
Recovering From Verification
Failures

Bachelor Thesis

Josua Stuck

September 5, 2021

Advisors: Prof. Dr. P. Müller, Dr. M. Schwerhoff

Department of Computer Science, ETH Zürich

Abstract

Silicon is a verification backend for the permission-based Viper verifica-
tion language. Programs encoded in Viper contain various specifications
that Silicon verifies using symbolic execution; a way to execute a pro-
gram with symbolic rather than concrete values.

The current version of Silicon stops the verification after a single failure.
In this thesis we designed and, in part implemented, ways for Silicon
to recover from different types of failed assertions, and continue the
verification.

The changes presented in this thesis increase the number of errors
reported by a single run of Silicon, while not substantially increasing
verification times.

i

Contents

Contents iii

1 Introduction 1
1.1 Chapter Overview . 2

2 Background 3
2.1 Viper . 3

2.1.1 Overview . 3
2.1.2 Permissions . 4
2.1.3 Assertions . 4

2.2 Silicon . 5
2.2.1 Symbolic Execution . 5
2.2.2 Initial Definitions . 5
2.2.3 Symbolic Heap . 6
2.2.4 State Consolidation . 6

3 Reporting One Error per Branch 9
3.1 Enabling Silicon to Report One Error per Branch 9

3.1.1 Branching in Silicon . 10
3.2 Reporting Errors That Appear on Multiple Branches 11

4 Recovering From Failed Pure Assertions 13
4.1 Background . 13
4.2 Recovering From a Failed Pure Assertion 14

4.2.1 Silicon’s Try Mechanism 15
4.3 Limiting the Number of Errors Reported 17

5 Recovering From Failed Impure Assertions 19
5.1 Background . 19
5.2 Recovering From a Failed Impure Assertion 20
5.3 Updated Consume Rule . 21

iii

Contents

6 Evaluation 25

7 Conclusion 29

8 Future Work 31

Bibliography 33

iv

Chapter 1

Introduction

Viper [7] is a verification language and a suite of tools developed at ETH
Zurich. Viper comprises an intermediate verification language as well as two
verification backends. Figure 1.1 gives an overview of the Viper infrastructure.
The Viper language supports encoding various program specifications. For
example, pre- and postconditions for methods or invariants for loops can be
encoded. Viper programs can either be written directly in Viper or translated
from another high-level language by one of the various frontends. The
correctness of those programs can then be verified by either of the two
backends: Silicon [8] or Carbon [6].

Silicon, which is based on symbolic execution, stops the verification as soon
as the first error is found. The goal of this thesis is to enable Silicon to recover
from failed assertions , that is, to report an error and continue the verification.
If an assertion fails, it would be unsound to just continue the verification, as
the point of an assertion is to only continue a program if it holds. In order to
soundly recover from a verification failure, Silicon’s state needs to be adapted.
That is, Silicon needs to be in a state in which the failed assertion would have
held. The changes to the state that need to be performed depend on the type
of the failed assertion; Section 2.1.3 explains the difference between pure and
impure assertions.

1

1. Introduction

Figure 1.1: The Viper intermediate language with its accompanying tools, as
shown on [4]. Viper programs that are either written directly or generated
by one of the frontends can be verified by either the Verification Condition
Generation backend or the Symbolic Execution backend. Both backends
ultimately make use of Z3 — the underlying SMT solver.

1.1 Chapter Overview

• In Chapter 2, the necessary background information about Viper and
Silicon is introduced.

• In Chapter 3, Silicon’s branching behavior is discussed, and a way
to continue the verification after an error on one path as well as its
implementation is presented.

• In Chapter 4, a way to recover from failed pure assertions is presented.

• In Chapter 5, a way to recover from failed impure assertions is pro-
posed.

• In Chapter 6, the implications on performance of the changes proposed
in this thesis are evaluated.

• In Chapters 7 and 8 conclusions are drawn and possible future work is
discussed.

2

Chapter 2

Background

2.1 Viper

Viper is a permission-based intermediate verification language as well as
a collection of software verification tools developed at ETH Zurich by the
Programming Methodology Group. There are several Viper frontends for
high-level languages such as Python or Rust, as well as two different verifica-
tion backends.

2.1.1 Overview

Listing 2.1 shows the Viper features that are relevant for this thesis. A more
complete overview of the Viper language can be found here [3].

1 field f: Int

2

3 function sqr(x: Ref): Int

4 requires acc(x.f, 1/3)

5 {

6 x.f * x.f

7 }

8

9 method viper(x: Ref)

10 requires acc(x.f, 1/2)

11 {

12 assert sqr(x) >= 0

13 exhale acc(x.f, 1/2)

14 }

Listing 2.1: An example of a program written in the Viper language.

On line 1 of Listing 3.1, a field of type Int is declared. Every object (accessed
via a Ref) has all fields that are declared in a program. On line 3 a function,

3

2. Background

which takes a reference to an object and returns an integer, is declared. Func-
tions are side-effect free, that is, they don’t modify the program state. The
function’s precondition is stated on line 4, and specifies that the function needs
read access to x’s field f. The meaning of acc (...) is further explained
in Section 2.1.2. Starting from line 9 a method is declared. Methods can, in
contrast to functions, alter the program state. The assert statement on line
12 checks that the result of the application of function sqr is nonnegative.
Finally, the exhale statement on line 13 gives away the permissions that
were gained from the method’s precondition. Alternatively, this could have
been encoded as a postcondition ensures acc(x.f, 1/2) .

