Developing IDE Support for a Rust
Verifier
Bachelor’s Thesis

Julian Dunskus
Supervised by Federico Poli & Vytautas Astrauskas
under Prof. Dr. Peter Miiller
Department of Computer Science, ETH Zurich
Zurich, Switzerland

August 13, 2020

Abstract

Verifiers enable programmers to check their code for full functional correctness,
ensuring software robustness and reliability. Prusti is a verifier for the Rust pro-
gramming language aiming to make verification more accessible. However, there
were some issues with Prusti inhibiting widespread adoption, several of which
we address in this project. The IDE extension, aiming to abstract the details
of working with Prusti, required manual setup and otherwise offered a mediocre
first-time experience. Further, Prusti would ideally just be a part of the user’s
build workflow, automatically running during compilation, but its execution times
worked against that, taking up to ten seconds for even the most trivial of programs.
Through the addition of a server mode, this project makes a big step in terms of
reducing runtime, reusing components across verification operations in order to
eliminate startup delays and enable more optimization through Java’s just-in-time
compilation. IDE integration is also improved, lowering the barrier to entry by
easing the initial installation and helping retention by ensuring a visual presence,
in addition to benefitting from the aforementioned server-based improvements.

1 Julian Dunskus

Contents
1 Introduction 2
2 Approach 5
2.1 Execution Times 5
2.1.1 Prusti Server Mode 5
2.1.2 Profiling 6
2.2 IDE Integration 6
3 Implementation 9
3.1 Prusti Server Mode 9
3.1.1 Server Architecture 9
3.1.2 Server Integration L. 13
3.2 Dependency Management 14
3.2.1 VS Verification Toolbox 15
3.2.2 Automatic Rust Version Installation 16
3.2.3 Settings Change Detection 17
4 Evaluation 18
4.1 Execution Times 18
4.2 IDE Integration o 21
5 Conclusion 23
6 Future Work 24
6.1 Prusti 24
6.2 Prusti Assistant 24
A Full Timing Data 27

1 Julian Dunskus

1 Introduction

It is important to confirm functional correctness of programs in order to create
robust and reliable systems. Over time, programming languages are coming ever
closer to this goal, with powerful, modern languages like Rust [1] allowing pro-
grammers to express their intents very explicitly, enabling the compiler to verify
static correctness and perform optimizations. However, as much as the landscape
has changed, compilers are as yet insufficient to prove full functional correctness
of one’s code. This is where verifiers come in: they can analyze code in detail, e.g.
performing symbolic execution, simulating program execution to identify prob-
lems with inputs the programmer may not have thought about. Verifiers empower
you to statically verify otherwise inexpressible! properties like array population or
range bounds on numbers, ensuring software reliability in a tight feedback loop.

One such verifier is Prusti 2], a Rust verifier developed by the Programming
Methodology Group at ETH Zurich. Prusti aims to make verification available to
regular programmers, by being readily applicable to their existing code as well as
offering user-friendly integration with their IDE (integrated development environ-
ment). By offering powerful yet easy-to-use verification tools, we hope to increase
adoption of verification, making the software landscape more robust. Ideally, the
experience of verifying your code would be a natural and unnoticeable addition to
regular compilation, but Prusti currently falls short of that goal. The core goal of
this thesis is to bring Prusti closer to that ideal experience of seamless integration
by addressing various shortcomings, as laid out in the next few paragraphs.

To verify programs, Prusti uses the Viper [3] verification infrastructure, which
encompasses an intermediate language as well as a back end to verify code written
in that language. Prusti translates its compiled Rust code input to a Viper program
and verifies that using the Viper back end, then associates the results with the
original Rust source. It can verify assert!(...) assertions in code as well as
preconditions, postconditions, and invariants on functions, specified via Rust’s
attribute system. Prusti does all this by running as a Rust compiler (rustc)
plugin, which makes it easy for users to run it during compilation, although this
poses some restrictions on input and output.

Prusti’s execution times can get rather long (taking several minutes for complex
algorithms), by virtue of the computationally-intensive verification techniques em-
ployed. However, even for simple programs, verification often takes upwards of 10

'barring avant-garde type systems like Idris’ (https://www.idris-lang.org) dependent
types

https://www.idris-lang.org

1 Julian Dunskus

seconds, which can feel unresponsive and might put people off from using Prusti.
If we take a look at what is happening in this duration, we can see that only
around half the time is spent on actual verification, while the other half is spent
starting up the Java Virtual Machine (JVM) and initializing the Viper verifier
(Figure 1). This presents a great opportunity for optimization: if we can keep an
initialized JVM and verifier running, we can shave off roughly five seconds from
Prusti runtimes across the board, which is especially significant for simple pro-
grams. In order to achieve this, we split off the part of Prusti that manages the
JVM and Viper verifier into a server, which can keep running continuously while
the compiler plugin runs multiple times, simply acting as a client and using the
server for its actual verification.

fn main () {
__ Startup assert! (true);

5s }

Verification
4.6s

Figure 1: How much time is spent on the two main parts of a ver-
ification operation, on a trivially correct program (on the right).

Further improvements to Prusti would benefit from insight into its performance,
allowing us to identify its performance bottlenecks, which calls for profiling. Before
this project, profiling Prusti was very difficult because the interaction with Viper
used the Java Native Interface (JNT). This interaction confused the employed pro-
filing tools and made the results hard to evaluate. Fortunately, our approach to
the above problem of reusing Viper verifiers results in the JNI-interfacing part
being split off (as the server), allowing us to easily profile our front end running
as a client.

Prusti Assistant is a plugin for Microsoft Visual Studio Code [4] (VS Code)
that allows users to verify their code using Prusti without using the command-
line interface. The new client-server architecture for Prusti meshes naturally with
Prusti Assistant: Prusti Assistant can launch and manage a running Prusti server,
simply running client instances for the verification requests. Thus, the Prusti
execution time improvements incurred above will translate very well to the IDE
experience with Prusti Assistant.

In addition to this, the implementation of Prusti Assistant was previously
rather minimal, leaving a number of user experience improvements to be desired.

2 Julian Dunskus

Some cursory usage of Prusti Assistant (in its state before this paper) brings up
several usability concerns, e.g.: a lack of progress indication while it is installing
its dependencies, which involves a significant download?; a lack of discoverability,
requiring users to either browse through the settings to enable "Verify on Save"
or manually run the verify command from VS Code’s command palette. This
project addresses several common concerns like that, aiming to enhance the user
experience and first-time setup of Prusti Assistant in various ways. The impact
of these enhancements is hard to measure numerically (large-scale quantitative
usability testing notwithstanding), and currently there are not many people using
Prusti Assistant regularly and providing feedback. However, we trust that the en-
hancements’ value is evident simply from our descriptions thereof, as we see them
as natural additions to the plugin, and they have already proven useful to us in
testing other components.

