ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Annotating the Rust Standard
Library with Specifications for
Use in a Rust Verifier

Master’s Thesis

Julian Dunskus

Supervised by Aurel Bily, Prof. Dr. Peter Miiller
Department of Computer Science, ETH Ziirich
Ziirich, Switzerland

February 2023



Abstract

Prusti is a verifier for the Rust programming language aiming to improve acces-
sibility of program verification by being close to a Rust model. A major hindrance
in adapting an existing project for verification with Prusti was that, in order for
Prusti to understand calls to library code, they had to be manually specified in an
ad hoc fashion. We improve this situation by offering specifications for the most-
used parts of the Rust Standard Library, allowing users to rely on and contribute
to a central repository of specifications rather than sourcing or writing them man-
ually. To determine which methods to specify, we gathered and evaluated data
from the large amount of code in Rust’s central package repository, crates.io.
All told, the new specifications cover around one fifth of all method calls across
this dataset, and we further categorized the vast majority of currently unspecified
calls to inform future specification efforts.



Contents

1 Introduction
2 Background
2.1 Extern Specs . . . .. ..
2.2 Type-Conditional Spec Refinements . . . . . . ... ... ... ...
2.3 Shipping Specifications with Prusti . . . . ... ... ... ... ..
2.4 Qrates . . . ...
2.5 Related Work . . . . . .. ...
3 Approach
3.1 Prioritizing Most-Used Specifications . . . . . .. ... .. ... ..
3.1.1 KeyInsights . . . . ... ... oo
3.2 Flexible Trait Specifications . . . . . . . . ... .. ... ... ...
4 Implementation
4.1 Data Gathering . . . . . .. .. . o
4.1.1 Macros . . . . ..o
4.1.2 Scaling . . . . ...
4.1.3 Evaluation . . . . .. ... ... oL
4.2 Specification Writing . . . . . . ... L
4.2.1 Option::unwrap . . .. .. ... .. ... ... ...
422 Clone::clone. . . ... ... ... ... ... ...

10
10
11
12



Annotating the Rust Standard Library with Specifications

Julian Dunskus

423 Default::default ... ... ... ...
424 From<T>and Into<U> . ... .......
425 core::mem::size_of .. ... ... ...
42.6 Deref, Index,etc. . ... ... ... .. ..
427 Vec,String. ... ... ... ... .. ...
4.2.8 Ranges & Comparisons . . . . . . .. .. ...
429 Option::and .. ... ... ... .....
4.2.10 Other Limitations . . . . . . . ... ... ...
4.3 Prusti Improvements . . . . . ... ...
4.3.1 Type-Conditional Spec Refinements . . . . . .
4.3.2 Extern Specs . . . .. ... ... ... ..

5 Evaluation

5.1 Specification Progress . . . . . . ... ... ... ...
5.1.1 Macros . . . . . ..o
5.1.2 Conversions . . . . . . . .. . . ... ... ..
51.3 Default . . ... ... .. ... ......
514 size_of . ... .. ... ... ... ... .

6 Conclusion

6.1 Future Work . . . . . ... ... ... ... ...
6.1.1 Specifications . . . . ... ...
6.1.2 Qrates . . .. ... ... ... ... ...

A Open-Source Contributions



Chapter 1

Introduction

Avoiding bugs in code has long been a goal of any software development process.
To this end, programming languages are becoming ever more expressive, allowing
users to express complex relationships between variables and gain compile-time
guarantees of their code’s safety. Rust [1| is a modern systems programming
language that prizes memory safety above all else, and leans heavily into these
static safety guarantees.

Nevertheless, there remain many properties of code that cannot be expressed
in the type system or otherwise checked at compile time. This is where deductive
verifiers come in, building on top of the language’s facilities to allow users to
express additional properties of their code, which can be verified exhaustively
without needing to run the code or otherwise test it.

One such verifier is Prusti 2|, developed by the Programming Methodology
Group at ETH Zurich. It is based on the Viper [3] verification infrastructure,
translating Rust code input to Viper code and verifying that using the Viper
verifier, then relating the results to the original Rust source. It can verify e.g.
assert! (...) assertions in code as well as pre-/postconditions on functions (de-
clared via Rust’s attribute system).

In order for Prusti to understand a piece of code, it has to know how any func-
tions called within it behave, which it can gather from annotations users place on
their declared functions. However, real-world Rust code depends heavily on exter-
nal methods and types that are not part of the user’s codebase, so specifications
for their behavior need to be available.



Annotating the Rust Standard Library with Specifications Julian Dunskus

The most central such repository of external code is the Rust Standard Library,
providing essential features like optionals (Option), error handling (Result), and
functional primitives (map, filter, etc.). Being able to verify programs using this
functionality with minimal setup would lower the barrier to entry for using Prusti
and make it easier to apply to existing codebases, proliferating verification of Rust
code.

Currently, if users want to verify programs using this code, they must search
for or write these specifications themselves. A motivating example of such a spec-
ification for (part of) std::option::0ption might look as follows:

#[extern_spec]

impl<T> std::option::0ption<T> {
#[pure]
#[ensures(result == matches! (*self, Some(_)))]
pub fn 1is_some(&self) -> bool;

#[requires(self.is_some())]
pub fn unwrap(self) -> T;

Rather than expecting users to write such specifications ad hoc whenever they
need them, likely copying them over from other sources, we aim to provide a cen-
tral repository of specifications as part of the Prusti project. These specifications
can be added by declaring a single dependency, with the most fundamental ones
shipping with Prusti directly. This repository also acts as a hub for users to con-
tribute their own specifications to, expanding the usefulness of Prusti and reducing
the effort required to integrate it into an existing project and start verifying.

This report begins by providing background knowledge for the involved con-
cepts, describing the initial state of Prusti (Chapter 2). It then outlines the
approach we settled on to focus our efforts on the right targets and to write ex-
tensible specifications (Chapter 3). The bulk of the report falls into Chapter 4,
describing the process of implementing this approach, going into detail on groups of
related methods, along with the difficulties encountered and insights gained along
the way. Next, we evaluate the progress we have made in retrospect, visualizing
the coverage achieved by our specifications (Chapter 5). Finally, we conclude by
summarizing our findings and their relation to Prusti’s goals, as well as laying out
opportunities for future work that we discovered (Chapter 6). For completeness’
sake, we also include a list of the issues opened and code contributions made as
part of this project (Appendix A).



Chapter 2

Background

This chapter lays out the necessary background knowledge to understand the later
chapters. It is grouped into sections, so that readers may skim through or skip
over sections describing concepts they already understand. Extern specs and type-
conditional spec refinements have received major changes as part of this thesis, so
this chapter describes their initial state before said changes. A notable exception is
syntax—in an effort to improve clarity, all examples here and throughout the report
consistently use the final syntax. Later chapters will elaborate on the specific
changes made.