2.1.2 Permissions

A central part of the Viper language is the accessibility predicate, which is used
to denote permissions to memory locations. For arbitrary well-typed expres-
sions e1, e2, a predicate of the shape acc(e1. f , e2) denotes e2 permissions to
the memory location identified by e1. f . Permission amounts can be fractions,
that is, permission amounts greater than 0 (or none) grant read access, and a
permission amount of 1 (or write) means write access.

2.1.3 Assertions

Assertions in Viper are either pure or impure. Impure assertions are assertions
that add or remove permissions from the program state. All other assertions
are pure. In Viper, assertions can be inhaled, exhaled, asserted, or assumed.
Inhaling an assertion entails gaining all permissions that are included in the
assertion, as well as assuming all pure sub-assertions. On the other hand,
exhaling an assertions means giving away the permissions specified in the
assertion, as well as checking the pure sub-assertions. Asserting an assertion
exhales the assertion, but continues the verification in the pre-exhale state.
Assuming an assertion works the same as inhaling an assertion, but the
assertion can only be pure1.

The impure assertion acc(x.f) && x.f > 0 is a conjunction of the impure
sub-assertion acc(x.f) and the pure sub-assertion x.f > 0. Inhaling this
assertion adds write permissions to x.f to the program state, and assumes
that x. f > 0. Exhaling the assertion tries to remove write permissions to x.f

from the state and, if successful, checks if x. f > 0.

In Listing 2.1, the pure assertion sqr(x) >= 0 is asserted on line 12, whereas
the impure assertion acc(x.f, 1/2) is exhaled on line 13.

1[2] enabled assuming impure assertions, but it is not enabled by default in Silicon.

4

2.2. Silicon

2.2 Silicon

Silicon is one of two verification backends for Viper, and is based on symbolic
execution. In the rest of this chapter we will introduce Silicon by taking an
excerpt from [8], where a more in-depth explanation can be found.

2.2.1 Symbolic Execution

The general idea of symbolic execution [5] is to execute a program using
a symbolic state that contains symbolic rather than concrete values. Each
executed statement updates the symbolic state according to its (abstract)
semantics. A method implementation can be verified by setting up a symbolic
state such that the method’s precondition holds, symbolically executing the
method, and then checking whether the postcondition holds (in the symbolic
state resulting from the symbolic execution). Silicon uses Smallfoot-style
symbolic execution, named after Smallfoot [1] – the first automated verifier
for separation logic. Such verifiers separate their symbolic state into path
conditions and a symbolic heap. The path conditions correspond to assertions
expressed in first-order logic, for example, equalities between symbolic
values, whereas the symbolic heap corresponds to assertions that cannot
be expressed directly in first-order logic, such as permissions to fields or
predicate instances.

2.2.2 Initial Definitions

In order to understand how Silicon works, some initial definitions are needed:

Definition 2.1 Let R be the type of verification results, that can be either
success or failure . Additionally, failure contains some message about
the reason or type of the failure.

Definition 2.2 Let Σ be the type of symbolic states, with σ denoting a single
symbolic state. The entries contained in a symbolic state that are relevant for
this thesis are the following:

• A store γ of type Γ, a map from local variables to their symbolic values.

• A set ofpath conditions π of type Π. The set comprises all assumptions
that have been made over the course of the verification.

• A symbolic heap h of type H. The heap contains information about which
memory locations are currently accessible, as well as those locations’
symbolic values.

Definition 2.3 Let S be the type of statements, with typical element s; let
A be the type of assertions, with typical element a; let E be the type of
expressions, with typical element e; let V be the type of symbolic values, with
typical element v.

5

2. Background

Definition 2.4 Let f resh be used to denote a fresh symbolic value, that is, a
value which we know nothing about (it could have any value).

Definition 2.5 Let the operator ite(v1, v2, v3) denote a function that returns
v2 if v1 is true, and v3 otherwise.

Symbolic Execution Primitives

Silicon’s symbolic execution is based on four symbolic execution primitives.
The last argument passed to those primitives is a continuation. The continua-
tion is a function that is invoked with the updated state and that contains
the remainder of the verification that still needs to be performed. Q typically
denotes a continuation.

• exec: Σ→ S→ (Σ→ R)→ R
is used to execute a statement in a given state.

• produce: Σ→ A→ Snap2 → (Σ→ R)→ R
is used to inhale assertions.

• consume: Σ→ A→ (Σ→ Snap→ R)→ R
is used to exhale assertions.

• eval: Σ→ E→ (Σ→ V → R)→ R
is used is used to symbolically evaluate expressions in a given state Σ.
The symbolic value obtained by evaluating an expression e is typically
denoted by e′.

2.2.3 Symbolic Heap

Symbolic heaps are multisets of heap chunks. The kind of heap chunks relevant
for this thesis are field chunks. Other types of heap chunks exist, see [8].

Definition 2.6 Let id(r; v, p) denote a field chunk with the field receiver r,
field name id, symbolic value v, permission amount p.

Definition 2.7 Let id(r) denote a field chunk identifier, used for finding chunks
that match a field access.

Definition 2.8 Let perm(ch) denote the permission amount held by a field
chunk ch, and let Z denote no permission.