The main contributions of this project are as follows:

e We added a server mode to Prusti, allowing users to forgo startup times and
benefit from JVM optimizations. This also improves the Prusti development
experience by reducing latency for its test suite.

e We opened an avenue toward future performance improvements by address-
ing issues causing common profiling tools to fail on Prusti.

e We improved Prusti Assistant’s integration with VS Code, reducing barrier
to entry and working to improve long-term retention.

e We extracted reusable components and systems to a Node module useful for
any VS Code extension that performs verification.

The next section provides a high-level description of our approach to these
various opportunities for improvement. The following implementation section ex-
plains in detail the decisions we made and our reasoning behind them, as well as
covering some difficulties we encountered. In the evaluation section, we critically
examine our changes, evaluating the actual value gained from them. Finally, the
conclusion tersely summarizes our findings, while the future work section lays out
areas with potential for future improvements.

2e.g. 70.1 MB for the macOS version, as of 2020-08-03

4

2.1.2 Julian Dunskus

2 Approach

2.1 Execution Times

2.1.1 Prusti Server Mode

As outlined in the introduction, our main approach to reducing Prusti execution
times is to avoid repeated setup logic by reusing the environment across multiple
verification operations. In order to achieve this, Prusti has gained a "server mode",
i.e. a way to run only the backend, keeping around a running Java Virtual Machine
(JVM) and managing initialized instances of the Viper verifiers Prusti relies on
for the actual verification. When given a server address, Prusti now functions as a
client, only encoding the Rust program to a Viper program and sending it to the
server The server in turn verifies that using the Viper backend, and sends back
the results, which the client outputs as before. In essence, we simply replaced the
part of the client that performs the actual verification logic with a component that
either does just that or sends its input (the Viper program) to a server and returns
the response as output.

The communication between client and server is implemented using the REST
(Representational State Transfer) architecture, which is widespread for use cases
like these. The server provides an endpoint for verification, to which the client can
send (using a REST POST request) a verification request. This request contains
the Viper Program encoded from the Rust program, as well as some configuration
for the verification back end, like what arguments to instantiate the Viper verifier
with. The server looks at the configuration and checks if it already has an ini-
tialized Viper verifier available which matches that configuration, and otherwise
instantiates a new one. The Viper verifier is used to perform the verification,
after which it is returned to storage, which consists of a cache with a fixed size,
automatically evicting the least-recently-used verifier instances to make space for
more recent ones. Finally, the server takes the produced verification result—which
expresses whether the verification succeeded or, if it failed, what caused it to
fail-—and encodes it into a response, which it then sends back to the client.

2.2 Julian Dunskus

2.1.2 Profiling

There were attempts in the past to run profiling tools on Prusti, but those had
issues due to incompatibility between those tools and the way we are using the Java
Native Interface. However, now that the Java-interacting logic can be relegated
to a server, we can simply start up a server and profile Prusti running as a client,
not requiring any direct interaction with Java. This decoupling newly allows us
to run common profiling tools, at least on the client-side logic, i.e. mostly the
encoding process from Rust to Viper. This gives us valuable insights into Prusti’s
performance and allows future work to efficiently identify possible optimizations,
further improving execution times.

2.2 IDE Integration

Prusti Assistant benefits particularly from the server mode, while also automating
the manual steps involved in managing a running Prusti server and passing its ad-
dress to clients. On load, once it is ensured that Prusti is installed, the extension
launches a server, noting down its port, which it then uses for verification tasks.
Alternatively, users can provide an external server address, in which case the ex-
tension does not launch its own server, instead simply communicating with the
one at the provided address. The latter approach also has the benefit of offloading
some work off the user’s machine, as well as letting multiple users verify using
the same central server. Prusti Assistant also responds to crashes of its managed
server or connection failures to the external server by notifying the user and, if
applicable, providing actions to fix it, like offering to restart the managed server.
All in all, Prusti Assistant automatically uses a Prusti server, letting everyone
benefit from the improved execution times without requiring any setup, while still
offering customization points.

Previously, in order to use Prusti Assistant, you had to manually install a
specific nightly build of Rust (which Prusti relies on for its interaction with the
compiler). Automating this process is relatively straightforward, as the rustup
utility—the de-facto way of installing Rust—produces easily-parsed output and
lets us check for and install the correct Rust version with just two commands.
Since this installation does take a bit of time and disk space, as well as affecting
(if only additively) the user’s environment, Prusti Assistant asks users who are
missing the required Rust version if they would like to install it automatically,
needing just one button press. This lowers the barrier to entry for people using

2.2 Julian Dunskus

Prusti Assistant for the first time, automating the last part of the installation
process that still required manual intervention.

Prusti Assistant manages its own installation of Prusti, and so another enhance-
ment is the addition of a dependency management system. Previously, the process
of the extension installing Prusti was very opaque—there was no user-facing indi-
cation of progress until it had completed, and there was no way to customize it. In
order to cleanly implement progress reporting, and extract some useful components
in the process, we designed a modular dependency installation system with built-in
progress reporting, encapsulated in the vs-verification-toolbox Node [5] mod-
ule [6]. This system allows you to define your dependencies and their installation
steps in a declarative way, using a variety of simple predefined components, e.g.
downloading a file or unarchiving a zip archive, adding completely custom steps
if necessary. Each component provides a way to perform its task, reporting back
its progress as it works on that. These components compose easily thanks to the
sequence component, which can run any number of steps in sequence, collecting
the progress across them, which it reports in turn. All this comes together with
VS Code’s built-in way to display a progress bar in a floating dialog, allowing the
user to watch the installation progress through its steps, also seeing a description
of what is happening at any point.

Additionally, this dependency management system provides an API for spec-
ifying different build channels, e.g. stable and nightly. Prusti does not yet offer
stable builds (the only download is nightly), but once it does, that will be a triv-
ial addition to the extension. What the extension does already allow, though, is
the option of using a local build of Prusti—this has proved invaluable for Prusti
development and integration.

Moreover, we improved the status bar integration in several ways. It now dis-
plays a button to quickly verify the currently-open file, aiding discoverability of
Prusti Assistant’s functionality and providing a mouse-only way to invoke Prusti.
Various pieces of text shown in the status bar are now accompanied by glyphs, pro-
viding e.g. a spinner animation during verification or an intuitive visual indication
of the verification result (like a checkmark or a cross) once complete.