2.1 Extern Specs

When using functions from external libraries (like the Rust Standard Library,
or any dependencies of the project), it is not possible to simply write a speci-
fication at the function definition. To work around this, Prusti offers a feature
called extern specs. These allow defining specifications for any external trait,
impl, or free-standing function. They are written as the item in question with an
#[extern_spec] attribute attached, e.g.:

#[extern_spec]
trait Default {
#[pure]
fn default() -> Self;



Annotating the Rust Standard Library with Specifications Julian Dunskus

Trait specifications like this will be checked for all implementations in user
code, and assumed to hold when using a type implementing the trait.

We can also specify the behavior of a specific implementation of a trait. In this
particular case, we can describe the exact value that i32::default() returns:

#[extern_spec]

impl Default for i32 {
#[pure]
#[ensures(result == 0)]
fn default() -> Self;

Trait methods already do not allow bodies in standard Rust, and in impls
or free-standing functions, where a body would usually be required, extern specs
explicitly disallow it. They only serve to specify the behavior of a function, not
its source, so instead methods are only declared and not defined, followed by a
semicolon instead of a body in braces.

Free-standing/top-level functions are written as part of their module, as im-
porting it into scope would cause a name conflict. This requires re-importing the
Prusti macros and makes it awkward to interface with code outside the module

scope, e.g. a supporting trait for conditional specifications (illustrated in Subsec-
tion 4.2.5).

#[extern_spec]
mod core {
mod mem {
use prusti_contracts::x;

#[ensures(*x === old(snap(y)) && *y === old(snap(x)))]
fn swap<T>(x: &mut T, y: &mut T);

2.2 Type-Conditional Spec Refinements

When specifying a function, we are often able to express its specification more
precisely given certain conditions on the involved types. This is achievable through



Annotating the Rust Standard Library with Specifications Julian Dunskus

type-conditional spec refinements, implemented under the name “ghost constraints”
[4] for a previous thesis.

For example, it is not possible to specify the exact values of size_of for dif-
ferent type arguments without baking support for it directly into Prusti logic,
treating it as a built-in operation. However, we can define sizes for the types on
which people most commonly use this function, e.g. the built-in numeric types.
For this, we can define a new trait KnownSize whose requirements encode this
information as follows:

pub trait KnownSize {
#[pure]
fn size() -> usize;

impl KnownSize for 132 {
#[pure]
fn size() -> usize { 4 }

We could already specify the behavior of core::mem::size_of as pure in
the general case, since its output is the same when called repeatedly. But thanks
to this new trait, we can conditionally further refine this specification when T is
known to implement KnownS1ize, specifying exactly what the returned size is:

#[extern_spec(core: :mem) ]

#[pure]

#[refine_spec(where T: KnownSize, [
ensures(result == T::size()),

D]

fn size_of<T>() -> usize;

2.3 Shipping Specifications with Prusti

There has been some prior work on publishing specifications with Prusti, which
this project benefits from. For one, extern specs were extended to apply across
crate boundaries, enabling the concept of “specification library” crates providing
spec support for other crates to use in dependents’ code [5]. In this process, Prusti

7



Annotating the Rust Standard Library with Specifications Julian Dunskus

was already set up to ship specifications for the Rust Standard Library, specifying
a few methods! as proof of concept. Specifications were split into a crate for
core, the core of the Rust Standard Library that is necessary for the language
to function, and one for std, the more expansive standard library. This allows
projects to eschew the latter, minimizing executable size to run in environments
with tight space constraints [6].

2.4 Qrates

Qrates [7] lets us extract semantic data from crates published on crates.io, the
primary repository of crates (packages) in the Rust ecosystem. Qrates fetches
crates from said repository, compiles them using Docker, and builds a database
from information it outputs during the build process. Notably, this allows us to
answer questions like which methods or types are used the most across all published
crates.

More specifically, Qrates works by wrapping rustc to gather data during the
compilation process. In a separate step, this raw data is stored into a database
for further processing. This database is represented as Datalog relations, allowing
complex fixed-point queries (though these are not necessary for our purposes).
Finally, there is a variety of queries implemented in Rust that use this database
(and a Datalog engine?) to evaluate relations and output CSV files.

2.5 Related Work

There has been similar work done for other languages that provides valuable ex-
perience in how to approach these problems. In Python, users can add type an-
notations to their code to achieve some level of static typing, and there is a large
repository providing types for different packages called typeshed [8]. Similarly,
TypeScript extends JavaScript with a type system, and there is a de-facto stan-
dard repository of type annotations for different libraries called Definitely Typed
[9]. Our goal of providing functional specifications for existing libraries is funda-
mentally analogous to these projects’ type specifications.

ISpecifically, previous specifications were limited to Result::is_ok, Result::is_err, Re-
sult::unwrap, HashMap: : get, and HashMap: : contains_key.
Zhttps://github.com/rust-lang/datafrog


crates.io
https://github.com/rust-lang/datafrog

Annotating the Rust Standard Library with Specifications Julian Dunskus

One insight from these projects is that they manage the complexity of main-
taining annotations for the large collection of libraries available by providing sep-
arate packages for each such library, rather than requiring users to pull in code for
libraries they are not using. As this thesis only concerns itself with the standard li-
brary, such scalability considerations will only come up in future work. Regardless,
these projects make for useful references, offering existing solutions for problems
that may arise in work on Prusti specifications as well, e.g. supporting multiple
versions of a crate spanning breaking changes.



Chapter 3

Approach

3.1 Prioritizing Most-Used Specifications

Specifying every single item in the Rust Standard Library is an enormous task,
which would not fit within the time constraints of this project—instead, we elected
to specify only the most-used parts. Further specifications will build up over
time as people contribute specifications they find useful or other student projects
explicitly set out to write more.

Figuring out what those most-used parts are, however, is far from trivial. Of
course, any Rust user will have developed a certain sense of what the most funda-
mental types are, like Option<T> or Result<T, E>, and those are clear primary
targets for specification. However, even these types already have a vast collection
of methods, many of which are only rarely used.

As such, we base our decisions on an analysis of usage data from published
Rust code. We gather data from public crates on crates.io, the primary package
repository in the Rust ecosystem. The Qrates framework [7] provides the tools for
this exploration, allowing us to gather usage data into a database and formulate
queries on it. Qrates does not have a query built in that provides the exact data
we need, requiring extensions for our purposes. With these results in hand, we can
perform data science and use the gained insights to inform decisions about what
to prioritize.

Qrates lets us extract more specific information than just which methods are
called from where, most importantly allowing us to resolve (some) calls to trait

10


crates.io

Annotating the Rust Standard Library with Specifications Julian Dunskus

methods to their concrete receiver type. For example, a central part of Rust’s
error handling story is the Try trait, implementing the postfix ? operator for
early-exit control flow, akin to traditional exceptions propagating up the stack.
In this case, the trait itself does not provide the necessary information to express
whether execution will continue along the current path or abort with an early
return’. Thankfully, we can identify not only how many calls occur to the trait
methods that this syntax desugars to, but even what fraction of the calls use
Result, Option, or another type as receiver. Thus, we have an accurate idea of
the coverage of our specifications, revealing any important missed cases.

