {
15 #[requires(self.is_some())]
16 #[ensures( *(old(self.peek().get())) == result )]
17 fn unwrap(self) -> T;
18 }

B.2 Interacting with Option<&T>

When a function returns an Option, we usually directly compare it to one of
its variants in a specification:
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1 #[ensures(result == Some(...))]
2 fn foo() -> Option<i32> { /* body */ }

This however, is currently not possible in Prusti if the method returns an
Option which contains a reference. In this thesis, this usually happens when
we interact with the Iter iterator. We worked around this limitation by
introducing the OptionPeeker trait, defined as follows:

1 pub trait OptionPeeker<T> {
2 #[pure]
3 fn peek(&self) -> Snap<T>;
4 }
5

6 #[refine_trait_spec]
7 impl<T> OptionPeeker<T> for Option<T> {
8 #[pure]
9 #[trusted]

10 #[requires(self.is_some())]
11 fn peek(&self) -> Snap<T> {
12 unimplemented!()
13 }
14 }

This OptionPeeker allows to specify the contained value of an Option with
the fn peek method. It returns a special type Snap<T> which pretends to
hold a reference to type T. It is implemented as follows:

1 pub struct Snap<T>(std::marker::PhantomData<T>);
2

3 impl<T> Snap<T> {
4 #[pure]
5 #[trusted]
6 pub fn get(&self) -> &T {
7 unimplemented!()
8 }
9 }

With the OptionPeeker, we can specify a method which returns an Option<&T>:

1 #[ensures(result.is_some())]
2 #[ensures(*result.peek().get() == ...)]
3 fn foo() -> Option<i32> { /* body */ }
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On callsites, when dealing with an Option<&T>, we always copy the Option
to verify the value of the option. A natural choice would be to use the method
Option::copied which consumes an Option<&T> and returns an Option<T>.
This, however, is also not supported in Prusti. We thus use the following
function as a workaround when we want to copy an Option<&T>:

1 // This method is a wrapper for `Option::copied`.
2 // It exists because Prusti can not encode a method which
3 // takes an `Option<&T>` (in contrast to `&Option<&T>` here).
4 #[pure]
5 #[trusted]
6 #[ensures(o.is_some() == result.is_some())]
7 #[ensures(o.is_some() ==>
8 (**o.peek().get() == *result.peek().get()))]
9 pub fn deref_copy_option<T>(o: &Option<&T>) -> Option<T>

10 where T: Copy + PartialEq {
11 o.copied()
12 }

B.3 Verified custom-written iterator Counter

We use the following implementation for our custom-written iterator. Note
that the altering of the visited sequence on Line 32 requires framing the
visited sequence prior to the state update of Counter. The reason for this is
described in Appendix A.3.1.

1 pub struct Counter {
2 count: usize,
3 up_to: usize,
4 }
5

6 impl Counter {
7 #[ensures(result.count == 0)]
8 #[ensures(result.up_to == up_to)]
9 #[ensures(result.visited().len() == 0)]

10 #[ensures(result.enumerated(&result))]
11 fn new(up_to: usize) -> Self {
12 let c = Counter {
13 count: 0,
14 up_to
15 };
16 c.visited().initialize();
17 c
18 }
19 }
20

21 #[refine_trait_spec]
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22 impl Iterator for Counter {
23 type Item = usize;
24

25 // Specifications inherited from Iterator::next
26 fn next(&mut self) -> Option<Self::Item> {
27 if self.count < self.up_to {
28 let res = self.count;
29

30 let pre_vis = self.visited();
31 self.count = self.count + 1;
32 self.visited().push(&pre_vis, res);
33

34 return Some(res);
35 }
36 None
37 }
38 }

B.4 Specification of Counter

1 impl IteratorSpec for Counter {
2 type IterItem = usize;
3

4 predicate! { fn enumerated(&self, prev: &Self) -> bool {
5 // monotonicity
6 self.visited().len() >= prev.visited().len() &&
7 self.count >= prev.count &&
8 self.up_to == prev.up_to &&
9

10 // visited
11 self.count == self.visited().len() &&
12 forall(|i: usize|
13 (0 <= i && i < self.visited().len()) ==> (
14 self.visited()[i] == i
15 ))
16 } }
17

18 predicate! { fn completed(&self) -> bool {
19 self.count == self.up_to
20 } }
21

22 predicate! { fn post(old_self: &Self,
23 new_self: &Self,
24 res: &Option<Self::IterItem>) -> bool {
25 (old_self.completed() ==> (
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26 new_self.count == old_self.count )) &&
27 (!old_self.completed() ==> (
28 new_self.count == old_self.count + 1 )) &&
29

30 (res.is_some() ==> (*res.peek().get() == old_self.count))
31 } }
32 }

B.5 Verified clients of Counter

For our looping clients, we use the following code snippet to create a snapshot
of the state of Counter before the loop:

1 #[trusted]
2 #[ensures(*c === result)]
3 fn snap_counter(c: &Counter) -> Counter { unimplemented!() }

B.5.1 Direct traversal

1 fn test_direct_traversal() {
2 let mut c = Counter::new(3);
3

4 assert!(c.next().unwrap() == 0);
5 assert!(c.next().unwrap() == 1);
6 assert!(c.next().unwrap() == 2);
7 assert!(c.next().is_none());
8

9 // Check visited values
10 let vis = c.visited();
11 assert!(vis.len() == 3);
12 assert!(vis.lookup(0) == 0 &&
13 vis.lookup(1) == 1 &&
14 vis.lookup(2) == 2);
15 }
16

17 fn test_direct_traversal_fail() {
18 let mut c = Counter::new(1);
19

20 assert!(c.next().unwrap() == 0);
21 assert!(c.next().unwrap() == 1); // Verification fails
22 }
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B.5.2 Iterative sum computation

1 #[pure]
2 #[requires(0 <= from && from <= to && to <= g.len())]
3 fn sum_rec(from: usize, to: usize, g: &GhostSeq<usize>) -> usize {
4 if from == to {
5 0
6 } else {
7 g.lookup(from) + sum_rec(from + 1, to, g)
8 }
9 }

10

11 fn test_loop_sum() {
12 let mut c = Counter::new(3);
13 let snapped = snap_counter(&c);
14

15 let mut sum = 0;
16 let mut i = 0;
17

18 loop {
19 body_invariant!(c.enumerated(&snapped));
20 body_invariant!(i == c.visited().len());
21 body_invariant!(sum == sum_rec(0, i, &c.visited()));
22 let el = c.next();
23

24 match el {
25 Some(val) => {
26 i += 1;
27 sum += val;
28 },
29 None => break,
30 }
31 }
32

33 assert!(i == 3);
34 assert!(c.completed());
35 assert!(c.visited().len() == 3);
36 assert!(c.visited().lookup(0) == 0);
37 assert!(c.visited().lookup(1) == 1);
38 assert!(c.visited().lookup(2) == 2);
39

40 assert!(sum == sum_rec(0, 3, &c.visited()));
41 assert!(sum == 0 + sum_rec(1, 3, &c.visited()));
42 assert!(sum == 0 + 1 + sum_rec(2, 3, &c.visited()));
43 assert!(sum == 0 + 1 + 2 + sum_rec(3, 3, &c.visited()));
44 assert!(sum == 0 + 1 + 2 + 0);
45 assert!(sum == 3);
46 }
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B.5.3 Iterative maximum computation

1 fn test_loop_max() {
2 let mut c = Counter::new(3);
3 let snapped = snap_counter(&c);
4

5 let mut max = c.next().unwrap();
6 let mut max_idx = 0;
7 let mut i = 1;
8

9 loop {
10 body_invariant!(c.enumerated(&snapped));
11 body_invariant!(i == c.visited().len());
12 body_invariant!(0 <= max_idx && max_idx < c.visited().len());
13 body_invariant!(max == c.visited().lookup(max_idx));
14 body_invariant!(forall(|i: usize|
15 (0 <= i && i < c.visited().len()) ==>
16 (c.visited().lookup(max_idx) >= c.visited().lookup(i))
17 ));
18 let el = c.next();
19

20 match el {
21 Some(val) => {
22 i += 1;
23 if val > max {
24 max = val;
25 max_idx = i;
26 }
27 },
28 None => break,
29 }
30 }
31

32 assert!(i == 3);
33 assert!(c.completed());
34 assert!(c.visited().len() == 3);
35 assert!(c.visited().lookup(0) == 0);
36 assert!(c.visited().lookup(1) == 1);
37 assert!(c.visited().lookup(2) == 2);
38

39 assert!(max_idx == 2);
40 assert!(max == 2);
41 }
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B.6 Specification and verification of Iter

The type model of Iter is defined as follows:

1 #[model]
2 struct Iter<'a, #[generic] T: Copy + PartialEq> {
3 position: usize,
4 data: GhostSeq<T>,
5 }

B.6.1 Slice to Iter specification

1 type SliceTy<T> = [T];
2 #[extern_spec]
3 impl<T: Copy + PartialEq> SliceTy<T> {
4 #[pure]
5 fn len(&self) -> usize;
6

7 // Initialize the model
8 #[requires(self.len() >= 0)]
9 #[ensures( result.model().position == 0 )]

10 #[ensures( result.model().data.len() == self.len() )]
11 #[ensures(
12 forall(|i: usize| 0 <= i && i < self.len() ==> (
13 self[i] == result.model().data.lookup(i)
14 ))
15 )]
16 // Initialize ghost sequence of visited values
17 #[ensures(result.visited().len() == 0)]
18 fn iter(&self) -> std::slice::Iter<'_, T>;
19 }

B.6.2 Specification extension and model
We use the following type model definition and IteratorSpec implementa-
tion for Iter.