Lastly, we made some relatively minor changes:

o We discovered an already-implemented but not user-visible setting to verify
the entire workspace rather than just one file, which we now surface to the
user.

Julian Dunskus

o We restructured several parts of the codebase, encapsulating pieces of logic in
their own modules and conforming to best practices like TypeScript’s strict
mode.

3.1.1 Julian Dunskus

3 Implementation

3.1 Prusti Server Mode

There is a large design space of possible approaches to implementing Prusti’s server
mode. Most basically, we had to decide where to split client and server, for which
Prusti’s layered architecture presented multiple options. Following this, we had to
choose a communication protocol and encoding to facilitate this split.

3.1.1 Server Architecture

In designing the server mode, we had to decide what parts of Prusti should be part
of the server and what should still happen on the client. Considering the overall
structure of the Prusti project (Figure 2), there already several options there:

e Having Prusti Assistant communicate directly with the Prusti server:
This would require moving compilation to the server, which not only increases
latency when using a remote server but also necessitates reproducing every-
thing necessary to build the code, which is not realistic. In order to benefit
from compiling on the server, it would also have to somehow run the Rust
compiler as a server, which rustc does not support yet.

e Splitting off a part within Prusti: This approach encapsulates all the
server interaction within Prusti, making client-server communication an im-
plementation detail. As communication occurs entirely within Rust, this
gives us the biggest variety of options for data transfer. Further, it lets us
split off exactly the logic we want in the server, and no more.

Prusti Prusti Silicon
Assistant (Viper)

Figure 2: An overview of the Prusti project’s layered structure.

3.1.1 Julian Dunskus

e Using the Viper server from Prusti: The Viper project itself already
offers a server, which Prusti could use for its verification. However, this server
would have to be extended for our use case, because in its current form, we
could not track the relation between the encoded Viper program and the
original Rust code, which is essential for reporting back to users exactly
where their program failed verification. This, and other helpful extensions
like it, would create a lot of work and move the focus of this project from
Prusti to Viper. Perhaps most importantly, this approach would require a
well-defined API which is always kept in sync between Prusti and Viper,
creating a large maintenance burden. Finally, we would not be able to use
any of the functions Viper provides for working with its ASTs on the client,
since initializing a separate JVM would defeat the whole purpose of this split.

We ended up choosing the second option, specifically opting to leave compilation
and encoding to the client. We decided to specify the server such that it contains
the parts of Prusti that most benefit from reuse, i.e. the initialized JVM and Viper
verifiers, leaving the compilation to the client. In its overall process, Prusti receives
the compiled Rust program in form of Rust’s mid-level intermediate representa-
tion (MIR), which it in turn encodes to a Viper program, represented by way of
an AST (Abstract Syntax Tree), hereafter referred to as the Viper Intermediate
Representation (VIR). While it might be interesting to perform the MIR-to-VIR
encoding on the server, the MIR is not stable, increasing effort required to update
our rustc version. Additionally, because we do not own MIR, it would be difficult
to serialize and deserialize—for VIR, we can just derive almost all serialization logic
using a popular library. Using an AST rather than raw source code, in addition
to being easier to create and transform programmatically, also allows us to attach
information to its nodes, which lets us encode the corresponding source locations
in the original Rust code where applicable. Taking all this into account lead us to
choosing VIR for this task, resulting in a meaningful separation of concerns: Only
the client interacts with rustc, and only the server interacts with Java.

A restriction that heavily influenced our options in client-server communication
frameworks is that we were limited to an older version of Rust in our implementa-
tion, specifically a nightly build from June 2018. This is because the API rustc
provides for plugins (like Prusti) is still experimental and thus only available in
nightly builds, which locks us into using that same version for all the code we write
and verify. There have been efforts to update this, which is an elaborate undertak-
ing, and the branch for this version update was recently (July 27, 2020) merged
into master. Unfortunately, that was too late for the purposes of this thesis, so we
had to work under the aforementioned constraints. The main detrimental effect
of using this outdated version is that it was much harder to add and update de-

10

3.1.1 Julian Dunskus

pendencies, since they would often use language features not available yet, so we
often had to limit ourselves to outdated versions of our dependencies in order to
use them at all.

For our communication, we initially looked at RPC (Remote Procedure Call)
frameworks, since that is all we really need. After considering our options, we
decided to try Google’s Tarpc library [7], which looked nice at first. However, for
the reasons listed above, we were forced to use an older version, which resulted in
several issues. This version of tarpc was insufficiently documented, while simulta-
neously making it hard to find undocumented information through its extensive
use of macros. Additionally, it would be harder to update our code using Tarpc to
the new compiler version because it had changed so much in those 2 years. Fur-
ther, it did not at all lend itself to customization, making it all but impossible to
adjust what we wanted to. In the end, we decided to instead use HI'TP libraries,
since despite technically operating at a lower level, that ecosystem looked more
refined and provided us with better options, especially for our compiler version.

In its final form, the Prusti server runs as an HTTP server, providing a POST
(REST) endpoint for verification. The basic HTTP interaction of the server and
client rely on the Warp [8] and Reqwest [9] libraries, respectively. Warp provides
a builder-pattern API for defining provided endpoints and their behavior. At the
same time, Warp also provides the many opportunities for customization Tarpc
lacked, e.g. allowing us to configure how many threads can concurrently work on
processing requests. Reqwest, in turn, makes it easy to access those endpoints from
the client by similarly providing a builder API. If we ever need to make our client
asynchronous (rather than blocking until the request is complete), Reqwest has
that covered too. In summary, these libraries are expressive (pretty and readable),
while also allowing the customization we need and ensuring robustness across
compiler version upgrades.

When it comes to the encoding used, the server actually provides its verifi-
cation endpoints in two variants, using JSON (JavaScript Object Notation) or
Bincode [10] as encoding. JSON has the advantage of being human-readable and
thus easier to debug, while Bincode minimizes encoding overhead (by simply not
labeling values, among other things), resulting in an efficient encoding both in
speed and size. The encoding process is handled by the Serde [11] library, which
lets us avoid writing boilerplate by automatically deriving the implementations for
de-/serializing our data structures, only customizing the encoding where needed.
Serde also has the benefit of being encoding-agnostic, allowing us to easily support
both JSON and Bincode without needing to cover both encodings in all our data
structures. This enabled us to simply offer endpoints with both encodings, leaving

11

3.1.2 Julian Dunskus

it up to the client how it wants to encode its request, which will help with tracing
when something does go wrong.