2.2.4 State Consolidation

There are two main reasons why Silicon needs to perform state consolidations
from time to time. First, Silicon separates the symbolic state into a set of path

2Snaps aren’t relevant until Chapter 5, and will be explained in Section 5.3.

6

2.2. Silicon

conditions and a set of heap chunks. Some information can be implicitly
available from the heap, but is not explicitly stated as a path condition. For
example, if there are two heap chunks with a combined permissions amount
that is greater than 1, it is implied that the chunk’s receivers cannot be aliases.
Secondly, there is an asymmetry between adding and removing permissions
from the state. While Silicon creates a new heap chunk whenever it adds
permissions to the state, when removing permissions, it looks for a single
heap chunk with the necessary permissions3. This means that there are
situations where there are enough permissions available, but they cannot
be removed because no single heap chunk can be found with sufficient
permissions.

The goal of a state consolidation is to minimize the incompletenesses that
can arise from the two points discussed above. To solve the first point, the
state consolidation algorithm adds path conditions to the state that encode
which references cannot possibly be aliases. To solve the second point, the
algorithm merges heap chunks that definitely belong to the same memory
location into a single chunk. State consolidations will be relevant when
discussing a problem that arises in Chapter 4.

3There is an alternate non-greedy method for removing permissions. It is however, not
enabled by default.

7

Chapter 3

Reporting One Error per Branch

The goal of this thesis ultimately was to enable Silicon to report more errors.
In this chapter we describe how we changed Silicon’s branching behavior to
allow for more errors to be reported.

3.1 Enabling Silicon to Report One Error per Branch

Consider the following Viper program:

1 method branching(b:Bool){

2 if(b){

3 assert b

4 } else {

5 assert b //error not reported

6 }

7 assert false // error reported

8 }

Listing 3.1: Example of how branching over conditionals in Silicon leads
to potentially confusing error reporting. The assertion on line 5 seemingly
verifies successfully.

One can easily see that the assertion on line 5 of Listing 3.1 should not verify.
However, the current version of Silicon does not report an error on line
5. Instead, the assert false on line 7 generates a verification failure. A
user who is not familiar with Silicon’s branching behavior might think that
every statement up until line 7 successfully verified, but that is not the case.
Silicon branches over conditionals such as if-then -else statements. That
is, it executes the then branch (as well as the rest of the program) under
the assumption that the condition is true , and the else branch under the
assumption that the condition is false . In Listing 3.1, the branch where b

is true is verified first. On line 7 the assert false statement leads to a

9

3. Reporting One Error per Branch

verification error, resulting in the path where b is false to never be executed.
Hence the error on line 5 is missed.

3.1.1 Branching in Silicon

Silicon’s combine operator shown in Figure 3.1 can be used to compose veri-
fication results. It takes as arguments two operations that take no arguments
but return verification results of type R. To emphasize that these operations
are not verification results yet, but need to be evaluated first, we use the
notation () → R. Notice how Q1 is evaluated in every case, but Q2 is only
evaluated if Q1 doesn’t evaluate to a failure.

1: ⊕ : (()→ R)→ (()→ R)→ R
2: Q1 ⊕Q2 =
3: r1 := evaluation of Q1
4: if r1 is a failure then
5: r1
6: else
7: evaluation of Q2

Figure 3.1 Silicon’s combine operator, that can be used to obtain a single
verification result from two results.

Figure 3.2 shows a slightly simplified version of Silicon’s branching operation.
It takes as arguments a state, a symbolic value which is the conditionals that
is branched over, as well as two continuations. The continuations themselves
take as an argument a state, under which they are evaluated. Note that this
means that if the result of Qv is failure , Q¬v is never evaluated, that is, the
else branch is never symbolically executed.

1: branch: Σ→ V → (Σ→ R)→ (Σ→ R)→ R
2: branch(σ, v, Qv, Q¬v) =
3: Qv (σ{π := σ.π

⋃
v})

4: ⊕
5: Q¬v (σ{π := σ.π

⋃¬v})
Figure 3.2 Silicon’s branching rule, that is used to branch over conditionals.
One path is evaluated under the assumption that the conditional is true, the
other path under the assumption that the conditional is false.

Figure 3.3 shows an updated version of the combine operator. We added
a field previous to the type of verification results, which can be used to
record other results that occurred during the verification. This allows us to
evaluate both branches even if the first branch results in a failure and keep
both results. What might not be immediately clear is why r2 is not always

10

3.2. Reporting Errors That Appear on Multiple Branches

1: Q1 ⊕Q2 =
2: r1 := evaluation of Q1
3: r2 := evaluation of Q2
4: if r1 is a failure then
5: r1.previous := r2 ∪ r2.previous
6: r1
7: else
8: r2.previous := r1 ∪ r1.previous
9: r2

Figure 3.3 The updated combine operator, which can be used to obtain a
single verification result from two results. If either of the results is a failure,
the returned result will be a failure as well.

appended to r1 but the other way around if r1 is not a failure. The intention
behind this is that if either result is a failure, then the result returned should
also be a failure. This allows Silicon to correctly determine the overall result
of the branching operation.

3.2 Reporting Errors That Appear on Multiple Branches

With the changes introduced in Section 3.1 the second path resulting from
branching over a conditional is verified even if the first path contains an
error. This means that an error can either occur on just one of the branches
or on both. For the user, it would be helpful to know if an error occurred on
multiple or just one branch. Or more specific: under which branch conditions
an error occurred. In this section, we explain how we adapted Silicon’s error
reporting to provide more useful information to the user.