Further, we can find out what generic arguments are involved in method calls,
both to the function itself and to the receiver (if applicable). This is important for
e.g. core::mem::size_of<T>(), a method that returns the memory footprint of
a given type in bytes. Barring specific support for this method as a Prusti builtin?,
it is infeasible to specify the behavior for every single type. Hence, it is important
to know the generic arguments involved in calls to this method, in order to identify
the types whose size is most important to specify.

As of January 2023, crates.io has around 100,000 crates, which is too large a
number to quickly test Qrates changes against. Instead, our analysis initially used
the top 1000 most downloaded crates as a presumed-representative sample—these
only take around an hour to build and extract data from. The insights gained
from these turned out to hold true for the full dataset, so to avoid confusion we
will only refer to the latter in this report.

3.1.1 Key Insights

For starters, we can limit our analysis to calls across different crates, since within
a crate, specifications are written by the user directly at the definition site, rather
than relying on external ones shipped with Prusti. Further, most intra-crate calls
are to methods that are not public and thus could not be specified externally.
Thus, in all our evaluation, we will implicitly ignore calls within a single crate.
Further, note the distinction between methods and call targets—the latter being
the combination of a method and its receiver, which is relevant for trait methods,
which may be implemented by many types.

IThis depends on the specific value in question, with e.g. Result: :Err causing an exit while
Result: :0k continues execution.

2This may make sense as future work, but our current implementation requires no additional
support and already provides a lot of value to users, covering the vast majority of concrete calls.

11


crates.io

Annotating the Rust Standard Library with Specifications Julian Dunskus

s:cmp::Partialkq::eq
::ops::deref::Deref::deref
::clone::Clone::clone
tops::try_trait::Try::branch
try_trait::FromResidual::from residual
::fmt::Formatter::write_str
::default::Default::default
::fmt::Arguments: :new_v1
::fmt::ArgumentVl::new_display
8 private::push_ident
core::iter::traits::iterator::Iterator::next
r:convert::Into::into
::MapAccess: :next_value
n::0ption<T>::is_some
er::traits::collect::IntoIterator::into_iter
Error::duplicate_field
SeqAccess: :next_element
:iser::SerializeStruct::serialize field
::string::ToString::to_string
::de::Error::invalid_length
private::de::missing_field

core::ops::deref::DerefMut::deref_mut
core: :ops: :index: : Index: : index
proc_macro2: :TokenStream: : new

446351 others

Figure 3.1: The frequency of the top 27 most-called methods,
along with the sum of all other methods for comparison.

Of course, not all methods are called with the same frequency. In fact, the
disparity is very large (Figure 3.1)—so much so that specifying just the top 27
methods (=~ 0.0060% of 446,378 total) would already cover the majority of all
call sites in our dataset. This trend remains when additionally considering the
method’s receiver: here, the top 87 call targets (=~ 0.0035% of 2,512,426 total)
would require specifications for the same effect. As a result of this, just a few
specifications will already greatly enhance Prusti’s usefulness in verifying everyday
code (Figure 3.2).

As demonstrated here, in order to achieve good coverage of call sites and thus
be helpful for users, it is essential that we prioritize the right methods for inclusion
in Prusti’s library of specifications. To this end, we can use the frequency data
to answer questions not only about which methods are called most, but also what
the most important receivers are for trait methods, and what the most common
generic arguments are when those are relevant.

3.2 Flexible Trait Specifications

For traits in the Rust Standard Library, there is often a set of contracts that is not
fully expressible in the type system but expected to be satisfied by implementers.
These contracts can often be expressed and verified using Prusti. However, it is not
necessarily desirable to simply impose these contracts on every implementer, since
some might deliberately violate them. This would trigger failures when verifying an

12



Annotating the Rust Standard Library with Specifications Julian Dunskus

1.0

0.8 1

0.6

1

0.2 1

fraction of calls covered

0.0
10° 10t 102 103 104 10° 106
specs written

Figure 3.2: The theoretical coverage achieved by specifying the
top x call targets—note the logarithmic scale on the x-axis.

implementation that violates the contracts, as well as potentially creating unsound
behavior when they are assumed to hold for an unspecified implementation. As
such, a way to opt into or out of such specs allows for more precise contracts that
are more restrictive but still satisfied in most implementations.

As an example, consider the trait Default, which defines a single static method
creating a new instance of the given type as a default value, e.g. 0 for integers. We
would like to use this trait to specify Option<T>::unwrap_or_default, which
unwraps the optional, falling back on the type’s default value if it is None. Ideally,
we could describe that in the latter case, <T as Default>::default() is called
and the result returned, but that would require future Prusti features like call
descriptions [10]. Failing that, we can assume that default() is pure®, always
returning the same value (or one that is indistinguishable under Prusti’s snapshot
encoding [11]|). However, this might not hold for all implementations of Default,
so there has to be a way to opt out of this expectation.

The fundamental tool to express this opt-in/opt-out mechanism is type-con-
ditional specification refinement. This allows us to conditionally refine a specifica-
tion with additional pre- or postconditions (or a purity annotation) when certain
type constraints hold. In the running example, we can introduce a new trait
PureDefault to express the additional constraint that Default::default() is
pure:

3If it were not pure, we simply could not use it in pre- or postconditions currently.

13



Annotating the Rust Standard Library with Specifications Julian Dunskus

pub auto trait PureDefault {}

#[extern_spec]

trait Default {
#[refine_spec(where Self: PureDefault, [pure])]
fn default() -> Self;

By marking it as an auto trait*, we have created an opt-out mechanism,
where every implementation is assumed to satisfy these more specific contracts
unless it explicitly opts out by adding a so-called negative imp1l, syntactically e.g.
impl !PureDefault for Foo {}.

Better yet, Rust only applies auto traits automatically when all the type’s fields
implement the trait, so nesting a non-PureDefault type within an unspecified one
will opt the latter out of the trait by default. Users can still decide to opt back
into the trait, e.g. if they have customized the implementation to ensure purity
despite the impure nested implementation.

We can combine this addition with another refinement on unwrap_or_default
to specify it:

#[ensures(old(self.is_none()) || old(self) === Some(result))]
#[refine_spec(where T: PureDefault, [
ensures(result === match old(self) {

Some(v) => v,
None => Default::default(),
b

D]
fn unwrap_or_default(self) -> T where T: Default;

This finally gives us the desired specification outlined above, along with a
simple fallback when the more precise contract is not known to hold.

‘https://lang-team.rust-lang.org/design notes/auto _traits.html

14


https://lang-team.rust-lang.org/design_notes/auto_traits.html

Chapter 4

Implementation

As outlined before, we started out by gathering data to determine which methods
to prioritize specifying. We then moved on to specifying methods identified to be
important. This chapter lays out the process of gathering this data (Section 4.1)
and writing the specifications (Section 4.2), delving into the complexities these
goals entailed, including limitations in Prusti along with their workarounds or
remedies (Section 4.3).