The Prusti server does not need to interact with rustc, so we decided to create
a new executable for it, which does not require the rustc libraries to be available.
However, isolating dependencies like that proved to be a bit difficult by virtue of
our limited module setup: the server needed to use parts of a module that linked
against rustc. Specifically, that module contained our representation of the en-
coded Viper program, by way of an AST (Abstract Syntax Tree), hereafter referred
to as the Viper Intermediate Representation (VIR). Evidently, both the server and
the client needed access to the VIR in order to communicate the programs, so the
module it was in should be part of both. As such, we decided to create a new
module for things common to all parts of Prusti, which could also contain some
utilities, but expressly did not depend on rustc nor Java: the prusti-common
module. Moving the VIR definitions to this new module was a delicate task, since
it affected so much of the codebase—we even decided to pause all development for
the duration of this move, so as to avoid excessive merge conflicts. Fortunately,
all went well in that process and the new prusti-common module now correctly
provides the VIR as well as some minor utilities to all parts of Prusti, also giving
us a canonical place for such things in future.

Finally, we identified many places across the codebase using a near-identical,
copy-pasted timing construct in order to print runtimes for sections of Prusti’s
execution. This was exactly the kind of use case prusti-common could cover, so
we experimented with different approaches to a reusable timing API. A simple
method call is nice because it is self-contained, ensuring that starting a timer
always results in it later stopping and logging its duration. However, this proved
to be rather restrictive and would have required significant code changes in several
places, mostly because all the output generated in the timed code section would
have to be explicitly returned and then stored. Instead, we investigated a macro-
based approach: Macros would allow us to superficially look and work like method
calls, while allowing us to work around some limitations by running the provided
statements on the top level. Unfortunately, this had some issues too: it was harder
to understand, especially when something went wrong, and had to take individual
statements in order to place them at the top level, which did not feel right at
all. Finally, we settled on an object-based design, where one creates a Stopwatch
object with a name for the section to time, after which one finalizes the section,
logging its name and duration to the console, in one of three ways: dropping it or
calling finish simply ends the current section and consumes the instance; calling
start_next with a new section name ends the current section and immediately
starts timing a new one, allowing for a detailed breakdown with little effort.

12

3.1.2 Julian Dunskus

3.1.2 Server Integration

Integrating the server was of course the point of the above efforts, and this exercise
also made us aware of some important issues. There are two places where we
integrated the new server mode: Prusti’s own unit test suite and Prusti Assistant,
the former of which was much easier than the latter. One obvious difficulty of
integrating with Prusti Assistant is that we had to interact with our Rust programs
from within another language, specifically TypeScript. An unforeseen challenge,
however, was with killing the server process, as the Prusti architecture involves
spawning subprocesses. Finally, we needed some way to automatically choose a
free port, so as to not collide with other running applications with open ports. This
section describes our efforts to integrate Prusti and overcome those challenges in
more detail.

Prusti sports an extensive unit testing suite, executing its verification process
with a wide variety of examples, which typically takes over an hour to complete.
This presents a great opportunity for the new server mode: if we simply keep one
server instance around during all these tests, we can shave away a big portion of
our setup times for each test run. Indeed, using the server for our test suite proved
to be as simple as adding one method call to run a server off-thread and providing
its address to the client instances via an environment variable. The benefits are
undeniable, almost cutting the runtime of our complete test suite in half, which
also reduces response times from continuous integration.

Another place where the server mode really shines is the IDE integration, which
provided the main motivation behind all this in the first place. Prusti Assistant
already handles all interaction with Prusti for the user, so it was a natural extension
to have it manage the server too, rather than requiring one to be launched through
other means. Upon load, Prusti Assistant launches the server (once it has ensured
that everything is installed and ready to go), providing a port of zero. This zero
port has a special meaning, delegating the choice of port to the operating system,
which then assigns it a free port. The server takes note of the port it gets assigned
and prints it to standard output (stdout), which Prusti Assistant parses and
proceeds to use for client instances. Because logging behavior is often seen as an
implementation detail, we made sure to provide a unit test for this flow, ensuring
that the first line printed to stdout does indeed express the assigned port in the
decided format. Of course, this is also advantageous to users launching the server
themselves, as they can just ask the OS for a free port and see what the server
receives. Thus, we have constructed a robust way to start the server on a free
port (as provided by the OS) while being able to access this information in Prusti
Assistant.

13

3.2.1 Julian Dunskus

Just like the regular Prusti executable, the server is actually two executables:
a driver that performs the actual functionality, and a launcher that simply locates
the libraries the driver needs and launches it while providing those, so the user
does not have to explicitly link those libraries in order to run Prusti. However,
this design creates some difficulties for integration tests and IDE integration, in
that it is unreasonably hard to shut down the server if you did not directly launch
the driver, often resulting in an orphaned driver process with no easy way to kill
it. This is especially unfortunate for Prusti Assistant, since it needs to shut down
the server in various circumstances, e.g. when the configuration changes, requiring
a server restart, or when the user explicitly requests a restart. Effectively, there is
currently no way to cleanly shut down the Prusti server; at least exiting VS Code
recursively kills any child processes Prusti Assistant spawned, as long as they
were not orphaned. Luckily, even an orphaned server instance, while undeniably
displeasing, mostly just takes up some RAM, which can even be swapped to disk;
the impact on other system resources is negligible. Furthermore, a major problem
would arise if one of the subprocesses Viper spawns, e.g. a Z3 instance, gets stuck
in an infinite loop. This would clearly have a significant performance impact and
hence pose a major problem, although it thankfully appears to be rare, as it has
never come up in our usage. We did not get around to addressing this issue yet,
but it is surely an important future addition and should be treated with priority.

In summary, integrating the server into both Prusti’s test suite and Prusti
Assistant proved very beneficial, and we were able to address most of the issues.
We found a clean solution to finding a free port, where we just delegate this task
to the operating system. However, the issue of managing the driver subprocess
unfortunately remains unresolved.

3.2 Dependency Management

In order to ensure a smooth user experience, Prusti Assistant should automati-
cally manage dependencies for the user, resulting in a simple first time setup and
update process. The main dependency is Prusti itself, which comes packaged as
a downloadable ZIP, regularly exported from the current master branch. This
download also packages Viper and Z3, Prusti’'s own dependencies, but there are
several other dependencies it can or should include, like the Java Runtime Envi-
ronment or the necessary specific Rust version, the latter of which we addressed.
Further, we revised the dependency management process, making it more testable
and structured. We extracted this system, as well as several smaller generally-

14

3.2.1 Julian Dunskus

useful utilities, to a separate package which is bound to be useful for other verifier
IDE extensions like Prusti.