1 method branching2(b: Bool , x: Int){

2 var y: Int

3 if (b){

4 y := x

5 } else {

6 y := x*x

7 }

8 assert b && y >= 0 // Assertions fails on two branches

9 }

Listing 3.2: Example of an error that occurs on multiple branches.

The assertion on line 8 of Listing 3.2 fails to verify two times: once on the
path where b is true (but y could be negative) and once on the path where b

is false.

We changed Silicon such that whenever a failure is created, the current branch
conditions are recorded alongside the failure. Every failure has a so called

11

3. Reporting One Error per Branch

failure context which, among other information about the failure, contains
the branch conditions under which the failure happened. When the errors
encountered during the verification are reported, Silicon reports under which
branch conditions they ocurred. For the assertion in this example, Silicon
reports that b failed under branch conditions !b, while y >= 0 failed under
branch conditions b. This can help the user better understand why the error
happened.

1 Assert might fail. Assertion b might not hold. (L8)

2 under branch conditions:

3 !b [L3]

4 Assert might fail. Assertion y >= 0 might not hold. (L8)

5 under branch conditions:

6 b [L3]

Listing 3.3: Silicon’s output when verifying Listing 3.2. The location informa-
tion (file and line number) have been trimmed.

12

Chapter 4

Recovering From Failed Pure
Assertions

In this chapter we describe how we enabled Silicon to recover from failed
pure assertions. Recovering from failed impure assertions is more challenging
and will be discussed in Chapter 5. We will present an updated consume
rule.

4.1 Background

Recall from Section 2.1.3 that pure assertions do not modify the heap. From
Section 2.2.2, recall that both asserting and exhaling assertions in Silicon is
done by consuming the assertion. The difference between the two is that
when exhaling, the verifier continues in the post-consume state, but when
asserting an assertion it continues in the pre-consume state. Thus, to recover
from failed pure assertions we needed to change the consume rule.

Consider the following Viper program:

1 method pure(xs: Seq[Int], i: Int){

2 assert i >= 0

3 assert i < |xs|

4

5 var e: Int := xs[i]

6

7 assert e == 42

8 }

Listing 4.1: A Viper program with failing pure assertions. The original Silicon
version stops the verification when the first assertion fails.

Verifying the method shown in Listing 4.1, the current version of Silicon
reports an error on line 2, and stops the verification. At the beginning of the

13

4. Recovering From Failed Pure Assertions

method, nothing is known about the argument i, so neither of the assertions
on line 2 and 3 would hold. When accessing an element of a sequence, Silicon
checks if the provided index is guaranteed to be within bounds, and reports
an error otherwise. Without the first two assertions, the assignment on line 5
would fail, because i is not guaranteed to be a valid index. If the first two
assertions successfully verify however, the index is guaranteed to be within
bounds and the assignment doesn’t fail.

Pure assertions can only be expressions, conjunctions of pure sub-assertions,
or (pure) conditionals. Consuming a conjunction of pure sub-assertions
is done by consuming each sub-assertion individually. Consuming pure
conditionals of the shape e ? a1 : a2 is done by branching over the conditional
e, and then, depending on the branch, consuming a1 or a2. This means that
recovering from failed pure assertions boils down to recovering from the
failed consumption of an expression.

Figure 4.1 shows Silicon’s consume rule for expressions. The expression is
evaluated to its symbolic value, then the underlying SMT solver is queried to
check if the expression’s symbolic value is true in the given state. Only if the
assertion is true the continuation Q is invoked.

1: consume(σ1, e, Q) =
2: eval(σ1, e, (λσ2, e′ ·
3: if σ2 |= e′ then
4: Q(σ2, σ2.h, unit)
5:))

Figure 4.1 Silicon’s consume rule for pure assertions.

4.2 Recovering From a Failed Pure Assertion

Before explaining how such a failed pure assertion can be recovered from,
we need to explain what exactly is meant by recovering. The goal is to report
the error, but continue the verification in a state where the error would not
have happened (i.e. the assertion would have held), to find and report further
verification errors. This can be done by adding, as path constraints, that the
assertion held. Adding path constraints can be seen as eliminating execution
paths: by adding a path constraint that states that the assertion held, we
eliminate all execution paths in which it couldn’t hold.

Figure 4.2 shows the updated consume rule for pure assertions. If the
assertion is not true, we add it as a path constraint, create an error, and
continue the verification. The result of this change is that the verification
doesn’t stop after the assertion on line 2 of Listing 4.1 generates an error.
Instead, the error is recovered from and the assertion on line 3 is verified,

14

4.2. Recovering From a Failed Pure Assertion

also generating an error. After recovering from those assertions, the path
conditions contain that 0 ≤ i < |xs|, and the assignment on line 5 passes the
index bound checks. Finally, the assert statement on line 7 generates an error.

Note that we only add path constraints, not change them. If for example,
after line 3 we added an assertion assert i < 0, and recovered from the
failed assertion, then the path constraints would contain both i >= 0 and
i < 0. Those constraints together would be unsatisfiable, the verifier would
end up in an infeasible path, and the verification would stop.