4.1 Data Gathering

Qrates comes with an assortment of predefined queries, Rust code querying the
database and gathering rows of data into a CSV file. The database already con-
tained relationships encoding method calls, but this data proved insufficient for
our use case. Indeed, figuring out what data is relevant to identify a method call
and how to encode it meaningfully is far from trivial. For each call, we gather de-
scriptions of: the receiver (if any) and its generics, the path to the called function,
generic arguments to the function and the type it is defined on (if any), as well
as the crate of the call site and of the called function (the latter technically being
repeated from the function path).

For all this to work, we also had to create a mechanism to meaningfully rep-
resent arbitrary types as text. This task again turned out to be rather involved,
as we could not simply rely on Rust’s built-in implementations of Display or
Debug. These implementations include generic arguments, which would have to
be re-parsed and separated out for meaningful data processing. They also have the

15



Annotating the Rust Standard Library with Specifications Julian Dunskus

issue of working relatively to the current crate, only prepending the crate name
for foreign paths, which would make the data less uniform and harder to process.
In the end, we implemented methods from scratch that would traverse type paths,
gathering uniform descriptions of them and, separately, any involved generics.

4.1.1 Macros

If a call was written as part of a macro expansion, we also store the macro that was
invoked. Otherwise, these might heavily skew results towards functions people do
not interact with directly, since macros often expand into many individual method
calls. However, we could not just take the top macro from the call stack, because
when users define their own macros calling methods, we want to catalog these calls
as if made directly.

Consider the following example:

macro_rules! my_macro { // expands to:
(Sname:ident) => { fn example() {
fn Sname() { {
println!( tistd:iio::_print(
stringify! ($name) ::core::fmt::Arguments: inew_v1(
)5 &["example\n"], &[],
} )
s )5
} }s
my_macro! (example) ; }

The call to Arguments: :new_v1 here originates from an internal macro named
format_args_nl used by println! (). Thus, its macro backtrace, from bottom
to top, is format_args_nl, println, my_macro. The most salient of these is
println, being the lowest-level macro in the user’s code. We adapted this intu-
ition into a general rule: look at the crates the macros are defined in and choose
the topmost one defined outside the current crate. This treats the user’s own
macros transparently, while avoiding surfacing implementation details of any called
macros.

16



Annotating the Rust Standard Library with Specifications Julian Dunskus

4.1.2 Scaling

Another issue was scaling this logic to the (as of the time of writing) over 100,000
crates published on crates.io, as we wanted a balanced perspective on real-world
Rust code. This involved optimizations at every step of the way, as well as some
rethinking of the monolithic approach built for smaller datasets.

When running the query for method calls, the gathered rows are deduplicated
before being stored in the CSV, instead additionally storing each one’s number
of occurrences. For data from the top 1000 crates, this takes the final CSV from
524 MiB to 39 MiB. Further, the calls are sorted by their target path to optimize
for compression using gzip. The aforementioned 39 MiB CSV gzips down to 10.6
MiB without sorting, reduced to just 4.8 MiB with sorting, a compression factor
of around 8x.

There are other difficulties in the process of compiling the crates to gather the
data in the first place. This process was not designed for such large numbers of
crates, and simply running it over all crates inevitably broke down as memory
usage increased. This amount of crates also takes on the order of weeks to com-
pile, making it dangerous to rely on the machine running stably for the duration.
Instead, we implemented a batching system that subdivides the list of crates to
compile into batches of configurable size, after each of which the generated data
is extracted and the workspace is reset. Larger batch sizes incur less overhead per
compilation but increase memory requirements and increase potential data loss
on failure, and 1000 crates per batch turned out to be a good compromise. This
system is more fault-tolerant, only requiring a single batch to be redone if the
machine crashes at any point, which reduces lost time to a few hours.

Following this step, the data is processed to form a database, which has to fit
into memory at once with the current setup. As it turns out, the database ends
up at around the same size as the original extracted data, coming in at around 10
GiB! for a batch of 1000 crates. This unfortunately makes it infeasible to build
a database over all 100,000 crates, so we had to build the database and run the
query on a per-batch basis as well. Merging the query output proved a little tricky;,
because the data also includes dependencies, which would have been represented
many times if naively concatenating the CSVs. Instead, based on the “caller crate”
field, we iterate through the individual batches’ rows and only append data for a
crate from the batch where it is first seen, ignoring it in later batches.

I This varies a lot by crate. It also fortunately compresses by a factor of around 5x as a ZIP,
taking the data for all crates from over 1 TiB to a more manageable 250 GiB.

17


crates.io

Annotating the Rust Standard Library with Specifications Julian Dunskus

Combining all these optimizations, we end up with a final CSV for all 100,000
crates of 2.6 GiB (277 MiB gzipped). We can also strip out intra-crate calls (where
caller and target crate are the same), taking it down to 2.0 GiB (234 MiB gzipped).
A small caveat is that, of the 100,000 crates, only 73,181 successfully compiled and
produced any entries, but this dataset is still absolutely sufficient for our purposes.

4.1.3 Evaluation

In order to evaluate this data, we employed a Jupyter notebook and the pandas
library, as has previously been done in Qrates. Thanks to the above optimizations,
the data comfortably fits into memory and processing it does not impose special
hardware requirements.

The most obvious question to ask of this data is which methods are called
the most, but this is a deceptively simple question. For example, for methods like
Option: :map, the concrete generics (of the type and the function) do not matter—
any specification would apply to all of them. On the other hand, From<T>: : from
requires a separate specification for each combination of type argument T and
receiver type. In the end, we filtered the data in various ways to identify important
targets, relying on manual inspection to pick out worthwhile targets from these
lists.

We have elected to publish the data we gathered, the scripts used to orches-
trate the process, and the Jupyter notebook used to analyze it, on GitHub at
https://github.com/juliand665/qrates-eval, in the hope that this will aid future ef-
forts along the same lines and provide a jumping-off point for other research.

4.2 Specification Writing

In choosing methods to specify, we did not strictly adhere to the popularity
ordering—when specifying some methods in a group (e.g. on the same type or
with similar signatures), the bar to specify further methods was lowered, inviting
specifications for the remaining methods. For example, it would not make much
sense to specify Option::is_some without also specifying is_none, even if the
former were used many times as much. (In reality, is_some is used only around
twice as much as is_none, but they make for a nice example.)

The argument for this is twofold: From a usability perspective, it would feel
strange for these closely related methods to have different levels of support, per-

18


https://github.com/juliand665/qrates-eval

Annotating the Rust Standard Library with Specifications Julian Dunskus

haps having to resort to negating is_some in place of writing is_none if only
the former were specified. From the perspective of specification writing, the specs
these methods require are almost identical, apart from flipping the two cases, so
specifying both requires only minimally more effort than specifying one. While
this is a contrived example, the logic scales to other groups of methods, e.g.
core::mem::size_of and core::mem::align_of, or to the Default values or
other details of all numeric types.

