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Abstract

Prusti is a verifier for the Rust programming language. Its goal is to
prove that crashes cannot happen in a verified Rust program and that
the program adheres to its intended functionality. So far not many
big Rust codebases have been verified using Prusti, and the question
remains open if Prusti is suitable to verify larger code examples.

In this thesis, we test the suitability of Prusti on real-world Rust code
by trying to verify bigger pieces of actual code, that is, by translating
parts of the VeriBetrFS codebase to Rust and verifying it. We identified
missing features and implemented a subset of them. We added ghost
code, termination proofs, and more powerful assertions to Prusti.
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Chapter 1

Introduction

Rust [3] is a systems programming language that puts emphasis on safety,
speed, and concurrency. Its strong type system prevents programming er-
rors of other systems languages, like buffer overruns or use-after-free er-
rors that are common in C. This greatly simplifies reasoning about program
behavior, and makes program verification easier, as basic properties are al-
ready given, and don’t need to be verified first, e.g. ensuring references don’t
alias.

Sometimes the properties guaranteed by the Rust compiler aren’t satisfac-
tory. This is where Prusti [1], a program verifier, comes in – it can be used to
verify the absence of exceptions (or panics, in Rust jargon) and correctness
of the implementation in regards to specifications. Since Rust’s type system
already gives a lot of guarantees less effort needs to be spent on proving
basic properties, such as references not interfering with each other. Instead,
more time can be spent on functional verification of programs, i.e. proving
that an algorithm or a data structure adheres to its specification. Prusti uti-
lizes the Viper [11] verification infrastructure, which is the common backend
of multiple program verifiers.

So far, no larger examples have been verified with Prusti. This thesis tried
to change that.

The end goal was to verify a nontrivial data structure, to assess how Prusti
compares to other, existing verifiers, like for example Dafny [9]. More specif-
ically, it makes sense to compare Rust to a specific modification of Dafny,
namely Dafny with linear types [10]. The linear type system is quite similar
to Rust’s, so it should be possible to verify similar code with both verifiers,
written in the same paradigm, and then compare properties of verification.

Intermediate goals were to implement features in Prusti that were lacking at
the moment, but which are needed to verify the chosen code. As the list of
still needed features turned out to be longer than anticipated, we only spent
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1. Introduction

time on implementing these, without verifying bigger data structures and
comparing Prusti to Dafny.

Chapter 2 concerns itself with the data structure that we tried to implement
and the issues that arose. With this implementation, we quickly noticed
what features were missing, and implemented a subset of them, which is
explained in the remaining chapters.

First, we implemented Ghost Code which we described in chapter 3, then
Ghost Variables which are covered by chapter 4. Later we implemented
termination proofs which chapter 5 covers. Finally, we implemented a more
powerful assertion macro, as will be elaborated upon in chapter 6.

The final conclusion is given in chapter 7.
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Chapter 2

Datastructure Implementation in Rust

As mentioned in the introduction, we want to verify an already existing
data structure from an existing codebase. We want to compare Prusti to
an already established verifier, so we don’t compare two verifiers with each
other that both rapidly evolve.

We chose the verification-aware programming language Dafny [9] with lin-
ear types [10]. Linearly typed Dafny was chosen as it has a similar type
system to Rust’s, and so code written in one language should be some-
what straightforward to translate to the other. However, since Dafny is a
verification-aware language, we expect to encounter features within Dafny
that are not present in Prusti, which will need to be addressed.

For the codebase, we chose VeriBetrFS [6]. It is a verified file system imple-
mentation based on the design of BetrFS [7]. The overall project does not
matter as much, it’s more important that there is quite a range of code to
choose from, as it has highly separated individual components and many of
them.

The data structure we chose from VeriBetrFS was the Linear Mutable Map [8].
We chose this code snippet for a variety of reasons. It does not depend on a
lot of other code, which means we only need to verify a comparatively small
code snippet, to begin with, although larger than other verified Rust code. It
is a comparatively simple implementation of a hashmap. A hashmap is in-
teresting in the sense that we are not limited to only verifying the absence of
crashes, but can also try to verify that functions that can be used in manipu-
lating the hashmap adhere to the formal notion of a mathematical definition
of a mapping.

3



2. Datastructure Implementation in Rust

2.1 Design of the Datastructure

In this section, we will be describing the Linear Mutable Map, as taken from
VeriBetrFS. The key ideas are listed here and we describe how they can or
cannot be translated to Rust to be verified with Prusti.

As the name implies, the Linear Mutable Map is a map implementation
based on a linear buffer. We maintain a mapping from a set of keys to a set
of values. For simplicity, keys are integer-valued (u64).

The data associated with the map is stored in the struct shown in listing 1.
The buffer field stores the mapping, and the count variable stores the num-
ber of mappings currently stored. A slot in the buffer contains an Item. Its
definition is given in listing 2. Either it contains an entry with a mapping
(Entry), or it contains nothing (Empty), or there previously was an entry
there but is not there anymore (Tombstone). Why we make the explicit dis-
tinction between empty slots and formerly occupied slots will be explained
in section 2.1.2.

1 struct Map<V> {
2 buffer: Vector<Item<V>>,
3 count: u64,
4 }

Listing 1: Data associated with a map

1 enum Item<V> {
2 Empty,
3 Entry { key: u64, value: V },
4 Tombstone { key: u64 },
5 }

Listing 2: Data associated with an item

2.1.1 Inserting a new mapping

Inserting a new mapping k → v is rather simple: First, we hash the integer
key k to obtain a key k′ that should be uniformly distributed over the length
of the buffer. Then, we look at the item in slot k′ of the buffer. If it is
occupied by an Entry, we try the following slot, and so on, until we find an
Empty slot or a Tombstone slot that is free.

Once found, we replace that slot with an Entry which stores k as key and v
as value.

4



2.2. Initial Implementation and Hurdles

2.1.2 Looking up a mapping
Finding the value to a key k is done the following way: First, we again hash
k to obtain k′. Then, we start at position k′ in the buffer and search for an
Entry containing the key k.

If we find one, we can return the associated value. However, if we first find
a Tombstone to that specific key, we also know that it isn’t present in the
map. Additionally, if we find an Empty item, we know that the value to the
key can not be later in the buffer, as we never skip Empty slots to insert a
value, and Empty slots can not be created, as removal places a Tombstone.

2.1.3 Removing a mapping
Removing a mapping makes use of the lookup we described in section 2.1.2.
First, we look up the position in the buffer of a key k. If there is an Entry,
we replace it with a Tombstone storing k.

2.2 Initial Implementation and Hurdles
Let’s take the Dafny function in listing 3 as an example to translate to Rust.
Conceptually the getEmptyWitness function is rather simple: given a non-
full map, it returns an index that is currently empty. A few things can be
noticed: It requires that the argument i is a valid index in the range 0 to
|self.storage|, which is annotated on line 4. Further, it requires that every
index j with j < i is non-empty, as written on line 5. Also, it requires
that the count of occupied slots is less than the storage capacity, which is
annotated on line 6.

So far, everything seems to be possible to translate to Prusti. Then, we have
the decreases annotation, which annotates termination of the function.

The postconditions are rather straightforward as well: It returns a valid
index, and the entry at the index is empty (lines 8–9).

Then, in the body everything can be translated to Prusti, except one thing:
On line 11 a lemma function is called. It is merely called to be able to
assume its postcondition, and the lemma acts as proof of the postcondition.
We could emulate this in Prusti, but the lemma function would also be called
during runtime, which is not quite ideal.