3.2.1 VS Verification Toolbox

It was important to us to build up reusable systems and components wherever
possible, rather than hardcoding specific use cases. To that end, we created the
vs-verification-toolbox Node module, which provides a place for utilities com-
mon to not only Prusti Assistant but also other IDE integration efforts for verifiers,
such as:

e Abstraction over platforms: where previously one had to use error-prone
string comparisons, the toolbox provides a simple enumeration listing all
three major operating systems, naturally lending itself to exhaustive switch
statements.

e Filesystem interaction, another place where we could shave off boilerplate
and improve ergonomics: We added a Location class, which wraps a filesys-
tem path, providing easy-to-chain, discoverable ways to navigate through
file hierarchies, create or delete files, or even append the platform-dependent
executable extension. This has the further upside of clarifying the type used
for paths, separating them from unspecific strings.

e A wrapper for VS Code’s progress-reporting API, working around some de-
sign flaws, like the fact that it only shows a progress bar when shown as a
notification, which is likely to confuse users. Further, it has a rather unusual
design of expecting relative progress numbers since the last report rather
than an absolute number, which proved difficult to work with reliably.

Thus, the toolbox hopes to smooth out the bumps we encountered in our work
by making more intuitive design choices and providing ergonomic ways to achieve
things that would otherwise require more boilerplate code.

Applying this same philosophy of reusability to dependency management, we
examined what steps installing dependencies can consist of and how we might mod-
ularize that process. We ended up with a surprisingly simple system, where the
installation process for a dependency is defined by composing so-called installers,
expressed by the DependencyInstaller interface. This interface only requires
a single method named install, which takes a filesystem location as input and
asynchronously returns a new location. Another input to this method is a boolean

15

3.2.2 Julian Dunskus

deciding whether the installer should perform its work even if it already has, effec-
tively updating that part. Finally, the method takes a progress listener, which it is
expected to call repeatedly to provide progress updates, passing in a number from
zero to one representing its progress and a description of what it is doing. The
beauty of this system is in its composability, which allows for basic components to
be combined to express any installation process.

In order to further illustrate this installation system, these are some of the
basic components it provides:

e FileDownloader, which takes a file URL and downloads it to the folder
passed as its input location, returning that file’s location.

e ZipExtractor, which expects a ZIP file at its input location and proceeds
to extract it to a new folder within the same enclosing folder.

e LocalReference, which simply returns a predefined filesystem location, e.g.
one set by the user in the settings.

e InstallerSequence, which chains multiple installers together, piping each
installer’s output into the next as input. It wraps its own progress listener
in calling its children, rescaling their progress to the corresponding range
within itself.

A big advantage to splitting everything up into basic units like these is that they are
easy to understand and test, improving maintainability and robustness, while still
providing insightful feedback to users as the task progresses. By combining these
provided installers, even a complex installation processes can be defined in a simple,
declarative way, all the while providing ample opportunity for customization where
necessary.

3.2.2 Automatic Rust Version Installation

The canonical way to manage Rust versions is the rustup command-line utility,
so this is what we rely on to ensure the correct version is installed. In detail,
we call rustup list to get a list of all installed versions, then parse its output
to check for the version we need. If the check succeeds, nothing else needs to
happen, but if it fails, we display a dialog to the user alerting them to the issue,
also offering to install the version in question with just a single button press. To
install the new version, we simply run rustup toolchain install, passing in
the desired version, and asynchronously wait for it to complete. In order to avoid

16

4 Julian Dunskus

hardcoding specific versions of rust, we kept things flexible by simply including the
rust-toolchain file from the root of the Prusti source tree in the distributable
ZIPs. This file states which build of Rust we are using for Prusti and thus need to
install in Prusti Assistant. All in all, this turned out to be easy to automate and
an easy way to streamline the first-time setup experience for new users.

3.2.3 Settings Change Detection

Prusti Assistant offers several customization points to the user in its section within
the VS Code settings. However, simply changing a setting does not do anything
by itself—users would have to realize nothing happened and think to restart VS
Code in order to apply the changes. To improve this process, we now subscribe
to the config change event which VS Code offers. This allows us to notice when
users have changed our configuration, at which point we identify exactly what
settings that change affected and automatically update affected components. For
example, when the user changes the build channel, we automatically ensure the
corresponding version is installed, downloading it if necessary. By automatically
handling changes to our configuration, Prusti Assistant becomes more responsive
and seems to anticipate users’ actions.

17

4.1 Julian Dunskus

4 FEvaluation

4.1 Execution Times

In order to evaluate the impact the server mode had on execution times, we looked
at a variety of programs of different complexities and verified each once without and
once with the server. Additionally, the JVM, which Viper runs in, gets faster at
executing time as it warms up, because it sees which parts of the code are executed
the most and can spend more time optimizing their execution with its just-in-time
compilation techniques. Consequently, we also test a program which takes a lot of
time to verify, showing how that time changes over multiple verification operations
on the same server (and thus JVM). This section aims to examine the effect of the
server on execution times, both by mitigating startup times and by warming up

the JVM.

Prusti contains an extensive unit test suite, running itself on a wide variety of
examples. The GitHub repository has been set up to use continuous integration
(CI) via GitHub Actions to automatically run all these tests on push, which also
displays a duration. Before the server, these tests would consistently take around
65-75 minutes, which the switch to using a server for the tests instantly reduced
that to 36-42 minutes. Simply using the server to run Prusti on our test suite
almost halved its runtime, making it much more viable to run locally and reducing
the delay before CI would inform you of a failed run.