The rest of this section looks at interesting groups of methods, highlighting the
chosen approach to specifying them, as well as any difficulties or Prusti limitations
encountered along the way. Many of these lead down rabbit holes of necessary
improvements to specify them the right way, and these examples should illuminate
the processes and motivate the changes we made to Prusti.

4.2.1 Option::unwrap

This function unwraps the value wrapped in an Option, panicking if there is none.
It is very simple, but there is already an important trap worth pointing out here:

#[ensures(match old(self) {
Some(v) => result === v,
None => unreachable! (),

b1
fn unwrap(self) -> T;

There is a bug in this code: the unreachable! () is actually reachable. This
is because we never state the precondition that the value cannot be None. Writing
false instead would have the same effect. If we instead wrote true here, we
would still not be validating that the method is callable, but we would solve the
main issue:

The big problem is that this is effectively an ensures(false), entailed by
any call to this method where the receiver could be None, leaving the verifier in
a state where anything verifies, even patently false things like assert! (0 == 1).
Ordinarily, this specification would be verified against the implementation of the
method—for which, like most code, the postcondition false would not hold—
catching the bug. However, this is part of an extern spec, and so the method body
is not available to verify against (the problem would be the same if the method
were marked #[trusted]).

19



Annotating the Rust Standard Library with Specifications Julian Dunskus

One possible solution would be to fail or at least emit a warning when the ver-
ifier reaches this false state. Perhaps the unreachable! () could be interpreted
differently in this context, causing an error when it is in fact reached. It would
also be valuable in general to provide the option to verify extern specs against
their source with a separate invocation. This would not help users unless they
went the extra mile to perform this check, but it would create a way to gain some
confidence that one’s extern specs are provably correct, especially valuable for us
as creators of a central repository of them.

4.2.2 Clone::clone

Clone, one of Rust’s most fundamental traits, provides a way to explicitly create
a copy of a value. It is a reasonable expectation that any implementation of Clone
also satisfies snapshot equality? between the copy and the original. However, there
are bound to be exceptions, so we do not want to unconditionally impose this con-
straint on all implementers. This is where the flexible trait specifications designed
in Section 3.2 come in. We define an auto trait SnapshotEqualClone that is
used to express this additional constraint as a type-conditional spec refinement:

#[extern_spec]
trait Clone {
#[refine_spec(where Self: SnapshotEqualClone, [
ensures(result === self),

DIl
fn clone(&self) -> Self;

With this specification in place, any usage of clone () is known to satisfy snap-
shot equality unless the type explicitly opted out of the automatic implementation
of SnapshotEqualClone.

One caveat to this approach is its interaction with Rust’s orphan rule®, which
forbids implementing foreign traits for foreign types to make it impossible for
multiple crates to provide overlapping implementations. This means that a Prusti
user writing extern specs for a crate they do not own is unable to opt a type out
of this auto trait.

ZSnapshot equality relies on Prusti’s snapshot encoding [11] to check deep structural equality.
3https://rust-lang.github.io/chalk /book/clauses/coherence.html

20


https://rust-lang.github.io/chalk/book/clauses/coherence.html

Annotating the Rust Standard Library with Specifications Julian Dunskus

foo-crate prusti-std prusti-contracts
foo_spec core_spec
struct Foo impl oA
!SnapshotEqualClone
for Foo {+ X SnapshotEqualClone

Figure 4.1: An example configuration of the crates involved in trying to opt an
external type out of a marker trait, violating the orphan rule.

Even contributing these specifications to Prusti’s collection does not always
work with the current architecture, as illustrated in Figure 4.1. Traits that only
interact with Rust’s core crate (like SnapshotEqualClone) are defined directly
in the prusti-contracts crate that ships with Prusti, as they can be included
unconditionally. All other specifications live in prusti-std, a separate crate that
people need to explicitly add as a dependency, allowing for configuration with
Cargo’s “features”. As a consequence, the specifications for a third-party crate
should also be added to prusti-std, where they cannot create links between the
types from prusti-contracts and the third-party library.

In future, Prusti could be extended to either offer an alternative opt-in/-out
mechanism or provide a way to circumvent this rule in limited cases like this. Until
then, rather than being provided externally, such specifications can only be written
part of the library itself, contributed to its source repository.

There is also an important tradeoff here compared to using a regular, non-
auto trait. This approach is technically unsound, because it assumes the stricter
constraints for external types, whose bodies are not available to verify they hold.
This is a general problem with extern specs, but it is exacerbated by the auto-
matic nature of this solution, whereas having to opt in explicitly would result in
each specific case being given more careful thought as to whether it satisfies the
specification. It should be noted that any client code implementing Clone will be
verified against this constraint, failing if a user’s implementation does not satisfy
snapshot equality, so it is only a problem for external types. All things considered,
we deemed SnapshotEqualClone (and other auto traits refining specifications)
likely enough to hold for any type that this downside is clearly outweighed by the
additional effort necessary to make an opt-in system useful.

21



Annotating the Rust Standard Library with Specifications Julian Dunskus

4.2.3 Default::default

Default is a trait that defines a default value for a type, which can be constructed
at any time without arguments via the Default::default() method. We can
specify the default values for a variety of commonly used types. In order to avoid
excessively verbose code, we used a macro to list default values concisely:

macro_rules! default_spec {
($t:ty, Sviexpr) => {
#[extern_spec]
impl Default for St {

#[pure]
#[ensures(result == $v)]
fn default() -> Self;
}
}s
}
// e.g.:

default_spec! { bool, false }
default_spec! { i32, 0 }

Note that the function is also considered pure, since it always returns the
same value. As for Clone, this is likely to hold for almost all types implementing
Default, but in order to maintain support for the exceptions, we cannot uncon-
ditionally mark default() as pure. Instead, we can once again employ a marker
trait, introducing an auto trait PureDefault that expresses this additional
constraint. This allows clients that are explicitly impure to state as much, while
preserving the sensible default for the vast majority of use cases. The specification
for the Default trait then looks as follows:

#[extern_spec]

trait Default {
#[refine_spec(where Self: Copy + PureDefault, [pure])]
fn default() -> Self;

As an aside, Prusti did not yet support conditionally marking methods as pure
via type-conditional spec refinements, so we had to extend it. This ended up
being a rather involved change, but it enabled more complete specifications for
many methods.