We translated the Dafny code from listing 3 to the Rust code in listing 4.
The pre- and post-conditions have a slightly different syntax ([requires(. ⌋
..)] and [ensures(...)]), as it is a different language, but the underlying
principle is the same: we need to make sure that the preconditions hold
when calling the function, and can assume the postcondition holds after
having called the function. Within the function the opposite is true: We can

5



2. Datastructure Implementation in Rust

1 function {:opaque} getEmptyWitness<V>
2 (self: FixedSizeLinearHashMap<V>, i: uint64) : (res : uint64)
3 requires FixedSizeInv(self)
4 requires 0 <= i as int <= |self.storage|
5 requires forall j | 0 <= j < i :: !self.storage[j].Empty?
6 requires self.count as int < |self.storage|
7 decreases |self.storage| - i as int
8 ensures 0 <= res as int < |self.storage|
9 ensures self.storage[res].Empty?

10 {
11 allNonEmptyImpliesCountEqStorageSize(self);
12

13 if self.storage[i].Empty? then
14 i
15 else
16 getEmptyWitness(self, i+1)
17 }
18

19 lemma allNonEmptyImpliesCountEqStorageSize<V>
20 (self: FixedSizeLinearHashMap<V>)
21 requires FixedSizeInv(self)
22 ensures (forall j | 0 <= j < |self.storage| ::
23 !self.storage[j].Empty?)
24 ==> self.count as int == |self.storage|
25 { /* body omitted for brevity */ }

Listing 3: Example code from the VeriBetrFS project

assume the preconditions hold when entering the function, and must guar-
antee that the postconditions hold when exiting the function. This forms a
basic contract for function calls. Further, Prusti supports quantifiers in the
form quantifier(|var: Type| boolean_expression(var)). There are the
exists and forall quantifiers, and quantified variables must be copyable
types. An example of such a quantifier can be seen on line 14–16 in listing 4.
Further, Prusti supports implication arrows, written as ==>.

A few things are to notice: We can’t translate the decreases clause to a
Prusti equivalent, as Prusti does not yet support termination proofs, hence
the comment on line 6. Another thing that is currently not possible in Prusti
is to use quantifiers in assert! statements, although we used it for illustra-
tive purposes on lines 14–16.

One thing that cannot be noticed by the short example we have given, but
which is nevertheless important, is that currently references can only be
used in a limited fashion. The index function which we defined on the

6



2.2. Initial Implementation and Hurdles

1 #[ensures(self.inv())]
2 #[requires(i < self.storage.len())]
3 #[requires(self.count < self.storage.len())]
4 #[requires(forall(|j: u64|j < i
5 ==> !self.storage.index(j).is_empty()))]
6 //#[decreases(self.storage.len() - i)]
7 #[ensures(result < self.storage.len())]
8 #[ensures(self.storage.index(result).is_empty())]
9 pub fn get_empty_witness(&self, i: u64) -> u64 {

10 let entry = self.storage.index(i);
11 if entry.is_empty() {
12 i
13 } else if i + 1 == self.storage.len() {
14 assert!(forall(|j: u64|
15 j < i ==> !self.storage.index(j).is_empty()
16 ));
17

18 self.all_non_empty_implies_count_eq_storage_size();
19 unreachable!()
20 } else {
21 self.get_empty_witness(i + 1)
22 }
23 }
24

25 #[pure]
26 #[trusted]
27 #[ensures(forall(|j: u64| j < self.storage.len()
28 ==> !self.storage.index(j).is_empty())
29 ==> self.count == self.storage.len())]
30 fn all_non_empty_implies_count_eq_storage_size(&self) {}

Listing 4: Dafny Code translated to Rust

Vector returns a copied value to circumvent that problem. The underlying
issue is that chaining pure functions is not fully supported.

We will discuss the observed Dafny features in more detail in the following
subsections.

2.2.1 Lemma Functions

VeriBetrFS’ implementation is full of lemma functions. These are pure func-
tions that only exist to prove a nontrivial fact, usually with induction. There
are two issues with Prusti that make it difficult to emulate that.

7



2. Datastructure Implementation in Rust

First, termination of pure functions is currently not checked. This means
we could construct an induction proof that does not have a base case and is
therefore not well founded and incorrect.

Second, in Dafny these lemma functions need to be called explicitly. We can
already do that in Rust with Prusti, however, it would be highly inefficient.
The lemma functions are only called to establish a fact, and not to use the
computed result, if there even is a result that is computed. This means that
if we were just to naively call the function normally in Rust code, it would
execute the proof, which sometimes has exponential runtime, and hurts the
runtime performance considerably.

2.2.2 Ghost Code

If we take a quick look at the VeriBetrFS implementation of the linear mu-
table map, we quickly notice that it heavily makes use of ghost types, ghost
code, and built-in mathematical data structures.

Variables of a ghost type merely exist to aid verification but are not included
during runtime of the program. This also means that all code that computes
ghost values is omitted, which is commonly known as ghost code.

As an example, the fixed size map contains a ghost field of a map, which is
a known-good model of a mapping, with the correct semantics.

With the use of that field, we can compare our implementation to the known-
good field and prove that is equivalent without needing to find complicated
pre- and post-conditions that encode the meaning of map operations. In-
stead, we can just say that the map implementation is identical to the ghost
map, and a function on the map corresponds to an operation on the ghost
map.

2.2.3 Generalized Assertions

In Dafny, assertions support full first-order logic, as they are omitted during
runtime by default. This allows a Dafny programmer to use quantifiers in
assertions to test if a property is valid over a range of values. The current
Rust assertion macro does not allow us to do this, hence we would like to
extend the verifier to support such assertions.

2.3 Selected Missing Features

If we look at the issues found above, we can think of a few features we could
implement in Prusti to address them.

8



2.3. Selected Missing Features

2.3.1 Ghost Code
Instead of calling lemma functions at runtime, we would like to have a mech-
anism to omit some code during runtime. We generalize the idea with ghost
code in chapter 3.

2.3.2 Ghost Variables
We would like to have built-in types that represent abstract data structures.
Additionally, we would like to have auxiliary variables in our code that are
only used for verification but omitted at runtime. Both built-in variables and
ghost variables will be implemented in chapter 4.

2.3.3 Termination
Since lemma functions need to terminate to soundly prove a property, we
need a mechanism to prove termination. This will be implemented and
explained in chapter 5.

2.3.4 Assertions
Rust does not support quantifiers natively. Hence, we cannot compute
booleans that depend on quantifiers, and we cannot use quantifiers within
native assertions. This creates the need for a new assertion statement that
allows us to use all of Prusti’s features. We implement this in chapter 6.

2.3.5 Chaining of Pure Functions
Prusti did not allow chaining of pure functions to occur with references.
This can be circumvented by using only copyable types, which is however
not practical for many applications. This was an issue in the old version of
Prusti, and should not pose an issue in the refactored version. We will not
address this issue further in this thesis.

9





Chapter 3

Ghost Code

One feature that is in use everywhere in betrfs’ hashmap [8] is ghost code [4].
Ghost code is conceptually rather simple: It is code that is used solely for
verification, and whose existence doesn’t influence the rest of the program
in any way. Therefore, ghost code acts just as auxiliary help to the verifier,
but does not change the semantics of the regular code.