1 impl<'a, T: Copy + PartialEq + 'a> IteratorSpec
2 for std::slice::Iter<'a, T> {
3 type IterItem = &'a T;
4

5 predicate! { fn completed(&self) -> bool {
6 self.model().position == self.model().data.len()
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7 } }
8

9 predicate! { fn enumerated(&self) -> bool {
10 self.visited().len() <= self.model().data.len() &&
11 self.visited().len() == self.model().position &&
12 forall(|i: usize| (0 <= i && i < self.visited().len()) ==>
13 self.model().data.lookup(i) == *self.visited().lookup(i)
14 )
15 }}
16

17 predicate! { fn post(old_self: &Self,
18 new_self: &Self,
19 res: &Option<Self::IterItem>) -> bool {
20 // Data does not change
21 new_self.model().data.equals(&old_self.model().data) &&
22

23 // Visited ghost sequence is up to date
24 new_self.visited().seq_increases_if(
25 !old_self.completed(),
26 old_self.visited()) &&
27

28 // Evolution of position
29 (!old_self.completed() ==
30 (new_self.model().position ==
31 old_self.model().position + 1)) &&
32 (old_self.completed() ==
33 (new_self.model().position ==
34 old_self.model().position)) &&
35

36 // Result
37 (res.is_some() && !old_self.completed()) ==> (
38 *res.peek().get() ==
39 new_self.visited().lookup(
40 new_self.visited().len() - 1)
41 )
42 } }
43 }

B.6.3 Verified non-looping client

1 #[requires(slice.len() == 2)]
2 #[requires(slice[0] == 42)]
3 #[requires(slice[1] == 777)]
4 fn test_slice_iter(slice: &[i32]) {
5 let mut iter = slice.iter();
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6

7 let el = iter.next();
8 assert!(el.is_some());
9 assert!(deref_copy_option(&el).unwrap() == 42);

10

11 let el = iter.next();
12 assert!(el.is_some());
13 assert!(deref_copy_option(&el).unwrap() == 777);
14

15 let el = iter.next();
16 assert!(el.is_none());
17 }

B.7 Specification and verification of Map

The type model of Map is defined as follows:

1 #[model]
2 struct Map<#[generic] I: Iterator, #[generic] C: Copy + PartialEq> {
3 // The current nested iterator
4 iter: I,
5 // The current state of the closure
6 cl: C,
7 // All observed closure states during iteration
8 cl_states: GhostSeq<C>,
9 // Offset flag

10 offset: usize,
11 }

B.7.1 Creation of Map from an iterator
A Map iterator is created with the method Iterator::map. We thus need a
specification for this method to create a Map iterator from another iterator:

1 #[extern_spec]
2 trait Iterator {
3 // We require `self` to be enumerated
4 #[requires(self.enumerated(&self))]
5

6 // Init closure state
7 #[ensures(result.visited().len() == 0)]
8 #[ensures(result.model().cl_states.len() == 1)]
9 #[ensures(result.model().cl_states.lookup(0) ===
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10 result.model().cl)]
11 #[ensures(old(f) === result.model().cl)]
12

13 // Init the nested iterator:
14 // We establish equality, but set the offset if
15 // the nested iter already contains visited elements
16 #[ensures(result.model().iter === old(&self))]
17 #[ensures(result.model().iter
18 .enumerated(result.model().iter))]
19 #[ensures(result.model().offset ==
20 old(self).visited().len())]
21

22 // `enumerated` should hold now for the resulting Map iterator.
23 fn map<B, F>(self, f: F) -> Map<Self, F>
24 where
25 F: FnMut(Self::Item) -> B,
26 Self::Item: Copy + PartialEq,
27 B: Copy + PartialEq,
28 Self: IteratorSpec<IterItem = Self::Item>,
29 F: ClosureSpecExt<Self::Item, Output = B>;
30 }

B.7.2 A specification extension for describing closures
Recall from Section 5.3 that our specification of Map does not use real clo-
sure call description syntax, because this feature is not yet merged into
Prusti. To circumvent this, we use yet another specification extension trait
ClosureSpecExt which has two required method fn pre and fn post:

1 pub trait ClosureSpecExt<Arg>: FnMut<(Arg,)> {
2 #[pure]
3 fn pre(&self, args: Arg) -> bool;
4

5 #[pure]
6 fn post(old_self: &Self, new_self: &Self,
7 arg: Arg, res: Self::Output) -> bool;
8 }

