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I. Introduction

Rust is a systems programming language that puts em-
phasis on safety, speed, and concurrency. Its strong type
system prevents programming errors of other systems
languages, like buffer overruns or use-after-free errors that
are common in C. This greatly simplifies reasoning about
program behavior, and makes program verification easier,
as basic properties are already given, and don’t need to be
verified first, e.g. ensuring references don’t alias.

Sometimes the properties guaranteed by the Rust compiler
aren’t satisfactory. This is where Prusti [1], a program
verifier, comes in – it can be used to verify the absence
of exceptions (or panics, in Rust jargon), correctness
of the implementation in regards to specifications, and
termination. Since Rust’s type system already gives a lot
of guarantees less effort needs to be spent on proving
basic properties, such as references not interfering with
each other. Instead, more time can be spent on functional
verification of programs, i.e. proving that an algorithm
or a datastructure adheres to its specification. Prusti
utilizes the Viper [2] verification infrastructure, which is
the common backend of multiple program verifiers.

This thesis aims to explore real-world practical applica-
tions of the Rust verifier Prusti by verifying existing code,
and assessing to what degree this is possible, and what
aspects of Prusti need to be adjusted or improved upon. A
comparison to a different program verifier by contrasting
the different implementations and verifications is a central
goal.

II. Approach

To assess how practical Prusti is for verifying real-world
code, some real-world code needs to be verified. It should
be a code snippet that is largely self-contained, so that
only that piece of code needs to be verified, and not a
whole code base. A suitable type of code for this task
would be a basic datastructure that does not use other
datastructures. In the ideal case, the piece of code to be

verified is already verified with a different verification tool,
such that the practicality of Prusti can be assessed, and
compared to the other tool.

One concrete codebase that fulfills the two properties
which are mentioned above, is the implementation of
Verified BetrFS [3]. Verified BetrFS, or VeriBetrFS, is a
verified file system with the design of BetrFS [4]. Its source
contains mathematical proofs of the correctness of the
implementation in the programming language Dafny [5]
with the extension for linear types [6]. In particular, it
contains some data structure implementations that are
largely self-contained and could be interesting to verify
in a new environment.

For illustrative purposes, the Linear Mutable Map [7] will
be taken as the datastructure to be implemented, but
the choice of the code snippet may be different in the
thesis. The Linear Mutable Map is already implemented
and verified in Dafny, so it first needs to be translated to
Rust, to verify it in this language. In particular, it needs
to be translated to the subset of Rust that Prusti is able
to verify.

As for the verification, the question stands what exactly to
verify. The plan is to start with proving simple properties
and then move on to prove more complex ones. One first
class of properties to verify would be that the program
execution can’t go wrong in unexpected ways. Rust does
not feature undefined behavior as prominently as other
programming languages, but there are still a few things
that could happen. Especially due to the absence of unde-
fined behavior, many things that could induce that instead
make the program panic and abort. Since a program that
aborts in the middle of its execution is not very useful, the
first property to verify is the absence of panics.

One example of a programming error that causes panics
is an out of bounds access on an array. To verify absence
of panics in such a program, it is therefore essential to
guarantee that indexing into an array stays within the
arrays bounds. Integer overflows can unexpectedly cause
invalid index accesses. Thus, verifying the absence of
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integer overflows is a second property to verify.

A map that is guaranteed not to fail when functions
are called can still have major bugs. Therefore, a further
property to verify is that the map’s implementation is
indeed a map. Since Prusti doesn’t yet have a builtin
definition of a map, one needs to be added to the Prusti
codebase. This is best done by specifying a mathematical
model of a map, what actions or functions there are on it,
and how they change the map. Further, the model of the
map helps in verifying any code that makes use of such a
datastructure by making it possible to reason about the
stored values.

Using this mathematical model of a map, it is possible to
verify that the implementation adheres to this model, and
doesn’t just return random values. If the verification isn’t
possible, it must be that the model of the map was wrong,
or, more likely, that the implementation contains a bug.
To finish verification of the map this needs to be fixed.

Coming back to the main goal of this thesis: The practi-
cality and ease of use of Prusti on real-world code needs
to be assessed. Since the map is already implemented
and verified in Linear Dafny, a direct comparison can be
performed. Points to compare include, but are not limited
to:

• Lines of Code
• Lines of Specifications or Annotations
• Missing features of Rust, or the subset thereof that

Prusti can verify
• Features of Rust not present in Dafny that simplify

the work

III. Core Goals

This summarizes the core milestones of the thesis and
notes how long each part is estimated to take, in weeks.

• Implementing the Datastructure (1)
• Verifying Absence of Panics and Integer Overflows (1)
• Implementing the mathematical model (2)
• Verifying Correctness (2)
• Comparison to Dafny and Analysis (2)

IV. Extension Goals

A. Liveness

Verify the liveness of the datastructure. Every function on
the datastructure should return in finite time. In other
words, one needs to prove termination of all operations.

B. Verifying another Datastructure

Verify a different datastructure the same way as laid
out in the core goals. The same steps may be applied:
implementing the datastructure in Rust, implementing
the mathematical model, then verifying correctness and
absence of crashes.

C. Addressing Issues of Prusti

Address shortcomings of Prusti which may or may not be
discovered in the analysis core goal. What exactly these
shortcomings are is not known in advance, and therefore
quite open ended.

D. Verifying Algorithms using the Map

Verify one or multiple algorithms making use of the map.
This might be a simple function modifying each stored
value, adding or removing values to the map depending
on the existing stored values, or something else. Some
examples are the classic filter or map functions. Another
example would be finding the key to a specific value.

E. Verifying different Algorithms

Verify algorithms unrelated to the map to aid in assessing
to what degree Prusti can be used on real world code. A
sorting algorithm would be one example.

V. Schedule

• Core Goals: 8 weeks
• Extension Goals: 8 weeks
• Writing Report: 4 weeks
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