The need for ghost code is illustrated in listing 5. fib is the function to
compute the n-th number in the Fibonacci sequence. We want to prove that
exactly every third number in the sequence is even. This is a simple proof
by induction, which is implemented in the function called lemma. So we can
assume the lemma in any other function, here foo, we need to call it with
a specific input value. Due to the purity of the function, and the fact that it
returns nothing, we could leave the call out during runtime. However, we
require the property the lemma function ensures - that every third number in
the Fibonacci sequence is even. The lemma function is also rather expensive
to run, so we would rather not have that code included during runtime.
Hence, we would like to wrap it in a ghost block to have the verification and
runtime benefits. To achieve that, we add a new feature, namely the ghost!
macro, as seen on line 27 - During runtime it acts as an empty code block,
but during verification, it leaves its contents in the code.

Now one might ask: is the computation of the Fibonacci number not expen-
sive as well? In this instance, it is. However, we can also implement a faster
algorithm for the Fibonacci sequence, and prove that it is equivalent to the
standard definition of the sequence. That fast implementation can be seen
in appendix A.1 and is omitted for brevity in this chapter.

Ghost code is currently not supported by Prusti, and in this chapter, we will
focus on the necessary changes to implement it.

11



3. Ghost Code

1 #[pure]
2 #[requires(n >= 0)]
3 fn fib(n: i64) -> i64 {
4 if n < 2 {
5 n
6 } else {
7 fib(n-1) + fib(n-2)
8 }
9 }

10

11 #[pure]
12 #[requires(n >= 0)]
13 #[ensures((n % 3 == 0) == (fib(n) % 2 == 0))]
14 fn lemma(n: i64) {
15 if n >= 3 {
16 fib(n - 1);
17 fib(n - 2);
18 lemma(n - 1);
19 lemma(n - 2);
20 }
21 }
22

23 #[requires(x >= 0)]
24 fn foo(x: i64) {
25 let x = 3 * x;
26 let f = fib(x);
27 ghost! {
28 lemma(x);
29 }
30 assert!(f % 2 == 0);
31 }

Listing 5: Omitting expensive computations using ghost code. This example
is simplified, the full version can be found in appendix A.1.

3.1 Methodology

As mentioned before, ghost code does not influence the surrounding code
in any way. This is not an incidental property, but a requirement to keep the
verification sound. An unsound verification of a particular property means
that the verifier accepts a wrong proof of it, and hence the property might
not hold.

Intuitively, any modification of the semantics or meaning of the program by
the inclusion of ghost code potentially introduces unsoundness. If it causes

12



3.2. Implementation

different program semantics, the verifier does not verify the program that is
run, and so any proof about the modified program might not apply to the
program being run.

There are two ways how incorrect ghost code can change the semantics of
the program.

Firstly, we can’t let ghost code leak any information to regular code. This
specifically means that it may not modify variables that are being used by
regular code, and it may not influence control flow beyond its ghost scope.

Secondly, nontermination also changes the semantics of the program. At
first glance, it might be unintuitive why that is the case, but since nonter-
mination can change the pieces of code that are reachable, nontermination
might make the entire rest of the code unreachable, in which case any asser-
tion trivially verifies.

It would be easy to lower ghost code from Rust to Viper if Viper natively
supported ghost code and checked for these soundness requirements itself.
However, it does not, and so we must check these properties ourselves. After
checking the properties, we can translate the ghost code to regular viper
code, as we verified that it does not interfere with the rest of the program.

3.2 Implementation

We implemented ghost! as a Rust macro that takes as input a code block
and conditionally includes the code during verification. The rest of this sec-
tion concerns itself with the verification of the required properties of ghost
code. Subsection 3.2.1 concerns itself with the detection of ghost blocks
before being verified. Then, to guarantee soundness, we will look at the
invariance of real control flow, non-interference with real variables, and ter-
mination.

3.2.1 Detection of Ghost blocks

The macro on the front end does a great job at conditionally including ghost
code depending on if we compile the code or verify it. However, we are not
yet done here, because in the verifier we need to find out what pieces of
code are ghost code, as certain restrictions apply. On the macro front, the
best we can do is insert a marker at the beginning and at the end, to specify
at what point we enter ghost code, and at what point we exit ghost code.
Sadly, we neither have a hierarchy of nested code blocks, nor a linear list of
statements to determine what lies between the beginning and end markers.

The method we resort to is reachability analysis.

13



3. Ghost Code

Reachability Analysis

The code we can work with in the verifier is Rust code compiled down to
the Mid-level Intermediate Representation (MIR). MIR represents the code
of a method as a set of basic blocks. A basic block is a list of uninterruptible
instructions and a terminator. The terminator decides at what basic block
we continue execution of the code.

This representation is called the control flow graph (CFG). We can imagine
it as a graph of pieces of code, and execution can flow from node to node, a
node being a basic block, and edges being determined by the terminator.

The beginning- and end-markers we inserted with the macro show up in the
CFG as their own basic blocks. To determine what belongs to a specific ghost
block, we need to analyze what code can be reached between the beginning
node and the end node.

By the nature of this method, code that is not part of the hierarchical code
block inside the ghost macro might be considered to be ghost code. This
can occur if we have control flow leaving the ghost macro, for example by
breaking a loop outside the ghost block.

It is not possible to detect that happening with this CFG-based representa-
tion, as a break out of a loop just looks like any ordinary jump to a different
basic block in the actual ghost code.

Thus, we need to detect invalid control flow already earlier, which we’ll look
at in the next section.

3.2.2 Invariance of Control Flow

The easiest way to find control flow that jumps to code outside the ghost
macro invocation is to check for that in the macro expansion itself.

Rust macros can be implemented by using arbitrary Rust code. As a first
step, we parse the input of the ghost! macro into an abstract syntax tree
(AST). The AST representation naturally contains a hierarchy of code blocks,
as the tree recursively contains the code blocks and statements. Thus, we
can find what loop a statement is contained in, and therefore analyze if the
loop we break is within or outside the ghost macro.

Rust only has three explicit control flow statements:
break, continue, and return. Finding these in the AST of the ghost macro
is rather easy. Rust’s break and continue statements also support a label to
annotate which loop is referred to by this statement. If no label is given, the
immediate surrounding loop is taken. Listing 6 and listing 7 illustrate all
ways loops can be exited in Rust. continue statements are analogous.
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3.2. Implementation

1 loop {
2 loop { // break this loop
3 break;
4 }
5 }

Listing 6: Unlabeled break

1 'outer: loop { // break this loop
2 loop {
3 break 'outer;
4 }
5 }

Listing 7: Labeled break

If ghost code is not included, the control flow passes straight through the
location the ghost block is at. More precisely, during runtime, the execution
of the ghost block is a no-op. Code flow enters the no-op at exactly one loca-
tion, and exits it at exactly one location. This means that during verification,
the same should be the case.

Subsequently, we need to find out if the break and continue statements re-
fer to loops within the ghost block or loops outside the ghost block. Breaking
and continuing loops within the ghost block is fine, but doing the same for
loops outside would be a modification of real-code control flow, which is
illegal and must be prohibited. In such a case, we issue a verification error
as displayed in listing 8. The same applies for using a continue statement.