In order to ensure a meaningful comparison, we chose a variety of examples
from Prusti’s test suite, specifically all the same ones as the original paper intro-
ducing Prusti [2] listed, several of them updated to work better with our newer
version of Prusti. We extended these with one further example: The trivial correct
program from Figure 1, for completeness. On all these examples, we simply ran
Prusti with no special arguments and looked at the timing information it printed.
Specifically, for each example individually, we: ran Prusti once as a standalone
executable; booted up a throwaway Prusti server and ran Prusti again, connecting
to that address, then killing the server; ran Prusti a third time, connecting to an
existing server that had been warmed up by verifying every listed example once.
Thus, each server instance was used exactly twice: once in an initial "cold" run,
then again as it had warmed up. Finally, we repeated this whole process three
times, averaging the timings measured between them and calculating the standard
deviation. Running tests on a cold server is functionally almost the same as in
standalone mode, so we decided to relegate those numbers to the appendix, and

18

4.1

Julian Dunskus

simply state that those timings are indeed all but identical. Table 1 lists the results
from the other two setups across its two column groups: Standalone and Warm
Server. Each run is further separated into its component timings:

e "Total" lists the total duration of Prusti’s verification.

e "Client" is the total duration of all client-specific logic, i.e. everything it
takes to generate the VIR program, most notably the encoding process from
MIR to VIR.

e "Server" comprises all server-specific logic, which involves recreating the VIR
AST on the JVM and actually running the Viper verifier. The JVM startup
time, which amounted to no more than 116 ms in any of these runs, is not
counted anywhere, as it is not a useful statistic and would only introduce
noise.

e "Verifier" refers to the Viper verifier startup time, which of course does not
apply to the warmed-up server as there is already an initialized verifier ready
for reuse at that point.

e "Unacc." lists the remaining time unaccounted for among the above sections,
compared to the overall verification time for the encoded program.

Standalone ‘Warm Server
Example Total o Client o Server o Verifier o Unacc. Total o Client o Server o Unacc.
100 Doors 10.84 293 0.36 0.09 7.85 220 2.63 0.60 0.003 2.88 0.55 0.30 0.05 0.13 0.02 2.443
Binary Search (generic) 10.65 3.00 0.29 0.09 773 1.99 2.63 0.87 0.003 2.93 0.60 0.27 0.03 0.08 0.01 2.575
Heapsort 19.31 3.00 0.74 0.10 15.62 2.38 295 047 0.004 6.46 1.58 0.59 0.09 0.25 0.05 5.624
Knight’s Tour 120.03 8.92 3.71 0.09 11299 849 3.32 0.26 0.005 | 78.53 13.84 245 043 0.60 0.12 75.480
Knuth Shuffle 6.27 0.17 0.17 0.01 432 0.19 1.77 0.03 0.003 1.39 0.11 0.22 0.01 0.08 0.00 1.101
Langton’s Ant 16.09 0.81 0.86 0.06 12.65 0.57 2.58 0.17 0.003 4.95 0.76 0.63 0.05 0.43 0.04 3.894
Selection Sort (generic) 22.76 299 0.81 0.12 1887 2.1 3.07 0.38 0.004 8.03 1.62 0.56 0.07 0.19 0.02 7.276
Ackermann Function 9.66 1.51 0.13 0.02 6.59 0.94 2.94 048 0.003 1.97 0.31 0.13 0.01 0.10 0.01 1.745
Binary Search (monomorphic) | 16.72 1.74 0.72 0.07 13.18 1.34 2.82 0.32 0.004 6.23 0.90 0.59 0.06 0.20 0.02 5.440
Fibonacci Sequence 11.70 0.56 0.40 0.02 8.52 0.35 2.78 0.18 0.004 3.45 0.63 0.38 0.04 0.19 0.02 2.873
Knapsack Problem 125.04 4.54 2.62 0.12 119.50 4.27 291 0.17 0.005 | 108.78 3.40 232 0.34 0.65 0.10 105.816
Linked List Stack 15.55 1.58 0.64 0.08 1293 1.25 1.98 0.25 0.004 5.74 025 0.60 0.02 0.23 0.02 4.919
Selection Sort (monomorphic) | 31.06 1.77 106 0.05 27.28 1.56 271 0.13 0.005| 13.01 145 0.720.04 0.30 0.02 11.979
Towers of Hanoi 6.94 0.23 0.03 0.00 434 017 2.57 0.08 0.004 1.21 0.14 0.07 0.01 0.03 0.00 1.117
Borrow First 8.13 0.06 0.15 0.00 5.38 0.01 2.58 0.05 0.004 1.60 0.15 0.16 0.01 0.06 0.00 1.377
Message 9.52 0.06 0.21 0.01 6.77 0.11 2.54 0.11 0.004 2.13 0.24 0.21 0.01 0.07 0.01 1.843
Trivial 6.59 0.24 0.01 0.00 3.82 0.15 2.76 0.09 0.003 0.95 0.06 0.05 0.00 0.01 0.00 0.888

Table 1: Results from timing Prusti’s execution on various example programs,
along with their standard deviation across the three runs. All these tests were run
on macOS 11 on an 8-core Intel 19-9880H with 2.3 GHz (turbo boost 4.8 GHz)?,
using Java 14.0.1. Full results including the cold server times available in Table 2
in the appendix.

3Full details at https://everymac.com/systems/apple/macbook_pro/specs/macbook-
pro-core-i9-2.3-eight-core-16-2019-scissor-specs.html

19

https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i9-2.3-eight-core-16-2019-scissor-specs.html

4.1 Julian Dunskus

While very short, the unaccounted-for time contains important information
about our communication overhead, where applicable (i.e. not in the standalone
setup): among other smaller bits, everything from serializing the VIR on the client
to deserializing it on the server is included in this duration. Comparing it between
the different runs shows that communication overhead understandably increases for
more complex programs, as there is simply more to encode, but remains negligible
in relation to the remaining execution time.

Examining the execution times in more detail, we can see that there is some
variance: it would take more than three repetitions to truly stabilize the numbers.
Overall, however, this variance does not favor standalone over cold server or vice
versa, so we can largely ignore it. Without exception, these times reflect exactly the
effect one would assume the server to have. Client logic remains largely unchanged,
and so do its runtimes across the different setups. Notably, even at its worst, client
logic makes up a rather small part of Prusti’s overall runtime, demonstrating its
efficiency. Verifier startup times vary a lot, but don’t show a clear trend between
the two setups they are a part of. Server logic takes about the same time in
the standalone setup as on a cold server, but shows significant improvement on a
warmed-up server, as the JVM has warmed up and can execute code faster.

The JVM extensively uses just-in-time compilation, and it speeds up as the
same code is run multiple times, because it realizes that this code is important

I Total Non-Startup I Verifier Startup
16
14
@ 12
(0]
£ 10
'_
s 8
a2 6
2
w 4
2
O " S SSssSs SSs =SssssA ssssse Das(Eess (ss w7
1 2 3 4 5 6 7 8 9 10
Run #

Figure 3: The time taken to verify the Langton’s Ant program,
with repeated runs using the same server. Note that only the
first run has to initialize the Viper verifier, which is hence colored
separately.