1: consume(σ1, e, Q) =
2: eval(σ1, e, (λσ2, e′ ·
3: if σ2 |= e′ then
4: Q(σ2, h, unit)
5: else
6: failure () ⊕ Q(σ2{π := σ2.π

⋃
e′}, h, unit)

7:))

Figure 4.2 Silicon’s updated consume rule for pure assertions that supports
recovering from failed assertions. When the failure is created, the current
branch conditions are recorded.

4.2.1 Silicon’s Try Mechanism

The updated consume rule in Figure 4.2 still has some drawbacks, and
cannot be used as-is in practice. The reason for this is the way Silicon
performs state consolidations. Recall that state consolidations, introduced in
Section 2.2.4, are needed to overcome heap-related incompletenesses. Because
state consolidations are expensive operations (worst-case complexity is cubic
in the number of heap chunks), they are not performed after every state
update. Figure 4.3 shows Silicon’s try mechanism. The try operation takes as
arguments a state and two continuations, the action continuation Qaction and
the usual remainder of the verification Q. Qaction itself takes a continuation
as an argument. If Qaction (e.g. the consumption of an assertion) fails, a
state consolidation is performed and the action is executed again. When
Qaction is evaluated it is passed a continuation that sets reslocal to success.
In the original Silicon version, reaching this statement on line 7 meant that
Qaction verified successfully (because its continuation was invoked). In Silicon,
consume operations are wrapped inside a try block.

From now on, we’ll refer to the operation that actually consumes an assertion
(as shown in Figures 4.1 and 4.2) as consume′, and to the wrapped operation
as consume. Figure 4.3 shows how the consumption is wrapped in a try
block.

15

4. Recovering From Failed Pure Assertions

1: try: Σ→ (Σ→ (Σ→ R)→ R)→ (Σ→ R)→ R
2: try(σ, Qaction, Q) =
3: reslocal := failure ()

4: resglobal :=
5: Qaction(σ,
6: (λ σ1 ·
7: reslocal := success ()

8: Q(σ1)))
9: if reslocal is a failure then Qaction (σ{(h, π) := consolidate(σ.h, σ.π)}, Q)

10: else resglobal
11:
12: consume(σ, a, Q) =
13: try(σ, (λ σ1, Qsucc · consume’(σ1, a, Qsucc)), Q)

Figure 4.3 Silicon’s original try function that triggers a state consolidation
when Qaction fails.

1 field f: Int

2 method retry(x: Ref , y: Ref){

3 inhale acc(x.f) && acc(y.f)

4 assert x != y

5 }

Listing 4.2: Example of a pure assertion that fails before a state consolidation,
but passes afterwards.

Listing 4.2 is an example that illustrates how Silicon’s retry behavior com-
bined with the consume rule from Figure 4.2 can lead to incompleteness.
From the inhale statement on line 3, we know that x and y can’t be aliases
(their permission amounts to field f add up to more than 1). Thus, the
assert statement on line 4 should verify. The verifier’s state however, reflects
this disequality only after a state consolidation has been performed. When
assert x != y is consumed, Silicon erroneously reports an error. The rea-
son for this behavior is that when the consumption fails, Silicon recovers from
the failure, reports an error and subsequently invokes the continuation (i.e.
continues with the verification), instead of performing a state consolidation
an retrying the consumption. Invoking the continuation passed to consume’
by the try operation sets reslocal to success () (line 7 of Fig. 4.3), and thus
skips the state consolidation and retrying of the consumption.

To solve this problem, we need to make sure that failures are not recovered
from if they occur in a try block before the state consolidation. In order to
reliably determine whether the verification currently is inside a try block
and before the state consolidation, we added a counter retryLevel to the state
that keeps track of how many (possibly nested) try blocks have been entered
(and have not yet performed a state consolidation). A retryLevel of 0 means

16

4.3. Limiting the Number of Errors Reported

that either the verifier is not in a try block, or that every try block that has
been entered but not yet exited has already performed its state consolidation.
Figure 4.4 and 4.5 show the final consume rule for pure assertions and the
updated try operation, respectively.

1: consume’(σ1, h, e, Q) =
2: eval(σ1, e, (λσ2, e′ ·
3: if σ2 |= e′ then
4: Q(σ2, h, unit)
5: else
6: if σ2.retryLevel == 0 then
7: σ2.π := σ2.π

⋃
e′

8: failure () ⊕ Q(σ2, h, unit)
9: else

10: failure ()

11:))

Figure 4.4 Silicon’s final updated consume rule for pure assertions that
supports recovering from failed pure assertions. Failures are only recovered
from if the verifier is either not in a try block or each entered but not exited
try block’s state consolidation has been performed.

1: try(σ, Qaction, Q) =
2: rl := σ.retryLevel
3: reslocal := failure ()

4: resglobal :=
5: Qaction(σ{retryLevel := rl + 1},
6: (λ σ1 ·
7: reslocal := success ()

8: Q(σ1)))
9: if reslocal is a failure then

10: Qaction(σ{h, π := consolidate(σ.h, σ.π), retryLevel := rl}, Q)
11: else resglobal

Figure 4.5 Silicon’s updated try function that modifies the state to keep track
if the state has been consolidated. The try function is identical to the try
function in Figure 4.3 except for the handling of the counter retryLevel.