1 fn foo() {
2 loop {
3 ghost! {
4 break;
5 }
6 }
7 }

1 error: Can't leave the ghost block early
2 --> example.rs:4:13
3 |
4 4 | break;
5 | ˆˆˆˆˆ

Listing 8: Ghost code affecting control flow

The same is the case with labeled break and continue, as shown in listing 9.
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1 fn foo() {
2 'outer: loop {
3 ghost! {
4 loop {
5 break 'outer;
6 }
7 }
8 }
9 }

1 error: Can't leave the ghost block early
2 --> example.rs:5:17
3 |
4 5 | break 'outer;
5 | ˆˆˆˆˆˆˆˆˆˆˆˆ

Listing 9: Ghost code affecting control flow

return statements might not occur at all within ghost blocks, as that also
constitutes leaving the ghost code at a different position than the intended
one. Thus, we also issue a verification error whenever we find a return
statement within a ghost block.

3.2.3 Modification of Real Variables

Ghost code may not influence the execution of the program. This implies
that by executing ghost code, no values needed by the program at runtime
may be modified. In other words, the set of values that may be modified by
ghost code and the set of values that may be read by regular code may not
intersect.

Exceptions to this rule are zero-sized types. The most prominent example
of a zero-sized type would be Rust’s unit type, written as (). A zero-sized
type has, as its name implies, a size of zero. During runtime this means
that the type can only have one possible value, and therefore carries no
information whatsoever. The explicit implementation of this exception is
of significance as many of Rust’s syntactic code blocks implicitly return the
unit type, which is translated into the intermediate language. This is also
the case for the ghost blocks.

This can be implemented by a simple analysis of the function body. We
iterate over all instructions in the function, and a set of read-from variables
in regular code is collected. Then, we search for all modifications of variables
in ghost code. If a variable that is being modified is in the set of read-from
variables and is not zero-sized, this is an error that is being reported.
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3.2. Implementation

Apart from modifying local variables, ghost code may also not influence any
global state. Calling any impure function may modify state. Thus, we may
only call pure functions from ghost code.

3.2.4 Termination of Ghost Code

A subtle constraint of ghost code is that it must terminate. This goes in
a similar direction as the non-interference of control flow but is far more
difficult to detect.

Listing 10 illustrates the general problem with nontermination in ghost
blocks. While the ghost code is included during verification, the
unreachable! statement is obviously unreachable, and no verification error
is returned. However, during runtime, the ghost block is removed, and so
the unreachable! statement is reachable, causing a panic. Here it never
terminates, but also partial termination causes issues.

Listing 11 shows ghost code that terminates in certain cases. This also intro-
duces unsoundness. In a more general pattern, using ghost blocks in that
way could be used to introduce certain assumptions of the variables. How-
ever, this is not the goal of ghost blocks, and a bit unintuitive, so it should
be prevented.

The only way to prevent this is to prove all ghost blocks to terminate.

As a first step, we require all function calls from within ghost code to ter-
minate. By the requirement of non-interference with global state, calls are
already restricted to pure functions. As pure functions already are required
to terminate, no further action is needed here.

Proving that code terminates in a general case is highly nontrivial, as the
Halting problem is algorithmically unsolvable. However, certain proof pat-
terns can be used to verify termination. Chapter 5 shows the implementation
of the termination verification, which will not be explained here.

1 fn foo() {
2 ghost! {
3 loop {}
4 }
5 unreachable!();
6 }

Listing 10: Nontermination within ghost code
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1 fn fun(x: u32) {
2 ghost! {
3 while x != 0 {}
4 }
5 assert!(x == 0);
6 }
Listing 11: Nontermination within ghost code leading to unsound results

3.3 Evaluation

After implementing this, we have a basic ghost block that can be used to
calculate auxiliary values helping the verification, without actually needing
to execute that code during runtime. Depending on how computationally
expensive the ghost code is, this is can be a major improvement for runtime.
However, ghost code in its current form is quite weak. We can only prove
properties about the current variables right outside the ghost code block.

One feature that is desired would be the ability to reason about changing
state between different ghost blocks. To do so, we would like to store ghost
state across different ghost blocks. This will be explained in chapter 4.

3.3.1 Performance

We use the code snippet in listing 12 to test the performance impact of ghost
blocks. We tested the snippet with ghost annotation and also without. The
example with ghost annotation, as displayed in the listing, ran on average
30% slower. It is statistically significantly slower, although I’d say acceptable
for the runtime benefit it provides.

This is a rather simple example, and other ghost code might contain more
than just a simple list of statements. In the case of loops, we must prove
termination, which adds some overhead. We will come to that verification
overhead in chapter 5 which discusses termination.

1 fn main() {
2 ghost!{
3 let mut i = 0;
4 i += 1;
5 i += 1;
6 i += 1;
7 };
8 }

Listing 12: Simple Ghost Block
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3.3. Evaluation

Any details to the method of testing performance of pieces of code can be
found in appendix B.
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Chapter 4

Ghost Types

4.1 Motivation
Ghost blocks help a bit by introducing small scopes to compute auxiliary
values to prove statements about non-ghost code. However, much of the
power of ghost code comes from keeping state in the ghost blocks and keep-
ing track of that state alongside real state. As with ghost code, ghost state is
not present in the compiled code but only helps in verification. We model
state that is only present during verification using ghost types, which will be
explained in the following sections.

Additionally, we would like to use variable-size data structures from within
pure functions. Unbounded data structures cannot be created or modified
in a pure function, as those need to be heap-allocated, and pure functions
are prohibited from heap-allocations as they are not referentially transparent
due to a dependence on global heap state. This motivates us to add verifier-
only built-in unbounded data structures that can be created and used within
pure code. By the necessity of being only present during verification, these
data structures are ghost types as well.

Due to this twofold need for ghost types, we split the following sections into
built-in ghost types, and custom ghost types.

4.2 Methodology

4.2.1 Custom Ghost Types

To keep ghost state, we need a mechanism to transfer data from one ghost
block to another.

To achieve that, we introduce ghost types. Variables are of a ghost type we
will from now on refer to as ghost variables.
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Ghost types are types, which are only really present during verification, and
removed from compilation. Of course, the type cannot be removed, but
instead, it will be replaced by a trivial type storing no information, i.e. a
zero-sized type like Rusts unit type (). This way, state can be kept during
verification, while it does not need to be computed or stored during runtime.

4.2.2 Builtin Ghost Types
Additionally, we can add special types representing abstract concepts like
unbounded sequences, maps, or integers. These types still are zero-sized dur-
ing runtime, which means that they adhere to Rusts requirements for Copy
types. Rusts Copy is a marker that is reserved for types that can be copied
bit-by-bit. In particular, this means that the type contains no heap refer-
ences, and all fields of the type have the Copy marker as well. This makes
it possible for these types to be used as arguments and return types of pure
functions. As explained earlier, pure functions cannot do heap allocations.

4.3 Implementation

4.3.1 Custom Ghost Types
We add a new type to the Prusti prelude, namely Ghost<T>. The implemen-
tation of the ghost type differs during runtime and verification.

During runtime, it is simply a zero-sized type that carries no information
whatsoever, as seen in listing 13. The one field _phantom is solely there
to tell the Rust compiler that we actually need the generic parameter in
the type, even though we have no real variables that use the parameter.
Otherwise, the compiler would throw an error reminding us of using the
parameter. The PhantomData type itself is zero-sized though and carries no
information.

During verification, the ghost type has a different form, and that is displayed
in listing 14. During runtime, it simply is isomorphic to the type parameter
T.

