Extending IDE Integration of a Rust Verifier
Practical Work Description

Joseph Thommes, Cedric Hegglin
Supervised by Prof. Dr. Peter Miiller, Aurel Bily

September 26, 2022

1 Introduction

Prusti [Ast+19] is a verifier for Rust using the Viper [Juh+14] framework
for verification. It offers an IDE extension for VS Code [Mic22| that facili-
tates working with Prusti: Prusti Assistant. This extension already allows
verifying files from within the IDE but lacks some more advanced features
to make it more usable. This practical work aims to implement some of
these features.

2 Goals

2.1 Flowistry-related goals

Many desirable features of Prusti Assistant involve some analysis of a given
Rust program. Flowistry [Cri+22] is a modular information flow analysis
tool for the Rust programming language. Apart from computing informa-
tion flow data, Flowistry computes other data about the program such as
a mapping of source code positions to their corresponding MIR encoding.
This might greatly simplify the implementation of some useful features. The
goal of this section is to start using Flowistry in Prusti, to then implement
the features described in the rest of this section, using the newly available
information.

Selective verification Verification of programs can be very time consum-
ing, especially for large code bases. Oftentimes however, users only work on
one or a few methods before retrying verification. Every invocation of Prusti
via Prusti Assistant will verify all methods that are not already cached, even
though the verification is modular in the background.

To expose the benefits of modular verification to the user, we want to
extend Prusti to allow verifying subsets of methods at a time, and make
this functionality available via Prusti Assistant. Ideally this would work

#[test]
» Run Test | D g

fn one player claims full pot() {

Figure 1: Example of a Rust testcase using the VSCode extension rust-
analyzer, providing a button to run this specific function.

in a fashion similar to test-interfaces provided my many IDEs, to aid user
familiarity. An example of this functionality is shown in Figurell] displaying
how single tests can be run with the click of a button. In a similar fashion
a verify button above each function could be very useful.

Simplify declaring external specifications In any real-world program
there will be calls to methods that are not part of the crate we are currently
verifying, e.g. standard library methods. In Prusti it is possible to create
specifications for these methods, but this is quite tedious since it requires the
user to find and duplicate the original method’s declaration. An example
of this is shown in Listing [I, where all the content below line 6 is required
for the main method to verify. To simplify this, we plan to automate this
process by allowing users to select an external method’s call they wants to
annotate. This in turn will find the method’s signature and either inline it
into the program, or generate a separate file where one can annotate the
method with specifications.

fn main() {

let x = Some(5);
assert! (x.is_some());

3

#[extern_spec]
impl<T> std::option::0Option<T> {
#[pure]
#[ensures (matches! (¥self, Some(_)) == result)]
pub fn is_some (&self) -> bool;
}
Listing 1: Example where the external function is_some needs additional

specifications for successful verification of the function main.

Map source code positions to Viper While most of the goals so far
are more user oriented, the next one will mostly be helpful to developers
working on Prusti itself and its translation to Viper. When Rust functions
are translated to Viper, the generated files become very verbose and are
hard to read. To debug the translation of Prusti however, one often has to
find the corresponding Viper code for certain statements in Rust. Therefore

=

V)

a mapping of positions in the original Rust program to the generated Viper
program would be very helpful.

The accuracy of this mapping is yet to be determined. Depending on
the available information in Prusti the goal is to either just find the corre-
sponding method in Viper or the corresponding basic block.

2.2 Quantifier-related challenges

This section deals with some open goals in the context of quantifiers.

Quantifiers (e.g. forall) in the Prusti specification are translated into
Viper quantifiers, which in turn are translated into SMT-LIB quantifiers,
checked by Z3 [MBOS|.

Quantifier mapping Unfortunately, there is no easily accessible map-
ping of the quantifiers a user enters in the program to the ones used in
the backend by Viper and Z3. This poses a problem on its own as it can
hinder debugging: the debug messages/errors from the lower layers in the
verification pipeline are referring to the quantifiers on their respective layer
— rendering an interpretation of these pieces of information on the front end
layer difficult.

#[ensures (

forall (/%i: ustizel

(0 <= ¢ 88 1 < self.len() &6 4 != index)
==> (self.lookup (i) == old(self.lookup (%)))

)]
Listing 2: Example of a forall quantifier in Prusti. Taken from [dev22]

Quantifier instantiations In order to assist debugging, it would be use-
ful to report statistics about Z3’s quantifier instantiations back to the front
end. This would allow e.g. the detection of unintended instantiation loops
and in general allow for a more targeted debugging.

A necessity for the implementation of this feature is the quantifier map-
ping mentioned before as one needs to know the correspondence between
the Z3 quantifiers in the backend and the Prusti ones in the front end.