This specification extensions models the behavior of a unary closure. For
example, consider the closure:

1 let mut count = 0;
2 let cl = |x: i32| -> i32 {
3 let res = x + count;
4 count += 1;
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5 res
6 };

We can create a fake closure type AddIncreasingCounter which models the
mutably captured state of cl with a field:

1 struct AddincreasingCounter {
2 count: i32
3 }

We then implement ClosureSpecExt on this type:

1 impl ClosureSpecExt<&i32> for AddIncreasingCounter {
2 #[pure]
3 fn pre(&self, arg: &i32) -> bool {
4 true
5 }
6

7 #[pure]
8 fn post(old_self: &Self,
9 new_self: &Self,

10 arg: &i32,
11 res: Self::Output) -> bool {
12 new_self.count == old_self.count + 1 &&
13 *res == *arg + old_self.count
14 }
15 }
16

17 impl<'a> FnMut<(&'a i32,)> for AddIncreasingCounter {
18 // Implement the closure
19 }

As part of our implementation of IteratorSpec of Map, we can then add a
bound on the type parameter which represents the type of the closure of Map.
Concretely, we implement IteratorSpec conditionally, only if the closure
type parameter C implements ClosureSpecExt (see Appendix B.7.3). With
that additional knowledge, we can encode the behavior of a real closure as
part of our closure call description encoding.

B.7.3 Specification extension

We use the following IteratorSpec implementation for Map:
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1 #[refine_trait_spec]
2 impl<
3 B: Copy + PartialEq,
4 I: Iterator + IteratorSpec<IterItem = I::Item>,
5 C: ClosureSpecExt<I::Item, Output = B> + Copy,
6 > IteratorSpec for Map<I, C>
7 where
8 I::Item: Copy + PartialEq,
9 {

10 type IterItem = B;
11

12 predicate! {
13 fn completed(&self) -> bool {
14 self.model().iter.get().completed()
15 }
16 }
17

18 predicate! { fn enumerated(&self, prev: &Self) -> bool {
19 // The nested iterator is enumerated
20 self.model().iter.enumerated(prev.model().iter) &&
21

22 // Link the visited elements of the adapter
23 // to the nested iter
24 self.visited().len() + self.model().offset ==
25 self.model().iter.visited().len() &&
26

27 // cl_states length is always one larger than
28 // the amount of visited elements
29 self.model().cl_states.len() == self.visited().len() + 1 &&
30

31 // Link visited elements of Map with visited
32 // elements of the nested iterator
33 forall(|i: usize| (0 <= i && i < self.visited().len()) ==> (
34 // Encoding of the call description of the closure
35 exists(|r: Snap<Self::IterItem>,
36 a1: Snap<I::Item>,
37 cl_state_prev: C,
38 cl_state_next: C| {
39

40 let cl_state_prev = self.model().cl_states
41 .lookup(i);
42 let cl_state_next = self.model().cl_states
43 .lookup(i + 1);
44

45 (*a1.get() ==
46 self.model().iter.visited().lookup(
47 i + self.model().offset)) &&
48 (*r.get() == self.visited().lookup(i)) &&
49
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50 (ClosureSpecExt::pre(&cl_state_prev, *a1.get())) &&
51 (ClosureSpecExt::post(&cl_state_prev,
52 &cl_state_next,
53 *a1.get(),
54 *r.get()))
55 })
56 ))
57 } }
58

59 predicate! { fn post(old_self: &Self,
60 new_self: &Self,
61 res: &Option<Self::IterItem>) -> bool {
62 // The offset never changes
63 new_self.model().offset == old_self.model().offset &&
64

65 // Visited sequence is up to date
66 new_self.visited().seq_increases_if(
67 !old_self.completed(),
68 &old_self.visited() ) &&
69

70 // cl_states is up to date
71 new_self.model().cl_states.seq_increases_if(
72 !old_self.completed(),
73 &old_self.model().cl_states ) &&
74

75 // Link `cl` to `cl_states`
76 (!old_self.completed() ==>
77 (new_self.model().cl ===
78 new_self.model().cl_states.lookup(
79 new_self.model().cl_states.len() - 1) )) &&
80

81 // Describe the evolution of the nested iterator and the
82 // closure with `IteratorSpec` and `ClosureSpecExt`.
83 exists(|nested_res: Option<I::Item>|
84 res.is_some() == nested_res.is_some() &&
85

86 IteratorSpec::post(
87 old_self.model().iter,
88 new_self.model().iter,
89 &nested_res ) &&
90

91 ((!old_self.completed() && res.is_some()) ==>
92 ClosureSpecExt::post(
93 &old_self.model().cl,
94 &new_self.model().cl,
95 *nested_res.peek().get(),
96 *res.peek().get()
97 ))
98 )
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99 } }
100 }
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