1 pub struct Ghost<T> {
2 _phantom: PhantomData<T>,
3 }

Listing 13: Ghost Type Implementation for use during Runtime

As the ghost type is zero-sized during runtime, it is safe to assign values
to ghost variables at any time, in real or ghost code. Since the ghost block
safety checks look for assignments of non-zero-sized variables from within
ghost blocks, we need to add a special case here.

22



4.3. Implementation

1 pub struct Ghost<T> {
2 data: T,
3 }

Listing 14: Ghost Type Implementation for the Verifier

During verification, the ghost type is an actual struct containing data instead
of being a type alias to the parameter, as we need to track what variables are
of a ghost type, and type aliases would be invisible at the MIR level where
we receive the to-be-verified program.

4.3.2 Builtin Ghost Types
The user-facing implementation of the ghost types is rather simple and
shown in listing 15. It contains no information whatsoever.

1 pub struct Seq<T> {
2 _phantom: PhantomData<T>,
3 }
4

5 pub struct Map<K, V> {
6 _key_phantom: PhantomData<K>,
7 _val_phantom: PhantomData<V>,
8 }
9

10 pub struct Int(());

Listing 15: Definitions of Builtin Ghost Types

During verification, the types have the same definition, hence we are omit-
ting those. The real semantics come by adding functions adding meaning to
the types, which only exist during verification. Since the types have no real
data associated with them, we do not return a meaningful value.

The function implementations for the sequence type are given in listing 16.
For brevity, we omitted similar definitions for the map and integer type.
The functions should never be called at runtime, hence the panic statements
inside.

Meaning to these dummy functions is given within the verifier. Inside the
verifier, any variable that makes use of these dummy types will be replaced
by a variable with the same name, using a verifier-internal built-in type.
Any function call to these functions will be replaced by a call to an internal
function.

In the end, when encoding to viper, vipers internal sequences, maps, and
unbounded integers will be used. Also, any built-in functions will be low-
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4. Ghost Types

1 impl<T: Copy> Seq<T> {
2 pub fn empty() -> Self {
3 panic!()
4 }
5 pub fn single(_: T) -> Self {
6 panic!()
7 }
8 pub fn concat(self, _: Self) -> Self {
9 panic!()

10 }
11 pub fn lookup(self, _index: usize) -> T {
12 panic!()
13 }
14 pub fn len(self) -> Int {
15 panic!()
16 }
17 }

Listing 16: User-facing implementation of the Seq type

ered to the corresponding operation on these primitives. An example of
this can be seen in listing 17. The Seq::single function gets lowered to a
Sequence literal containing one entry. The Seq::concat function gets trans-
lated to Vipers concatenation operator (++).

1 let s1 = Seq::single(1);
2 let s2 = Seq::single(2);
3 let s3 = s1.concat(s2);

1 var s1: Seq[Int] := Seq(1)
2 var s2: Seq[Int] := Seq(2)
3 var s3: Seq[Int] := s1 ++ s2

Listing 17: Prusti’s Seq translated to Viper

Simplifications using Macros

As writing code like in listing 18 is rather cumbersome, we would like to
have a way to write it similar to a new vector in Rust.

To achieve that, we write a macro that takes off this workload for us. The
macro in listing 19 takes a comma-separated list of values and writes us an
expression similar to the one in listing 18.

The sequence construction from listing 18 can be rewritten to seq![1, 2,
3, 4].
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1 Seq::single(1)
2 .concat(Seq::single(2))
3 .concat(Seq::single(3))
4 .concat(Seq::single(4))

Listing 18: Creating a new sequence of values

1 #[macro_export]
2 macro_rules! seq {
3 ($val :expr) => {
4 $crate ::Seq::single($val )
5 };
6 ($($val :expr),*) => {
7 $crate ::Seq::empty()
8 $(
9 .concat(seq![$val ])

10 )*
11 };
12 }

Listing 19: seq! macro to simplify sequence construction

4.4 Evaluation

With this, we can finally store state that is only shared between ghost code.
However, the ghost variables are still quite cumbersome to use. As an ex-
ample, each time we assign to a ghost field outside the ghost block, we
need to construct a new ghost variable by using Ghost::new. This is shown
in listing 20. It might seem contradictory to initialize the ghost value in
regular instead of ghost code, but this poses no issue: regular code may
influence ghost code, it’s that ghost code may not influence regular code.
Thus, assigning values to ghost variables from regular code is fine, as long
as we don’t read them. We can only read the contents of the ghost vari-
able from within ghost blocks, as the implementation to dereference a ghost
value to its contents (*x) is only present during verification. We could also
read it during verification outside the ghost block, but during compilation,
this would fail, and hence, it poses no soundness issue. We could improve
this by also checking for reading from ghost values in regular code during
verification, such that we don’t get surprises during compilation.
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1 let mut x: Ghost<i64> = Ghost::new(0);
2 ghost! {
3 x = Ghost::new(1);
4 }
5 // cannot read the value of x here during runtime
6 ghost! {
7 prusti_assert!(*x == 1);
8 }

Listing 20: Ghost Variables in use

4.4.1 Performance
We wrote the code in listing 21 to assess the performance impact of using
ghost variables. We verify the upper code to see how long it takes in com-
parison to the code below.

The variant with the ghost variables ran statistically slower, with a mean
slowdown of 8%.

1 let mut x: Ghost<i32> = Ghost::new(42);
2 x = Ghost::new(43);
3 x = Ghost::new(44);

1 let mut x: i32 = 42;
2 x = 43;
3 x = 44;

Listing 21: Assigning Ghost Variables Performance Test

Any details to the method of testing performance of pieces of code can be
found in appendix B.
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Chapter 5

Termination

This chapter concerns itself with adding features to prove termination of
Rust code. It is split into two parts, first proving termination of pure func-
tions, and then proving termination of general Rust code.

5.1 Pure Functions

At the moment, pure functions in Prusti are required to terminate. However,
this property is currently not checked anywhere.

The decision that pure functions must terminate is not just an arbitrary de-
cision, but an important criterion to keep verification sound. Pure functions
in themselves are not unsound if they don’t terminate, but pure functions
can also be used from within specifications. Nonterminating specifications
are indeed unsound.

Consider the code in listing 22 When calling the poison function, we can be
sure that all following code is unreachable. This is fine in potentially non-
terminating code but introduces a soundness issue when used in a specifi-
cation.

Nowhwere in the precondition does the function foo specify that its argu-
ment must be 42, but the code verifies as the precondition poison() ensures
that false == true, i.e. any assertion verifies as there is no difference be-
tween a correct and an incorrect statement anymore.
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1 #[pure]
2 #[ensures(false == true)]
3 fn poison() -> bool {
4 poison()
5 }
6

7 #[requires(poison() == true)]
8 fn foo(i: i32) {
9 assert!(i == 42);

10 }
Listing 22: Nonterminating pure function

The issue lies with the fact that poison does not terminate. If we call poison
within the function, this is valid, as no assertion after the call needs to be
verified as the code is unreachable. However, because the precondition is
not present during runtime, the assertion is reachable and will fail.

5.1.1 Methodology

We will be implementing termination measures on pure functions to prove
termination. Conceptually they are not that complicated: We assign an inte-
ger expression dependent on function arguments to each pure function. We
call this expression the termination measure. From a pure function, we may
not call any pure function with arguments that have negative termination
measures. All called functions also must have a strictly lower termination
measure than the caller function. This ensures that there is only bounded
recursion from any pure function, which implies termination.