Quantifier triggers Another related topic are the quantifier triggers in
Prusti/Viper that are used to specify the “domain” of a quantifier. These
can be stated manually by the user or be inferred automatically by Viper.
In the latter case, a report on the choice of these triggers can facilitate de-
bugging in Prusti as well as developing it.

2.3 Other goals

This section lists goals that do not fall into one of the earlier categories.

Per-method verification times Prusti Assistant only displays the total
verification time, meaning the time taken to verify all methods of a file or
crate. The time needed to verify a specific method can differ largely and
oftentimes gives a good indication on where some unintended behavior might
be happening. The goal here is to make per-method verification times visible
in the IDE.

Cache awareness When verifying a program, Prusti will use cached re-
sults of a previous verification if a method hasn’t changed. Prusti Assistant
is not aware of this since it is all handled by the backend, but in combination
with the per-method verification times it would be interesting for a user to
know whether a result comes from cache or not. Therefore this should also
be reported in the IDE.

Error differentiation Another shortcoming of Prusti Assistant is that
it reports compilation and verification errors to the user in the same style,
which makes them difficult to differentiate.

As the actions to be taken on a verification error are very different to the
ones taken on a compilation error, it makes sense to also visually differentiate
between the two kinds of errors (e.g. in the status bar).

Prusti snippets VS Code offers so-called snippets that allow for repeating
code patterns to be auto-completed on writing. Only a subset of Prusti
keywords/constructions are supported, which should be extended to include,
for example, pledges.

Counterexample reporting Over the last two years several students,
including one of us, worked on extending Prusti to produce counterexamples
whenever verification fails. For people that use Prusti via command line
these can already be quite helpful. For users of the VS Code extension
however, it is quite tedious to activate them. One simple improvement
would be to add an option in the settings to enable counterexamples. Also,
at the moment these counterexamples are only displayed as error messages
in the debug tab of VS Code. These error messages already contain the span
of the variables in the program they refer to, which opens an opportunity
to improve their presentation. The goal is to provide so-called inlay hints
behind each variable, containing the value of that variable that apparently
causes the program to fail verification. However, for large or unbounded
data structures where counterexamples can contain a lot of information,

this way of presenting them might not be suitable. The solutions to solve
this problem are still in discussion.

Robust setup process Another improvement on the Prusti Assistant
should be a more robust setup process. This process should check if the
dependencies downloaded or are already installed, be able to handle inter-
rupted downloads and handle any kind of error accordingly. Another idea
would be to bundle versions of Prusti with Prusti Assistant to avoid the
additional download step for the most basic use case.

3 Working Schedule

We plan on having weekly meetings in order to discuss the current progress
and the challenges that arise during implementation.

This practical work is scheduled for six months and there is no further
structure to its schedule apart from gradually implementing all possible
features listed under section However, the goals in will be handled
by Cedric Hegglin, whereas Joseph Thommes is responsible for the goals in
The remaining features to implement will be handled as time allows
and may be done by either of the two students.

References

[MB08] Leonardo de Moura and Nikolaj Bjgrner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337—
340. 1SBN: 978-3-540-78800-3.

[Juh+14] Uri Juhasz et al. “Viper: A Verification Infrastructure for Permission-
Based Reasoning”. In: (2014). URL: https://pm.inf.ethz.ch/
publications/JKMNSS14.pdf.

[Ast+19] V. Astrauskas et al. “Leveraging Rust Types for Modular Specifi-
cation and Verification”. In: Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA). Vol. 3. OOP-
SLA. ACM, 2019, 147:1-147:30. poO1: [10.1145/3360573. URL:
http://doi.acm.org/10.1145/3360573.

https://pm.inf.ethz.ch/publications/JKMNSS14.pdf
https://pm.inf.ethz.ch/publications/JKMNSS14.pdf
https://doi.org/10.1145/3360573
http://doi.acm.org/10.1145/3360573

[Cri+22] Will Crichton et al. “Modular Information Flow through Owner-
ship”. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementa-
tion. PLDI 2022. San Diego, CA, USA: Association for Com-
puting Machinery, 2022, pp. 1-14. 1sBN: 9781450392655. DOTI:
10.1145/3519939.3523445. URL: https://doi.org/10.1145/
3519939.3523445.

[dev22] Prusti developers. Prusti User Guide. 2022. URL: https: //
viperproject.github.io/prusti-dev/user-guide/syntax.
html (visited on 09/28/2022).

[Mic22] Microsoft. Visual Studio Code. 2022. URL: https://code.visualstudio.
com/| (visited on 09/29/2022).

https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445
https://viperproject.github.io/prusti-dev/user-guide/syntax.html
https://viperproject.github.io/prusti-dev/user-guide/syntax.html
https://viperproject.github.io/prusti-dev/user-guide/syntax.html
https://code.visualstudio.com/
https://code.visualstudio.com/

	Introduction
	Goals
	Flowistry-related goals
	Quantifier-related challenges
	Other goals

	Working Schedule