20

4.2 Julian Dunskus

and sacrifices some immediate performance to compile it to native machine code.
As the same code runs more and more, the JVM optimizes it more aggressively
and compiles more of it. Thanks to the server setup reusing its JVM, we can
now gain a lot of performance from this approach for free. The ideal situation of
running near-identical code many times corresponds closely to the typical use case
of working on a program, where the user compiles often, running Prusti in the
process. In order to examine the effects of this system, we started up an instance
of the Prusti server and repeatedly ran Prusti, using the server, on the Langton’s
Ant program from Table 1. Figure 3 shows the improvements we gain from these
repeated runs, and performance indeed continues improving well after the first
run, which is entirely down to the JVM’s optimizations. There is a limit to this,
of course, since processors can only execute code so fast, and the optimized code
can only get so efficient. Furthermore, Viper itself uses Z3 as a low-level back end,
which runs as a separate process outside the JVM, and is thus not affected by
these optimizations. In summary, the benefits of reusing components through the
Prusti server is clear, providing users with faster and faster verification as they
continue to use Prusti on the same server.

4.2 IDE Integration

The first issue users would hit when installing Prusti Assistant before this project
was that it requires a specific nightly build of Rust, which it would be exceedingly
improbable for them to already have installed. To make matters worse, there
was no check that the required Rust version was actually installed, resulting in
cryptic errors for which users should not be expected to find the root cause. As
one of Prusti’s core goals is to make verification more available and easier to use,
this stands in stark contrast to the rest of its functionality. With the changes we
have made, this is now a smooth experience: Once the extension activates for the
first time, it checks for the required Rust toolchain version, providing a simple
dialog if it recognizes that this version is missing. This dialog offers a button to
install the missing version, forwarding feedback from rustup to the status bar as
the installation proceeds. Effectively, the first-time setup has been simplified to
remove the last big barrier to entry, requiring nothing but a single button press
now, making Prusti more accessible to new users.

Prusti Assistant of course needs to download and install Prusti to function,
which can take some time. Previously, this process was completely opaque to
the user—nothing would happen for a while, then the verification functionality
would silently become available at some indeterminate time, once Prusti had been

21

5 Julian Dunskus

installed. Now, Prusti Assistant displays a dialog notifying the user about this
installation process, also sporting a progress bar and a description of the current
step, coming across more responsive and helping users to understand what is hap-
pening. The latter is especially helpful when something goes wrong, e.g. if the
connection to the internet is slow.

The central functionality Prusti Assistant provides is verification, but this func-
tionality can be surprisingly hard to access. Formerly, in order to verify a program,
the user needed to either open the command palette, search for Prusti Assistant,
and run the verify command, or alternatively enter the settings, navigate to Prusti
Assistant’s section, and enable the "verify on save" option—if this is even desired.
Further, if users chose the former approach, it was easy for them to forget about
the extension later, as it did not provide any affordances in VS Code’s Ul remind-
ing users of its existence. To remedy this, we added a "verify" button to the status
bar, which not only makes it easier to run Prusti but also keeps it visually and
thus mentally present to the user, improving the likelihood of continued use.

22

6 Julian Dunskus

5 Conclusion

The goals of this thesis centered around Prusti’s core goal of bringing state-of-the-
art verification to a wider audience of developers by making it easier to use and
verifying programs even without any specific annotations or refactoring from the
programmer’s side. To that end, we focused on improving Prusti’s execution times
as well as its IDE integration and the resulting user experience. Our approach to
improving execution times was to provide a server mode, which can not only
reuse our underlying verification infrastructure but also gain a lot from the JVM’s
optimizations for often-used code paths. This approach has proved successful,
shaving off almost half of the runtime for simple programs, where startup is a
comparatively big part, and also showing steady improvement through continued
use. The effect in practice is clearly demonstrated by Prusti’s test suite of example
programs, whose runtime was nearly halved from over an hour to just over half
an hour, reducing latency in showing Prusti developers if they broke something,
either locally or via continuous integration. This significant reduction in runtimes
makes it less jarring to add Prusti verification to one’s workflow by ensuring quicker
feedback, which contributes to improving adoption of verification.

Additionally, our changes to Prusti Assistant offer major improvements to ac-
cessibility, vastly improving the first-time setup experience and thus lowering the
barrier to entry. Installing the extension now no longer requires manually installing
a dependency, which can put people off from using it. The part of the installation
process that is automated was improved as well, giving a clear visual indication
of its progress. Further, Prusti Assistant now offers a choice of build channels,
easing coordination with a local build of Prusti during development and letting
users choose between stable and nightly builds once Prusti reaches stability. Also
in continued use, Prusti Assistant is now more present, providing the affordance
of a status bar button, which reminds users of its existence and thus helps ensure
continued use past the initial installation. Finally, Future development of not only
Prusti Assistant but also other VS Code extensions providing verification capabil-
ities will be eased by our extraction of reusable components and generally-useful
systems to a Node module.

23

6.2

Julian Dunskus

6 Future Work

Throughout this project, we stumbled upon several avenues worth exploring or
other potential additions that we did not have time for or were out of scope. This
section lists the most important ideas, in hopes of spurring on future work on
Prusti and Prusti Assistant.

6.1

6.2

Prusti

Provide a way to cleanly shut down the Prusti server, e.g. via a process signal
or an HTTP request.

Ensure killing the process used to launch the server also kills all the child
processes it spawned, rather than leaving them around as orphans. This
would also translate well to any other executables Prusti provides using this
same launcher-driver pattern.

Investigate having the server notice when a client disconnects and discard
any verification requests it would otherwise waste computing time on.

When a verification request arrives for which there is no matching verifier
instance yet, initialize one in parallel with the usual request handling up until
the point where it delegates to Java. This would further reduce execution
times for verification operations on the server.

The Viper verifiers Prusti uses to perform its verification are currently not
thread-safe, so the server has to limit itself to only handling one request at a
time. Gaining concurrency on the server would further improve performance,
facilitating a pattern of having a central server that provides verification to
many users.

Use the profiling capabilities we have unlocked to identify performance bot-
tlenecks and further improve execution times.

Prusti Assistant

Provide a progress bar for verification operations, perhaps using previous
operations’ duration as an estimate to give a sense of progress.

24

Julian Dunskus

Extend the unit test suite to cover more of Prusti Assistant’s codebase/be-
havior.

Extract more reusable logic from Prusti Assistant to VS Verification Toolbox.
Some useful candidates might be the subprocesses spawning method or the
logging methods, including user-facing dialog/status bar interaction.

Add a timeout when running Prusti, so that users are offered an easy remedy
when it or Viper gets stuck.

Automatically check for updates and notify the user if there is a new version
of Prusti available, offering to download it.