4.3 Limiting the Number of Errors Reported

With the changes from Chapter 3 and Chapter 4, Silicon verifies all paths
resulting from branching over conditionals and recovers from failed pure
assertions. This means that Silicon reports more than just one error per

17

4. Recovering From Failed Pure Assertions

program. However, a user might want to only run the verification until
a certain number of errors are found, either for performance or simplicity
reasons. To enable specifying the number of errors that should be reported
before the verification is stopped, two changes were necessary: First we
added a counter to the Verifier that is increased every time a failure is
created. Second, we changed the behavior of the combine operator, such that
it only evaluates the second argument if the number of errors that should be
reported has not yet been reached. Figure 4.6 shows the updated combine

operator.

1: Q1 ⊕Q2 =
2: r1 := evaluation of Q1
3: if more errors should be reported then
4: r2 := evaluation of Q2
5: if r1 is a failure then
6: r1.previous := r2 ∪ r2.previous
7: r1
8: else
9: r2.previous := r1 ∪ r1.previous

10: r2
11: else
12: r1

Figure 4.6 Updated combine operator that only continues the verification (by
evaluating the second argument) if more errors should be reported. Lines 4
to 10 are identical to lines 2 to 8 of Figure 3.3.

18

Chapter 5

Recovering From Failed Impure
Assertions

In this chapter we will describe how Silicon could be enabled to recover from
failed impure assertions. We will present the formalization of an updated
consume rule that was not implemented.

5.1 Background

Recall from Section 2.1.3 that impure assertions are assertions that manipulate
the heap, that is they add or remove permissions. As with recovering from
pure assertions, the consume rule will need to be changed as well.

Consider the following Viper program:

1 field f: Int

2 method impure(x: Ref , y: Ref , z: Ref){

3 inhale acc(x.f, 1/3)

4 inhale acc(y.f, 1/6)

5 inhale acc(z.f, 1/3)

6

7 exhale acc(x.f, 1/2)

8 }

Listing 5.1: An example of a failing, but recoverable, exhale statement (line 7)

Inhaling the accessibility predicates on lines 3 to 5 of Listing 5.1 adds three
field chunks to the heap. Field chunks are a type of heap chunk, and specify
a field receiver, a field name, the location’s symbolic value, and a permission
amount. Inhaling acc(x.f, 1/3) adds a field chunk with receiver x, field
name f, a fresh symbolic value v, and a permission amount of 1/3. If
we want to represent a heap containing such a field chunk, we write the
following: x.f -> v # 1/3.

19

5. Recovering From Failed Impure Assertions

The verification of the exhale acc(x.f, 1/2) statement of Listing 5.1 will
produce an error. Silicon tries to find a field chunk for x.f with a permission
amount of at least 1/2, to remove 1/2 permissions from this chunk. However,
the heap only contains a chunk with 1/3 permissions to x.f. Therefore, the
consumption of acc(x.f, 1/2) fails.

5.2 Recovering From a Failed Impure Assertion

Recall how we enabled Silicon to recover from failed pure assertions by
eliminating all traces in which the assertion doesn’t hold, by adding the
assertion as a path constraint. For impure assertions this is not sufficient, as
the consumption of such assertions removes permissions from the state. The
general idea however stays the same: We need to change Silicon’s state to
a state in which the assertion would have held. In the case of accessibility
predicates, this means bringing Silicon into a state where enough permissions
are available to consume the predicate, and then removing the permission
amount specified by the predicate.

But where can we soundly take additional permissions from? In Viper,
references can point to any object, and multiple references can point to
the same object. References that point to the same object are called aliases.
Looking at the example in Listing 5.1 we can make an important observation:
If x and y were aliases, their combined permissions would add up to 1/2.
Similarly, if x and z were aliases, their permissions would add up to 2/3.
This means that states where x aliases with at least one of y or z, contain
enough permissions to consume the accessibility predicate from line 7.

Conceptually, we need to do two things in order to recover from the failed
exhale in Listing 5.1. First, we need to filter out all remaining program
traces in which not enough permissions to x.f are available. Secondly, we
need to remove 1/2 permissions from the resulting state.

In practice it is sufficient to carefully update the relevant field chunks’ per-
mission values and record in the path constraints how they relate to the old
permission values. Aliasing between references is then implied by those
constraints.

It is important to understand the relationship between the permission values
before and after an exhale statement. The permission amount actually
available for (the memory location denoted by) x.f can be expressed as
the sum pbe f ore = 1/3 + ite(x = y, 1/6, Z) + ite(x = z, 1/3, Z). This sum
conditionally adds up the permission values of possible aliases of x. The
statement perm(x.f) returns such a summary of the available permissions.
After the exhale statement, this sum needs to be 1/2 less. If pa f ter denotes
the permission sum for x.f after the consume operation, then the following

20

5.3. Updated Consume Rule

equation has to hold:

0 ≤ pa f ter = pbe f ore − 1/2 (5.1)

Because the underlying SMT solver operates on real numbers, but permis-
sions cannot be negative, the fact that 0 ≤ pa f ter has to be explicitly assumed.
As promised, Equation 5.1 implies that x has at least one alias. Equation 5.2
shows Equation 5.1 with pbe f ore expanded.

0 ≤ pa f ter = 1/3 + ite(x = y, 1/6, Z) + ite(x = z, 1/3, Z)− 1/2 (5.2)

If neither y nor z are aliases of x, Equation 5.2 can be simplified to 0 ≤
1/3− 1/2, which clearly doesn’t hold. Therefore at least y or z must be
aliases of x.