5.1.2 Implementation

We add a terminates attribute to Prusti, that can be used to annotate the
termination measure. Pure functions are explicitly required to have the
terminates attribute. An example of such a termination measure can be
seen in listing 23. How it is encoded in the verifier can be seen in listing 24.
At the begin of the function body on line 5, we set the variable
termination_measure to the expression annotated in the terminates(..)
macro. Then, at each call site within the function, we calculate the termi-
nation measures of the calls and assert that those measures are lower than
the termination measure of this call and non-negative. This can be seen in
listing 24 on lines 10&11 and 15&16 respectively.

The proof for termination is rather easy here, as the only argument always
decreases, and is required to be non-negative.
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1 #[pure]
2 #[terminates(x)]
3 #[requires(x >= 0)]
4 fn fibonacci(x: i64) -> i64 {
5 if x < 2 {
6 x
7 } else {
8 let x1 = x - 1;
9 let f1 = fibonacci(x1);

10

11 let x2 = x - 2;
12 let f2 = fibonacci(x2);
13

14 f1 + f2
15 }
16 }

Listing 23: Pure, terminating function

1 #[pure]
2 #[terminates(x)]
3 #[requires(x >= 0)]
4 fn fibonacci(x: i64) -> i64 {
5 let termination_measure = x;
6 if x < 2 {
7 x
8 } else {
9 let x1 = x - 1;

10 assert!(x1 < termination_measure);
11 assert!(x1 >= 0);
12 let f1 = fibonacci(x1);
13

14 let x2 = x - 2;
15 assert!(x2 < termination_measure);
16 assert!(x2 >= 0);
17 let f2 = fibonacci(x2);
18

19 f1 + f2
20 }
21 }

Listing 24: Pure, terminating function, desugared

We can also leave out the termination measure, for an implied termination
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measure of 1, as seen in listing 25. This simply means that the function does
not call any other function and terminates that way.

1 #[pure]
2 #[terminates]
3 fn zero() -> i64 {
4 0
5 }

Listing 25: Pure function with implicit termination measure

5.1.3 Evaluation

1 #[pure]
2 #[terminates(1)]
3 fn foo0() -> i32 {
4 0
5 }
6 #[pure]
7 #[terminates(2)]
8 fn foo1() -> i32 {
9 foo0()

10 }
11 #[pure]
12 #[terminates(3)]
13 fn foo2() -> i32 {
14 foo1()
15 }

Listing 26: Nonrecursive terminating functions, annotated with termination
measures

Termination measures are an effective way to prove termination of pure
functions. However, it’s quite cumbersome to use.

Regard the scenario from listing 26. We need to annotate every function
with a termination measure that equals the recursion depth that is created
by calling the function. The termination measure is highly coupled to the
implementation of the function and may need to change every time the
implementation is modified. Worse even, changing the termination of a
function requires changing the termination measure in all callers of that
function, and so on.

We tried preventing that by only requiring lower termination measures
when the called function may calls the caller again. However, trait func-

30



5.2. Impure Functions

tions complicate that, as a specific implementation could always introduce
mutual recursion. This is highly problematic as traits play a central role
in Rust’s built-in functions that can be used as unary or binary operations.
Additionally, the verifier does not have much information about external
functions, and so callgraph analysis returns imprecise, unusable results.

This left us with the only option to require lower termination measures for
each call, even if it may seem trivial to see that the functions don’t introduce
mutual recursion.

Performance

We test the code from listing 27 to assess performance hit with actual func-
tion calls when we want to prove termination of functions. It is significantly
slower with the termination proof, with a mean slowdown of 6 percent.

1 #[terminates(Int::new(x) + Int::new(1))]
2 #[requires(x >= 0)]
3 fn foo(x: i64) {
4 bar(x);
5 if x > 0 {
6 foo(x - 1);
7 }
8 }
9

10 #[terminates(Int::new(x))]
11 #[requires(x >= 0)]
12 fn bar(x: i64) {
13 if x > 0 {
14 bar(x - 1);
15 }
16 }

Listing 27: Benchmarked recursive functions

Any details to the method of testing performance of pieces of code can be
found in appendix B.

5.2 Impure Functions

This section concerns itself with the verification of terminating impure code.
Since impure code is a superset of pure code, there are a few additional
constructs that need to be proven to terminate. The main thing that may

31



5. Termination

introduce nontermination in impure functions is control flow - we need to
prove that loops terminate.

Not only does this introduce additional functionality to the verifier, but it
also guarantees soundness of ghost code. Ghost code is quite similar to
functional specifications in that regard, and also needs to terminate.

The issue is exemplified in listing 28. During runtime, the value of x is
always seventeen. However, due to the nontermination of the ghost code,
during verification, the assertion below seems unreachable and therefore
verifies. This leads to an assertion failure during runtime, as the value of x
clearly is not 42.

1 let x = 17;
2

3 ghost! {
4 while x != 42 {}
5 }
6

7 assert!(x == 42);

Listing 28: Misbehaving ghost code

5.2.1 Methodology

Analogous to termination measures on functions, we can use a similar con-
cept on loops. We want an integer expression that strictly decreases each
loop iteration, and has some minimal, limiting value. By ensuring that the
expression always decreases and never reaches some value, we can use the
value of the expression as an upper bound for remaining loop iterations and
can be sure that the loop terminates. We call this integer expression the loop
variant.

5.2.2 Implementation

To loops, we add an optional body_variant! macro, that can be used to
annotate loop variants to a loop body. It can occur at the same place as
loop body invariants and applies to the immediately surrounding loop. An
example of a loop variant in use is shown in listing 29 and how it is encoded
on a high level is shown in listing 30.

Loop encoding is a bit more complex than function encoding. The loop is
completely rewritten and flattened such that the resulting code contains no
loops. First, we encode the while loop to an if statement. At the beginning
of the if body, we assert that the loop invariants hold in the first iteration,
which can be seen in listing 30 on lines 3–5. Next, we delete all information
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1 let mut x = 10;
2 while x > 0 {
3 body_invariant!(x > 0);
4 body_invariant!(x <= 10);
5 body_variant!(x);
6 x -= 1;
7 }

Listing 29: Simple Loop Variant

we have to the mutated variable x by havocking it on line 10. Then, we
assume the loop invariants on lines 12–14. Together with the havocking,
this simulates that we are in an arbitrary loop iteration just before the loop
body begins. Further, we save the value of the loop variant expression in the
variable variant, on line 17. Finally, we just insert the normal loop body,
shown on lines 19–21. The loop invariants only need to hold if we enter the
loop again, hence we simulate that again by checking for the loop condition
again on line 23. Then, we assert that the loop invariants still hold upon
re-entering the loop on lines 24–26. Now to the important part: we check
that the loop variant expression decreased, i.e. is smaller than the value we
stored in variant earlier, as seen on line 29. Also, we check that the variant
is still non-negative, as seen on line 30. Finally, we assume the loop was not
re-entered, with an assume false on line 32, to simulate that the loop exited
at some point.

This encoding enforces that the chosen expression decreases each loop iter-
ation, and is non-negative at all times.

5.2.3 Evaluation

Loop Variants are an easy and effective way to prove termination for loops.
It gives us a tool to prove termination of impure functions, or just parts of
impure functions that need to terminate, such as ghost blocks.