22



Annotating the Rust Standard Library with Specifications Julian Dunskus

One example that benefited from this change is Option: :unwrap_or_default.
This method returns the wrapped value if present, otherwise calling default()
and returning its result. It would make sense to specify it as follows:

#[ensures(result === match old(self) {
Some(v) => v,
None => Default::default(),

138
fn unwrap_or_default(self) -> T where T: Default;

However, default () is not necessarily pure, so it cannot be used in the context
of a pre- or postcondition. Without it, we can only state that if there is indeed a
value, it is returned from unwrap_or_default (). We described our approach to
this problem in Section 3.2, and that approach indeed bore out, though there is
an extra detail that we skipped earlier:

Since a type that is not Copy cannot implement default() purely?, we would
like to avoid assuming PureDefault for non-Copy types. Ideally, we would be
able to spell this as a supertrait (auto trait PureDefault: Copy), but Rust
does not support this. Instead, wherever we use the trait, we form a conjunction
with Copy, i.e. Copy + PureDefault. Thanks to this setup, non-Copy types are
effectively automatically opted out of this trait which they cannot implement.

All told, the final specification looks as follows:

#[ensures(old(self.is_none()) || old(self) === Some(result))]
#[refine_spec(where T: Copy + PureDefault, [
ensures(result === match old(self) {

Some(v) => v,
None => Default::default(),
b
IDN
fn unwrap_or_default(self) -> T where T: Default;

In future, the PureDefault trait may be avoidable by using a call description
[10] instead, which enables specifying calls to functions regardless of purity in a less
direct way. Then again, depending on the syntax and performance, this may be

4Pure functions require their argument and return types to be Copy—Subsection 4.2.10 elab-
orates on this.

23



Annotating the Rust Standard Library with Specifications Julian Dunskus

more burdensome, especially for users trying to specify their own functions calling
default(), so it’s possible this PureDefault approach will still be useful.

4.2.4 From<T> and Into<U>

These traits form a generalized way to describe conversions from one type to an-
other. Users simply implement From<T> for a type U, defining a method U: : from
to construct it from a T. In turn, Rust defines a blanket implementation that
implements Into<U> for the source type T, providing a method T::into() that
allows users to leverage type inference to determine what to convert to (commonly
used to provide arguments to a function).

In order to specify this behavior, we need to describe the call to From: : from
in the spec for into (), which once again means it has to be pure. To this end,
we introduced an auto trait PureFrom imposing the additional purity constraint
on from(), allowing us to write the following specification:

#[extern_spec]
impl<T, U> Into<U> for T where U: From<T> {
#[refine_spec(where U: Copy + PureFrom, T: Copy, [
pure,
ensures(result === U::from(self))

DN
fn into(self) -> U;

Note how we mimic Copy constraints on the types involved in PureFrom by
expressing them at the usage site, since this is not possible at the trait definition. In
this case, we actually need to constrain both U, the type implementing PureFrom,
and T, the type from which we are converting. Type-conditional spec refinements
with multiple bounds like this were not supported in Prusti; this is another feature
we added that improves it for all users. Prusti also did not support extern specs
on generic traits due to an overly cautious assertion which we simply removed.

There is also a blanket implementation for identity conversions, which we can
specify fully even without additional infrastructure. However, this does not apply
to the corresponding Into implementation, since it results from the general blanket
implementation. In order to support this, we would need to refine the above speci-
fication conditionally when T = U, but this is currently not a supported constraint
in Rust and thus also not by Prusti. Until that changes, the best we can do is to

24



Annotating the Rust Standard Library with Specifications Julian Dunskus

apply the same PureFrom conditional refinement as above, and limit applicability
to that scenario:

#[extern_spec]

impl<T> From<T> for T {
#[ensures(result === other)]
#[refine_spec(where T: Copy, [pure])]
fn from(other: T) -> Self;

Apart from identity conversions, another common use case of From/Into con-
versions is exact conversions between different numeric types. This does not apply
to every pair of types, e.g. a u32 is not guaranteed to fit into an 132 or vice versa,
floats cannot exactly represent integers of the same bit width, and there are very
few guarantees about the size of usize/isize. Still, there is a good amount of
conversions implemented, and we can cross-reference Rust’s own implementations
to make sure they are all specified. Once again, we leverage a macro to limit boil-
erplate and concisely list supported conversions. Our specification expresses the
conversion using as, which Prusti supports intrinsically:

macro_rules! specify_numeric_from {

($from:ty => $(Sto:ty)x) => (S(
#[extern_spec]

impl From<$from> for S$to {

#[pure]
#[ensures(result == num as Self)]
fn from(num: $from) -> Self;
}
) %)
}
// e.g.:

specify_numeric_from! (ul6é => u32 i32 u64 i64);
specify_numeric_from! (il6 => 32 f64);

4.2.5 core::mem::size_of

size_of<T>() is another interesting function to specify, since its return value
depends entirely on the generic argument T. In order to specify the concrete val-

25



Annotating the Rust Standard Library with Specifications Julian Dunskus

ues, we once again employ a helper trait, KnownSize, as outlined in Section 2.2,
providing a pure method size () that we then refer to in a conditional refinement:

#[pure]
#[refine_spec(where T: KnownSize, [ensures(result == T::size())])]
fn size_of<T>() -> usize;

However, this glosses over some important details. Previously, one could not
attach the #[extern_spec] attribute to free-standing functions, instead it would
have to be applied to a module containing the function—with nesting to reflect
the original module structure—so in this case a mod core nesting a mod mem
containing the size_of function. This was worsened by the fact that the extern
spec transformation process maintained this module structure, giving it a separate
namespace from the rest of the file, as Rust modules do. To work around this,
one had to re-import modules like prusti_contracts::x for the specification
macros. In our case, to refer to the KnownSize trait defined in the same file, we
would have had to import that into scope as well:

#[extern_spec]
mod core {
mod mem {
use prusti_contracts::*;

#[pure]
#[refine_spec(where T: super::super::KnownSize, [
ensures(result == T::size()),

1]

fn size_of<T>() -> usize;

We made several changes to improve this situation. For one, we modified the
transformation to remove the modules and only keep their contents. This required
mangling the function names to avoid name collisions with the actual functions
being specified. To reduce the need to nest, extern_spec now also optionally
takes a module path as argument, e.g. core: :mem. So the previous example could
now be expressed as #[extern_spec(core)] mod mem { ... }.

26



Annotating the Rust Standard Library with Specifications Julian Dunskus

#[extern_spec(core) ]

mod mem {
#[pure]
#[refine_spec(where T: KnownSize, [ensures(result == T::size())])]
fn size_of<T>() -> usize;

Better yet, this change paved the way for another extension to allow specifying
free-standing functions without an enclosing module:

#[extern_spec(core: :mem) ]

#[pure]

#[refine_spec(where T: KnownSize, [ensures(result == T::size())])]
fn size_of<T>() -> usize;

All these changes reduce boilerplate needed to specify singular free-standing
functions not just for us but for any Prusti user. For completeness’ sake, the
module path argument applies not just to modules and functions but also to traits.
It does not apply to impls because those already accept qualified type paths.