What remains is the construction of pa f ter. Because it is a sum representing
the permission amounts available for x.f after the consume operation, it
conditionally sums up the post-consume permission values of all field chunks
for field f. Due to all the possible aliasing combinations, directly creating
terms for the new permission values is not feasible. Instead, we replace the
field chunks’ permissions with fresh symbolic values. Fresh symbolic values
are symbolic values which don’t have any constrains imposed on (yet). This
means that by assuming Equation 5.1, we constrain the fresh permission
values to satisfy the semantics of the consume operation.

5.3 Updated Consume Rule

Figure 5.1 shows an updated version of Silicon’s consume’ rule. When
consuming an accessibility predicate acc(x.f, p) the algorithm loops over
all field chunks for field f, and iteratively sums up pbe f ore and pa f ter.

The expression permavailable represents the permissions provided by the loop’s
current field chunk, depending on whether the chunk’s receiver is an alias
of the accessibility predicate’s receiver. Whether the receivers are aliases
isn’t statically known at this point, and the expression needs to be evaluated
by the underlying SMT solver. By summing up each chunk’s permavailable
we construct pbe f ore. On line 14, the expression ptaken is constructed: An
expression that also needs to be evaluated by the SMT solver, and returns
the min of permavailable the amount of permissions still needed. We need
ptaken to construct pneeded on line 18, which is then used to decide if enough
permissions were available without taking any permissions from possible
aliases.

21

5. Recovering From Failed Impure Assertions

On line 16, the current chunk’s permission value is replaced by a fresh
symbolic value. After the loop, on line 21, Equation 5.1 is assumed by adding
it as a path constraint. Checking if sufficient permissions were available
without taking any permissions from possible aliases happens on line 23,
to decide whether a verification failure needs to be returned along with the
result of the continuation.

1: consume’: Σ→ A→ (Σ→ Snap→ R)→ R
2: consume’(σ1, acc(id(r), p), Q) =
3: eval(σ1, p :: r, (λσ2, p′ :: r′ ·
4: Let hr ⊆ σ2.h contain all heap chunks for identifier id
5: ho := σ2.h \ hr
6: pneeded := p′

7: hn := ∅
8: pbe f ore := Z
9: pa f ter := Z

10: s := f resh
11: foreach id(r2; v2, p2) ∈ hr do:
12: permavailable := ite(r2 == r′, p2, Z)
13: pbe f ore += permavailable
14: ptaken := min(permavailable, pneeded)
15: p f resh := f resh
16: hn := hn

⋃
id(r2 ; v2, p f resh)

17: pa f ter += ite(r2 == r′, p f resh, Z)
18: pneeded := pneeded − ptaken
19: σ2.π := σ2.π

⋃ (
r2 == r′ ∧ p f resh > Z ⇒ s == v2

)
20: done
21: σ2.π := σ2.π

⋃ (
pa f ter == pbe f ore − p′

)⋃ (
0 ≤ pa f ter

)
22: h := hn

⋃
ho

23: if pneeded == Z then
24: Q(σ2, s, h)
25: else
26: failure () ⊕ Q(σ2, s, h)
27:))

Figure 5.1 Silicon’s updated consume rule for impure assertions, that sup-
ports recovering from failures by taking possible aliases into account.

The consume operation passes to its continuation a snapshot. In the case of
exhaling an accessibility predicate, snapshots represent the symbolic value
of the memory location denoted by the predicate. That is, the snapshot
returned when consuming an accessibility predicate is equal to the symbolic
value of the memory location specified in the predicate. All field chunks
with nonzero permissions whose receivers alias with the receiver of the

22

5.3. Updated Consume Rule

accessibility predicate that is consumed must contain the same symbolic
value, which must be equal to the snapshot returned. On line 10 the snapshot
is assigned a fresh symbolic value. On line 19, the relationship between the
snapshot and the current field chunk’s symbolic value is assumed.

The algorithm shown in Figure 5.1 is based on the consumeComplete consump-
tion algorithm presented in [9], which is again based on the algorithm for
consuming quantified permissions presented in [8]. All three algorithms take
a global view on the heap (as opposed to the greedy consumption algorithm),
and construct conditional sums of available permissions.

23

Chapter 6

Evaluation

In this Chapter we will discuss the implications on performance introduced
by the changes made to Silicon in the scope of this thesis. We benchmarked
the (at the beginning of the thesis) current version against the final version
resulting from this thesis. The average verification times slightly improved.

As the baseline for our performance comparison, Silicon version with commit
hash 6fa45645 (the current version at the start of this thesis) was used, and
compared to the final version of this thesis with commit hash 91e39b86. The
Silver baseline version that was used has commit hash fc06df18, and was
compared against the final version with commit hash c7ae6e83. The tests
were run on a 4-core Intel Xeon E3-1240, running Ubuntu 20.04 LTS with
24GB of system memory. We used SBT version 1.4.4, Java version 11.0.7, and
Z3 version 4.8.7. In the final version, the option to recover from all (pure)
assertions was enabled. We tested in total 911 files: 653 from the Silicon test
suite and 258 tests generated by different Viper frontends. The frontend tests
were included because they contain some larger programs. Silicon includes a
test runner that repeatedly verifies a set of files, trims the slowest and fastest
run for each file, and averages the other run’s verification times. We ran the
test runner with 5 repetitions per file.