However, there are still cases where one cannot prove termination of a loop
because the decreasing object might not be an integer expression. Consider
the code snippet from listing 31. The Node stores either a Leaf or an Element
which contains an integer value in addition to an owned next Node. By the
memory rules of safe Rust, it is clear that this implementation of a linked list
contains no loops, as no two owned box values can point to the same Node.
The loop variant would need to be the length of the remaining list, but
since that is unknown, we cannot give an upper bound on the remaining
loop iterations. We merely know that the list must be finite and thus by
traversing it, we must reach the end eventually. Hence, we can not provide
a concrete loop variant, and cannot prove termination of this loop.
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1 let mut x = 10;
2 if x > 0 {
3 // loop invariant assertions
4 assert x > 0;
5 assert x <= 10;
6

7 // loop variant assertions
8 assert x >= 0;
9

10 havoc x;
11

12 // loop invariant assumptions
13 assume x > 0;
14 assume x <= 10;
15

16 // loop variant assumptions
17 assume variant = x;
18

19 // begin body
20 x -= 1;
21 // end body
22

23 if x > 0 {
24 // loop invariant assertions
25 assert x > 0;
26 assert x <= 10;
27

28 // loop variant assertions
29 assert x < variant;
30 assert x >= 0;
31

32 assume false;
33 }
34 }

Listing 30: Simple Loop Variant, desugared

Performance

We test the performance of the termination proof with the code snippet in
listing 32. It ran significantly slower, as expected, with a mean increase in
runtime of 30 percent.

Any details to the method of testing performance of pieces of code can be
found in appendix B.

34



5.2. Impure Functions

1 enum Node {
2 Leaf,
3 Element(i64, Box<Node>),
4 }
5

6 #[terminates]
7 fn length(node: mut Node) -> usize {
8 let mut length = 0;
9 while let Node::Element(_, next) = node {

10 body_variant!(...);
11 node = next;
12 length += 1;
13 }
14 length
15 }

Listing 31: Currently unprovable loop termination

1 #[terminates]
2 fn main() {
3 let mut i = 0;
4 while i < 100 {
5 body_variant!(Int::new(100) - Int::new(i));
6 i += 1;
7 }
8 }

Listing 32: Benchmarked code
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Chapter 6

prusti assert!

Prusti adds a bit of its own syntax on top of Rust’s syntax to allow users to
express full first-order logic expressions. Among other things, it adds uni-
versal and existential quantifiers and implication arrows. This Prusti-specific
syntax can only be used in pre- & post-conditions, and loop invariants. It
cannot yet be used within assertions. To circumvent this, one had to define
auxiliary functions requiring an expression as precondition and then calling
that function from where one would have the assertion, as seen in listing 33.

1 #[pure]
2 fn identity(x: u64) -> u64 {
3 x
4 }
5 fn foo() {
6 // some code
7 aux();
8 // some more code
9 }

10 #[requires(forall(|x: u64| x == identity(x)))]
11 fn aux() {}

Listing 33: Workaround to use quantifier-based assertions in the middle of
some code

As that introduces quite some writing and also comprehension overhead,
we would like to introduce a way to extend assertions such that we don’t
need auxiliary functions, and therefore write assertions inline in the function
directly. This can be observed in listing 34.

Additionally to an assertion macro, a thing that can be implemented analo-
gously is an assumption macro. As opposed to asserting that a fact holds at
the position, it assumes that the fact holds from that point on.
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1 #[pure]
2 fn identity(x: u64) -> u64 {
3 x
4 }
5 fn foo() {
6 prusti_assert!(forall(|x: u64| x == identity(x)));
7 }

Listing 34: New Assertion using quantifiers

6.1 Methodology
To begin tackling this problem, it is important to note that we cannot extend
the syntax of the assert! macro easily. Since the syntax we extend it with
contains quantifiers that cannot be implemented in Rust code, we can only
use this extended syntax during verification, and not runtime. This means
that any kind of assertion that might contain quantifiers must be omitted
during runtime. Hence, replacing Rust’s existing assert! macro is unfa-
vorable, as then assertions cannot fail during runtime anymore. One could
argue that if the assertions are verified it doesn’t matter anyway. However,
there might be cases where we leave out verification of a specific function,
and where we still would like to have runtime assertions.

Thus, we implement a new kind of assertion, called prusti_assert!, that
can support the whole range of Prusti syntax. Analogously, we implement
a macro prusti_assume!, which we will not explicitly name during the im-
plementation, as it is extremely similar.

6.2 Implementation
The first thing to notice is that there is already a macro with similar seman-
tics to our intended prusti_assert!. This macro is body_invariant!. It
supports the full Prusti syntax and can be used within regular Rust code.
However, it is limited to the annotation of loops.

So, we encode the prusti_assert! macro in a quite similar manner as the
body_invariant! macro, except clearly marking it that it is an assertion and
not an invariant. Then, in the lowered code, we extract the encoded assertion
and insert appropriate statements in the Prusti intermediate representation.

To be more precise, we insert dead code in the Rust source containing a
closure that has specification attributes, as seen in listing 35. We insert it
in an if false such that the code surely is never executed. Additionally,
we annotate the closure that it is only used for specification, and serves no
further use, using prusti::spec_only. We also add an annotation that it
is an assertion, using prusti::prusti_assertion. For each specification,
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we also add a unique identifier, the spec_id, which we shortened in this
example for illustrative purposes. Lastly, the expression within the assertion
is encoded in the closure. This is done because closures are one of the only
constructs that can occur in a function body, can be annotated, and can
explicitly be provided with a type.

1 fn main() {
2 prusti_assert!(42 < 43);
3 }

1 fn main() {
2 #[prusti::specs_version = "0.1.0"]
3 if false {
4 #[prusti::spec_only]
5 #[prusti::prusti_assertion]
6 #[prusti::spec_id = "4a549f135e"]
7 || -> bool { 42 < 43 };
8 };
9 }

Listing 35: source and encoded prusti_assert! macro

Later, when compiled down to MIR code, we search for all specification
items and will find the closure again. We read the information that the
closure provides us with and insert an appropriate assertion statement in
the Prusti intermediate representation.

6.3 Evaluation

After this change, we can now use the full Prusti syntax in assertions and
assumptions. There are more advantages than just the additional usable
syntax, however.

Since prusti_assert! is encoded as a single statement in the intermediate
representation, it is a lot simpler than an assert! macro in standard Rust.
The standard assertion might include an arbitrary amount of impure code,
which might be slower than if we were to encode the assertions as pure
values.

6.3.1 Performance

To test if prusti_assert! is any faster than the standard assert! macro,
we ran the code in listing 36 twenty times and compared it to an equiv-
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alent snippet using the assert! macro. The prusti_assert! variant ran
significantly faster, with a mean speed-up of 37 percent.

1 fn test1() {
2 let mut a = [1; 100];
3 a[1] = 2;
4 prusti_assert!(a[1] == 2);
5 prusti_assert!(a[0] == 1);
6 }

Listing 36: Benchmark setup to compare assert and prusti_assert.

Any details to the method of testing performance of pieces of code can be
found in appendix B.
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Chapter 7

Conclusion

Initially, we wanted to verify the hashmap data structure from VeriBetrFS
in Rust, and test the suitability of Prusti to verify that data structure. In
particular, we wanted to verify the absence of panics and integer overflows.
Additionally, we wanted to add built-in mathematical types to Prusti, such
as a map, to verify that the hashmap has the intended behavior of a map.
In the end, we wanted to compare the verification in Prusti with the one
already verified in Dafny with the original VeriBetrFS implementation.