4.2.6 Deref, Index, etc.

These traits center around a method that returns a reference to an associated type.
These methods should be marked pure (conditionally, with a marker trait), since
their output is always the same as long as the receiver is not mutated. However,
Prusti currently crashes when specifying these methods, presumably from the at-
tempt to use a pure function that returns a reference. We have filed an issue for
this, issue #12215, but unfortunately could not resolve it within the timeline of
this thesis.

This has turned out to be a rather big issue, blocking a wide array of fun-
damental specifications, such as interacting with or constructing a smart pointer
or indexing into collections. Resolving it will greatly open up the space for new
specifications of smart pointers (though Box already has support built into Prusti)
and collections (like Vec and HashMap).

Shttps://github.com /viperproject/prusti-dev/issues/1221

27


https://github.com/viperproject/prusti-dev/issues/1221

Annotating the Rust Standard Library with Specifications Julian Dunskus

4.2.7 Vec, String

These suffer from issue #1221 described above, but we would still like to describe
our planned approach to specifying them. When users interact with these types,
they are usually implicitly making use of their Deref implementation, forwarding
to as_slice() or as_str(), respectively. As such, marking these methods as
pure already suffices for everything not involving mutation. They also repeat some
methods from the underlying type, which can simply forward to the respective
underlying method e.g. for Vec: :1len:

#[pure]
#[ensures(result == self.as_slice().len())]
fn len(&self) -> usize;

[T]::1len, a member function on slices returning their length, is an intrinsic
operation built into Prusti, so this approach can preserve the information all the
way from initialization with a slice literal in the vec! macro to any later operations
on the Vec.

Another valid approach would be to simply mark Vec: : len as pure and express
the connection to as_slice as a postcondition on the latter instead:

#[pure]
#[ensures(result.len() == self.len())]
fn as_slice(&self) -> &[T];

This same connection would also be expressed for the implementations of
Deref/DerefMut and similar operations. The benefit of this approach is that
it reduces indirection for the methods unique to Vec, shifting the complexity to
its slice view accessors.

Whichever approach ends up being chosen, the other missing piece for this end-
to-end support is that Prusti needs to understand the “unsizing” operation that
turns a literal of fixed size (e.g. [132; 5]) into a slice (e.g. [132]), whose size is
not known to the compiler. String is not quite as far along, since str currently
only has preliminary built-in support, but future work could treat it analogously.

Mutating operations would be described using quantifiers, e.g. the specification
for Vec: : push might look as follows:

28



Annotating the Rust Standard Library with Specifications Julian Dunskus

#[ensures(self.len() == old(self.len()) + 1)]

#[ensures(self[self.len() - 1] === value)]
#[ensures(forall(|i: usize|
i < old(self.len()) ==> self[i] === old(self[i])

)]
fn push(&mut self, value: T);

This relies on the Index implementation being specified via as_slice (), with
slice indexing being another built-in.

4.2.8 Ranges & Comparisons

Ranges turn out to not be used particularly much outside of iteration, but are clear
candidates for specification due to their usefulness as algorithmic building blocks.
One might imagine a spec on core: :ops::Range<Idx>::contains as follows:

#[pure]
#[ensures(result == (self.start <= *item && *item < self.end)) ]
fn contains<U>(&self, +item: &U) -> bool; // where clause omitted

Unfortunately, this does not currently work, due to its usage of PartialOrd
comparison operators, which are only built into Prusti for integers. We would
like to provide general specifications for them, requiring purity and spelling out
the relationships between the various methods in detail. Notably, we want to
declare them as pure unconditionally, since impure implementations would violate
guarantees necessary for sorting and other uses.

However, simply marking them pure would currently result in very poor user
experience. The reason is that users most commonly implement these functions
through derive macros, rather than writing the boilerplate manually. This, how-
ever, causes a verification failure because the functions marked pure in the trait
are not marked pure in the synthesized implementation:

29



Annotating the Rust Standard Library with Specifications Julian Dunskus

#[automatically_derived]
impl PartialOrd for IntContainer {
#[inline]

// other derive macros omitted
// need #[pure] here

for brevity
#[derive(PartialOrd) ]
struct IntContainer {
x: 132,

fn partial_cmp(
&self, other: &Self

) —> Option<Ordering> {
PartialOrd: :partial_cmp(

¥ &self.x, &other.x)

This can be worked around by either implementing PartialOrd manually or
using extern specs to attach the specifications, but such a workaround would be
unreasonably burdensome for users, requiring exactly the kind of boilerplate that
derive macros were designed to avoid.

On Prusti’s side, the macro expansion could be intercepted somehow to at-
tach the necessary attributes. Perhaps more generally, methods produced through
derive macros could inherit not only the pre-/postconditions but also the purity.
Inheritance of pre-/postconditions is already the case for trait implementations in
general, so also inheriting the pure attribute would follow these conventions.

Without making changes to Prusti, it would also be possible to add a marker
trait PurePartialOrd that is not implemented by default (unlike the others), and
conditionalize the purity on that. We would then implement it for and attach the
necessary specs to basic types like 132, requiring users to manually implement it
for their own types if they want to benefit from the specifications. However, this
would add a noise and complexity to the specifications, and ultimately still need
to be overhauled with a more permanent solution.

The problem is the same for PartialEq, which we would also like to mark pure
for use in specifications. We have opened an issue® to discuss possible approaches
to this problem. Until it is resolved, we have chosen to leave these methods
unspecified.

Shttps://github.com /viperproject/prusti-dev /issues/1311

30


https://github.com/viperproject/prusti-dev/issues/1311

Annotating the Rust Standard Library with Specifications Julian Dunskus

4.2.9 Option::and

This method returns its argument if the receiver is some, otherwise returning None.
A possible specification might look like the following:

#[ensures(match result === old(self) {
Some(_) => old(other),
None => None,

bl
fn and<U>(self, other: Option<U>) -> Option<U>;

However, this is not yet supported by Prusti, because algebraic data type
literals” without arguments (like None here) are represented differently than those
with arguments (like Some (foo)) in Rust’s MIR intermediate representation, and
the former’s representation is not yet supported®. Instead, the result === needs
to be pulled into the match, resulting in the following specification:

#[ensures(match old(self) {
Some(_) => result === old(other),
None => result.is_none(),

bl
fn and<U>(self, other: Option<U>) -> Option<U>;

Once Prusti does support these literals, it would make sense to adjust specifi-
cations like this to leverage the feature.

4.2.10 Other Limitations

Prusti has a concept of purity, where pure functions cannot access or modify ex-
ternal state, even through references. In Rust’s standard library, the vast majority
of functions that don’t take mutable references as argument are pure—this makes
for handy building blocks. However, for a function to be marked pure in Prusti,
its arguments and return type need to implement Copy. Among other things, this
allows Prusti to express that their output is always the same given the same inputs.