The mean relative increase of the verification time was 2.6%, and the median
relative increase −0.1%. 525 files verified faster than the baseline, 379 files
verified slower. Figure 6.1 shows the relative and absolute verification time
differences. Although on average, verification times increased, more than half
of the files actually verified faster. In theory, none of the changes introduced
should have lead to a faster verification. This leads to the conclusion that the
verification of most files is not affected by the changes, and that the small
differences in verification times are most likely due to other reasons (e.g.
CPU scheduling).

There were six files with a relative increase of verification times greater

25

6. Evaluation

than 50%, as shown in Figure 6.3. Four of those files also had an increased
relative error output of at least 50%. Because the new version of Silicon
verifies every branch and recovers from pure assertions, a larger portion of
the programs were actually verified. Therefore, an increase in verification
times was expected an unavoidable. Especially for programs with a lot of
branching, the changes introduced can lead to higher verification times.

1Some of those errors occurred erroneously, due to another issue (154) in Silicon.

26

Figure 6.1: Relative and absolute verification time difference per file between
the old and new Silicon version. Blue squares represent a file that had
an increased error output with the new version. Dots below the red line
represent files that verified faster with the new version, and dots above files
that verified slower. The y-axes are scaled logarithmically.

27

6. Evaluation

Old Silicon New Silicon
Average
runtime [ms]

1385 1411

Standard
deviation [ms]

3070 3101

Runtime of
all tests [s]

1262 1286

Number of
errors reported

993 1050

Figure 6.2: Runtime and number of errors reported comparison between the
old and new version of Silicon.

File
Verification
Time Old
Silicon [ms]

Verification
Time New
Silicon [ms]

Number of
Errors
Reported
Old Silicon

Number of
Errors
Reported
New Silicon

testssifverificationtest
lowval.py.vpr

6137 10462 7 7

testssifverificationtest
threads.py.vpr

7466 12172 4 6

348 cgmath point.rs.vpr 3094 8917 2 7
issues/silicon/0154-1.vpr 823 1742 9 221

third party/stefan recent/
testTreeWandE2.vpr

4969 17989 1 1

sequences/bsearch.vpr 1891 3012 1 2

Figure 6.3: Runtime and number of errors reported comparison for the six
files with a relative runtime increase of more than 50%.

28

Chapter 7

Conclusion

The goal of this thesis was to enable Silicon to recover from verification
failures. This was achieved partly by enabling Silicon to explore every path
resulting from branching over conditionals, and partly by enabling Silicon
to recover from failed pure assertion. While changing Silicon’s branching
behavior such that every path is explored isn’t recovering strictly speaking,
it was a relatively simple but effective way to increase the portion of the
program that is actually verified. The changes implemented, for the most
part, didn’t have a big impact on performance. The (albeit small) increases
in verification time were expected, simply because a larger portion of the
program is actually verified. A possible strategy to recover from failed impure
assertions was formally presented, but not implemented.

Additionally, some usability improvements were made: Silicon can now
report under which branch conditions an error occurred. It is also possible
to set the number of errors after which Silicon will stop the verification.

29

Chapter 8

Future Work

This thesis presents the following opportunity for follow-up work: Imple-
menting the changes proposed in Chapter 5 would enable Silicon to recover
from failed impure assertions. The proposed solution however does not
support Predicates, Quantified Permissions, or Magic Wands, and would
need to be adapted to do so.

31

Bibliography

[1] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Mod-
ular automatic assertion checking with separation logic. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, Formal Methods for Components and Objects, pages
115–137, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] Tobias Brodmann. Advancing non-standard permission utilisation in
program verification. Bachelor’s thesis, ETH Zurich, 2018.

[3] Programming Methodology Group. Viper tutorial. https://viper.ethz.
ch/tutorial/. Accessed: 2021-08-10.

[4] Programming Methodology Group. Viper website. https://viper.ethz.
ch/. Accessed: 2021-08-10.

[5] Sidney L. Hantler and James C. King. An introduction to proving the
correctness of programs. ACM Comput. Surv., 8(3):331–353, September
1976.

[6] Stefan Heule. Verification condition generation for the intermediate
verification language sil. Master’s thesis, ETH Zurich, 2013.

[7] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation, pages 41–62, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[8] Malte H. Schwerhoff. Advancing Automated, Permission-Based Program
Verification Using Symbolic Execution. PhD thesis, ETH Zurich, Zürich,
2016.

33

https://viper.ethz.ch/tutorial/
https://viper.ethz.ch/tutorial/
https://viper.ethz.ch/
https://viper.ethz.ch/

Bibliography

[9] Robin Sierra. Towards customizability of a symbolic-execution-based
program verifier. Bachelor’s thesis, ETH Zurich, 2017.

34

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Chapter Overview

	Background
	Viper
	Overview
	Permissions
	Assertions

	Silicon
	Symbolic Execution
	Initial Definitions
	Symbolic Heap
	State Consolidation

	Reporting One Error per Branch
	Enabling Silicon to Report One Error per Branch
	Branching in Silicon

	Reporting Errors That Appear on Multiple Branches

	Recovering From Failed Pure Assertions
	Background
	Recovering From a Failed Pure Assertion
	Silicon's Try Mechanism

	Limiting the Number of Errors Reported

	Recovering From Failed Impure Assertions
	Background
	Recovering From a Failed Impure Assertion
	Updated Consume Rule

	Evaluation
	Conclusion
	Future Work
	Bibliography