A lot of the planned goals didn’t work out, there were more roadblocks than
anticipated. Thus, we spent time implementing necessary (but probably not
sufficient) features in Prusti that inch closer to the goal of verifying larger
code examples. In particular, we added support for ghost code to Prusti,
added mechanisms to verify termination of code, and implemented built-in
mathematical types.

In combination, these features can be used to verify a property using induc-
tion by calling a pure lemma function inside a ghost block. An example is
given in appendix A.1.

7.1 Related Work

This thesis bases a lot of decisions on previous work.

The initial data structure which we tried to verify in Rust using Prusti was
the linear mutable map of the VeriBetrFS project [6]. It uses a wide range
of features of Dafny [9] that were not present in Prusti, such as lemma
functions, ghost types, and built-in mathematical types.

The design decisions for the ghost code are heavily influenced by the spirit
of ghost code [4]. It simplified the work of thinking about the precise se-
mantics for ghost code in Prusti.
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7. Conclusion

We base our termination proofs on the work of Floyd’s Assigning meanings
to programs [5]. It goes into detail about what can be used as a termination
proof, and even uses a more general notion of termination measures.

Similar work has been done by Sarek Høverstad Skotåm on CreuSAT [12].
He used the Rust verifier Creusot [2] to verify a series of SAT solvers. Al-
though his goal was to write a formally verified SAT solver, and not to verify
a large codebase to test the verifier, he did so as anyways and wrote one of
the largest, if not the largest formally verified Rust codebase in the pro-
cess. Work could be spent comparing Prusti and Creusot to see if there are
fundamental differences.

7.2 Future Work

7.2.1 Termination

As already mentioned in the section on termination, the current proof for
recursive termination is not ideal. Every function call needs to be justified to
have a lower termination measure, even if it cannot reach back to the caller.
The Rust compiler provides a mir_callgraph_reachable interface to check
callgraph reachability. However, this can not be used for external functions,
i.e. functions defined in a different crate. One would need to implement
complete callgraph analysis on their own while knowing external function
definitions.

Additionally, if one were to implement callgraph analysis, one could extend
that to do specification graph analysis, i.e. which pure functions depend
on other pure functions in their specifications. For soundness, this must
be acyclic. An unsound, currently verifying example is given in listing 37.
No part of the code implies nontermination, or false, however, that is the
postcondition of both functions. It is purely introduced by a pair of specifi-
cations and calls which together introduce a cycle. Thus, cyclic specification
and/or cyclic specification and recursion pairs must be prohibited as well.
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1 #[pure]
2 #[requires(bar() == true)]
3 #[ensures(false)]
4 fn foo() -> bool {
5 true
6 }
7

8 #[pure]
9 #[ensures(false)]

10 fn bar() -> bool {
11 foo()
12 }

Listing 37: Unsound mutual specifications

7.2.2 User Defined Mathematical Types
The built-in types like Seq, Map, and Int seem to work fine. However, ex-
tensibility is limited as any additional mathematical type would need to be
manually added to the special cases of type translations. It would be favor-
able if one could define semantics of other mathematical types within Rust
itself, and then encode the type as a domain in Viper.

Then, the currently special cases of the above-mentioned mathematical types
could be removed from the verifier and defined completely by the user-
facing side of the verifier.

One downside of exposing domains to the user would be that there is the
possibility of introducing unsoundness by creating paradoxical domain ax-
ioms.

7.2.3 Better Quantifier Support
Finally, it could be of advantage to have the possibility of assigning arbitrary
boolean expressions to a bool variable from within ghost code. In particular,
we mean quantified expressions.

This way, one could remove the special case of the prusti_assert! macro
for quantifiers.
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Appendix A

Code Snippets

A.1 Complete Implementation of Fibonacci
1 #[pure]
2 #[terminates(Int::new(n))]
3 #[requires(n >= 0)]
4 fn fib(n: i64) -> i64 {
5 if n < 2 {
6 n
7 } else {
8 fib(n-1) + fib(n-2)
9 }

10 }
11

12 #[pure]
13 #[terminates(Int::new(n) - Int::new(i))]
14 #[requires(i >= 0 && i <= n)]
15 #[requires(f1 == fib(i) && f2 == fib(i + 1))]
16 #[ensures(result == fib(n))]
17 fn fast_aux(f1: i64, f2: i64, i: i64, n: i64) -> i64 {
18 if i == n {
19 f1
20 } else {
21 assert!(i < n);
22 assert!(n - (i + 1) >= 0);
23 assert!(n - (i + 1) < n - i);
24 fast_aux(f2, f1 + f2, i + 1, n)
25 }
26 }
27

28 #[pure]
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29 #[terminates(Int::new(n))]
30 #[requires(n >= 0)]
31 #[ensures(result == fib(n))]
32 fn fast_fib(n: i64) -> i64 {
33 fast_aux(0, 1, 0, n)
34 }
35

36 #[pure]
37 #[terminates(Int::new(n))]
38 #[requires(n >= 0)]
39 #[ensures((n % 3 == 0) == (fib(n) % 2 == 0))]
40 fn lemma(n: i64) {
41 if n >= 3 {
42 fib(n - 1);
43 fib(n - 2);
44 lemma(n - 1);
45 lemma(n - 2);
46 }
47 }
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Appendix B

Benchmarking Setup

We used a benchmarking script that starts a Prusti server and warms it up
by verifying a simple program 20 times. Each example was verified 20 times
unless specified otherwise.

We ran the benchmark on a computer featuring an Intel Core i7-8565U run-
ning at 4.6 GHz. 16 Gigabytes of memory are present on the system, but
never fully used. The only built-in permanent storage device was an SSD,
all executables and swap space reside there.

The OS in use was Arch Linux with kernel version 5.19.9. OpenJDK 18.0.2
was used as Java installation. The Z3 version in use was 4.8.6. The specific
Prusti version in use can be found at the following url:
https://github.com/JM4ier/prusti-dev/tree/4e322057.

B.1 Significance of Results
We used the code below to test the statistical significance of timing differ-
ences between related code snippets. It reports the mean change in runtime
and the likelihood that such a difference would occur if the runtimes had
the same distribution in the form of the p-value. If we write anywhere that
a result is statistically significant we refer to a significance level of 1 percent
unless specified otherwise.

1 #! /usr/bin/env python3
2

3 import scipy
4 import os
5 import json
6

7 def mean(list):
8 return sum(list) / len(list)
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9

10 bench_out = 'benchmark-output'
11 json_files = [
12 os.path.join(bench_out, f)
13 for f in os.listdir(bench_out)
14 if f.endswith('json')
15 ]
16 json_file = max(json_files, key = os.path.getctime)
17

18 print(f'Analyzing data from {json_file}')
19 print()
20

21 with open(json_file, 'r') as f:
22 data = json.load(f)
23

24 for key in data:
25 if key.endswith('ref.rs'):
26 continue
27

28 test_name = key.split('/')[-1]
29 ref = key.replace('.rs', '_ref.rs')
30

31 new_data = data[key]
32 ref_data = data[ref]
33

34 new_mean = mean(new_data)
35 ref_mean = mean(ref_data)
36

37 change = (new_mean - ref_mean) / ref_mean
38 change_100 = change * 100
39

40 test = scipy.stats.ttest_ind(
41 new_data,
42 ref_data,
43 equal_var=False,
44 alternative='two-sided'
45 )
46

47 print(f'analyzing {test_name}')
48 print(f' {change_100:+05.1f}% in runtime')
49 print(f' {test.pvalue:.4f} p-value')
50 print()
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