25

Julian Dunskus

References

1]

2l

3]

[10]

[11]

The Rust Programming Language. https://www.rust-lang.org. Accessed
2020-08-04.

V. Astrauskas, P. Miiller, F. Poli, and A. J. Summers. Leveraging rust types
for modular specification and verification. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), volume 3, pages 147:1-

147:30. ACM, 2019.

Peter Miiller, Malte Schwerhoff, and Alexander J Summers. Viper: A
verification infrastructure for permission-based reasoning. In International
Conference on Verification, Model Checking, and Abstract Interpretation,

pages 41-62. Springer, 2016.

Visual Studio Code. A code editor. https://code.visualstudio.com. Ac-
cessed 2020-08-04.

Node.js. A package manager for JavaScript. https://nodejs.org. Accessed
2020-08-04.

VS Verification Toolbox. Useful component to build VS Code extensions for
verifiers. https://github.com/viperproject/vs-verification-toolbox.
Accessed 2020-08-04.

Tarpc. An RPC framework for Rust with a focus on ease of use. https:
//github.com/google/tarpc. Accessed 2020-08-08.

Warp. A super-easy, composable, web server framework for warp speeds.
https://github.com/seanmonstar/warp. Accessed 2020-08-08.

Reqwest. An easy and powerful Rust HT'TP Client. https://github.com/
seanmonstar/reqwest. Accessed 2020-08-08.

Bincode. A binary encoder/decoder implementation in Rust. https://
github.com/servo/bincode. Accessed 2020-08-08.

Serde. A serialization library for Rust. https://serde.rs. Accessed 2020-
08-08.

26

https://www.rust-lang.org
https://code.visualstudio.com
https://nodejs.org
https://github.com/viperproject/vs-verification-toolbox
https://github.com/google/tarpc
https://github.com/seanmonstar/warp
https://github.com/seanmonstar/reqwest
https://github.com/servo/bincode
https://serde.rs

Julian Dunskus

"T'0FT eAR[Suisn ‘ (ZHD 8'F
1S00q 0qINY) ZHY) €7 UMM HOSL6-6! [9IU] 9I00-8 Ue U0 [T G()ORUW UO UNI dIoM SIS9) 9S9Y] [[y "SUILI 9011} 91} SSOIOR
UOI}RIASD PIePUR)S 1107} Yim Suoe ‘sureidoid ojdurexs snorrea U0 UOIINIOXS S, 198N J SUTWI) WOIJ SHNSAI [N :F 9[qR],

8830 000 100 000 00 900 S6°0 |L000 80 88C SC0 ¥6E 000 100 SO €89 | €000 600 9.Z ST0 E 000 100 PO 699 [erany,
8T 100 100 100 10 g0 €T | TI00 8T0 9% SP0 289 100 €0 990 €86 |F000 IT0 FET 10 19 100 T¢0 900 856 oSussoTy
LET 000 900 1000 910 ST'0 09T | 6000 900 09 020 6I'S 000 S0 GT0 $6°L | P00 S00 8¢T 100 8€'G 000 S0 900 €T'8 SIL] MOLIOF]
LITT 000 €00 VIO IET | 6000 00 ¢ 8TO 6IF 000 €00 vLO [TO00 800 16T LTO FET 000 €00 €50 V69 10 JO ST0MO[,
6L6TT 200 0£0 1 TO'ET | 6100 €20 94T 6TT €F9% 600 Il €6°08 | G000 €10 1T 99T 8¢LZ G00 90T LT 90'T€ | (dmdiomonour) y10g w0no0[s
6167 200 €20 €0 PLS | 9100 SU0 KT er0 1071 : €641 | F000 GT0 86T SCT €6TT 800 P90 8YT 99T RIS ISIT PO
9I8'COT 0T'0 €90 OVe 8L'80T | 100 €0 20T 6L L1673l 98'92T | G000 LT0 T6C 1gF 0S6IT 10 29 F¢T P0'Sel wolqo1q ypesderyy
€8T 200 610 €90 g€ | gI00 ST0 ST 6F0 858 1000 660 EVIT | 7000 8T0 8LZ S€0 ¢S 00 O0F0 990 OLTT ootubog 1IRTIOL]
orre 200 020 060 €29 | €100 610 LT L0T €LTL P00 0L0 TTOT | V000 2€0 28T PET SI'EL L00 2.0 BLT gL'oT | (dwdiowouow) yreog Areutg
LT 100 010 160 L6'T | 0100 090 F6Z €90 29 200 210 TE6 | €000 8F0 F6T P60 6S9 200 €10 I¢T 99'6 wonoun,] uwEINPY
0Lz’L 200 610 29T €0'8 | LI00 090 €€€ PIT GOLL €10 980 88'1Z | F000 8€0 L0€ 19T L8ST TI'0 IS0 66T 9L'TT L0U08) 1105 UONILOG
Y68'E TO0 EV0 9L0 867 | 1200 €80 96T 19T 89FT 800 L6O PO'8T | €000 LT0 8¢T 1¢0 S9TT 900 980 180 60°9T Iy s, 0ysRT
00T 000 800 110 66T |8000 €00 62 190 L&C 100 €0 88, | €000 €00 LT 610 EF 100 L0 LT0 LE'9 oIS N
081°¢L 210 090 PREL €98L | 6100 I€0 2l P99 €166 980 ¥TT 09°€0T | G000 930 Z€E 6F'8 66TII 600 1L€ 268 €0°02T mog, s 3y
FEo'G GO0 50 600 650 8T 9F'9 | LI00 TE0 8T 650 TILL 900 8LO 6012 | P00 LFO 6T 8€T g9l 010 PLO 00€ TE6T J108dwo Y
€lgT 100 800 €00 LZ0 090 €6'T | CI00 190 69T 19T 2€8 100 0€0 TETT | €000 180 €9T 66T €LL 600 620 00€ €9°0T (o10u08) preog Lrewg
EVFT 200 €10 SO0 0£0 S60 88T | ST00 LU0 1T 8P 8L 110 LEO L670T | €000 090 €97 03T 8L 600 980 €6T V80T $100(1 001
ooeu() 0 I0ATDG O t ®10L, T ARG O JIy o relo, DYIDA 0 ARG O JaIy o relo, ordurexsyy
JOAIOG ULIRAN JOAIDS PIOD auoepurlg 7

ele Sulwliy, [V

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Developing IDE Support for a Rust Verifier

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

Dunskus Julian

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

Uerikon, 13.08.2020 2Dund=—

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