"Note that this does not apply to the usage of None as a pattern to match against (preceding
=>, which Prusti does support.
8Issue #1268: https://github.com/viperproject/prusti-dev/issues/1268

31


https://github.com/viperproject/prusti-dev/issues/1268

Annotating the Rust Standard Library with Specifications Julian Dunskus

This unfortunately poses a problem for generic types like Option, Result, etc.
when considering functions consuming or returning a value of that type, requiring
a type-conditional spec refinement to express this purity only when the wrapped
value (and thus the container) is Copy. It would make sense to investigate ways
to relax these restrictions, perhaps adding a variant of pure or an argument to
it (something like pure(if_generics_valid)) that makes it only apply when
the concrete generic arguments implement the necessary traits, having no effect
otherwise. We have opened a GitHub issue® for Prusti to explore this space.

4.3 Prusti Improvements

In the process of writing the specifications, we ran into a few shortcomings of
Prusti, several of which we addressed with new features or enhanced support.
Not only did these improvements make it easier for us to write the specifications
we wanted, but they will also make it easier for Prusti users to write their own
specifications.

4.3.1 Type-Conditional Spec Refinements

Type-conditional spec refinements gave us the power to meaningfully specify be-
havior and thus were central to our specifications. Initially, these were considered
an unstable feature and gated behind a feature flag. Furthermore, there was also
no way to ignore this attribute when the flag is not set!’, so either users would
have had to set the flag to use any of our specifications, or we would have had
to leave out the ones making use of these refinements for now. In the interest of
advancing Prusti as a whole, we decided to finalize and stabilize them.

They were initially referred to as ghost constraints, and used a slightly different
syntax. Our stabilization consists of the new naming as well as a slightly adjusted
syntax to form a connection to Rust’s existing where-constraints:

#[ghost_constraint(Foo: Bar, [ensures(foo::bar())])]
#[refine_spec(where Foo: Bar, [ensures(foo::bar())])]

https://github.com/viperproject/prusti-dev /issues/1313

10They would have had to be ignored only in upstream crates like our specs, while still pro-
ducing diagnostics when users attempt to use them in their own code without setting the flag,
and even this behavior may not always be desired.

32


https://github.com/viperproject/prusti-dev/issues/1313

Annotating the Rust Standard Library with Specifications Julian Dunskus

As previously mentioned, these refinements also did not support conditional-
izing the pure attribute, which we remedied. Further, we also extended them
to fully support any constraints Rust itself supports, rather than relying on a
custom parser. This was a problem with constraints involving commas, e.g.
where Foo: Bar<A, B>, [...], as it interpreted commas within constraints as
separating them. And of course, as previously mentioned, we added support for
multiple constraints rather than limiting to just one.

4.3.2 Extern Specs

We ran into many shortcomings of extern specs, both in functionality and in user
experience. Some of these, such as taking a module path as argument and treating
modules as transparent, have already been discussed above. The user experience
improvements, however, are more subtle and merit some highlighting.

Extern specs expect to be applied to method stubs, ending in a semicolon rather
than a body in braces, but this was not explicitly enforced. This was potentially
confusing and allowed different spellings like {3}, so we now detect such cases and
diagnose an error.

Traits can define predicates, which are functions that are transparent to Prusti,
typically used as part of pre-/postconditions. These predicates did not allow defin-
ing a default body for implementations to inherit. This change opens the door to
powerful trait-based specification with reduced boilerplate, like a possible future
approach to Fn traits with e.g. a precondition and invariant defaulting to true.

The parsing of extern specs'! only handled application to simple type paths.
This meant that e.g. specifying the implementation of [132] involved first defin-
ing a type Slice_i32 = [132] or similar to work around this limitation. This
workaround was not obvious and the limitation added friction to the user experi-
ence. We have extended it to allow any valid Rust type spelling, simply delegating
to the built-in parser and refactoring some of the logic that relied on types being
simple paths.

The desugaring of extern specs created new functions calling out to the original
function, along with a defensive assertion that the code was unreachable, as shown
below. The call itself lets Prusti identify from the desugared form which function
is being specified.

1 And #[refine_trait_spec], a related attribute necessary to apply specifications to a trait
implementation.

33



Annotating the Rust Standard Library with Specifications Julian Dunskus

// attributes omitted

fn prusti_extern_spec_size_of<T>() -> usize {
core::mem: :size_of();
unreachable! ()

However, this assertion made it so that the function call was not type checked
against the extern spec’s declared context. This allowed e.g. incorrectly declared
return types to slip through, creating confusing mismatches between the specifica-
tion and the original function. We deemed the assertion unnecessary and removed
it to restore this type-checker connection.

The desugaring also did not forward generic arguments (as shown in the snip-
pet above), instead relying on the concrete argument values to suffice for their
inference. This could have caused all manner of issues, but most pressingly for
us, it made it impossible to specify size_of, since the only argument it takes is a
generic parameter. We adjusted the generated code to explicitly forward generics,
in the process uncovering several instances in existing specs where the declared
generics did not match the original ones.

Writing an extern spec for a trait used to require annotating each type pa-
rameter with #[generic] or #[concrete], with the envisioned design that the
behavior for a specific set of type arguments could be specified separately from the
rest. Type-conditional spec refinements are a more general and complete approach
that also solves this problem. Additionally, concrete generics for traits were not
functional, so we were not touching functionality that users could have been rely-
ing on. In the process of stabilizing them, we obsoleted these attributes, resulting
in less noisy trait declarations.

34



Chapter 5

Evaluation

5.1 Specification Progress

Using Qrates and the techniques outlined previously, we gathered a dataset of
87,060,395 calls across 73,181 crates!, with 18,885 of those defining functions called
by other crates. We then manually categorized groups of these calls by their
specification status, determining for each combination of call target and receiver
whether we had specified it and, if not, the rationale (missing features/not useful
to specify/etc.). With all that information, we were able to chart the distribution
of these categories (Figure 5.1).

The largest chunk of calls is marked as macro. This status conveys that the
call has not been specified, but it is likely not as important to specify, as users did
not perform this call directly. Macros often expand into a large amount of calls,
especially quote::quote! (iterating over tokens) or the various derive macros
(iterating over fields) As such, the macros have been separated out to avoid skewing
the remaining data towards methods people are unlikely to interact with directly.

The next big chunk is unknown, which are calls which we did not yet triage to
determine their status, most likely currently unspecified. Next is complete, for
calls that we have specified as much as we deemed to be useful. A little later but
topical here, another large chunk is marked generic. These are calls that were not
resolved to concrete types, either being generic parameters or impl existentials.
This categorization technically overlaps with other statuses, and in our evaluation

LOut of the 100,156 crates on crates.io (at the time of writing), these were the ones that
we could compile successfully.

35



Annotating the Rust Standard Library with Specifications Julian Dunskus

unknown

macro

complete
7 others
convert
default
calls
formatting strings

iterators

issue_1221 generic

Figure 5.1: The frequency of each specification status, i.e. how
many of the 87 million calls fall into each category.

we only categorize calls as this if they would otherwise have been deemed unknown,
so e.g. unresolved generics use in a macro would simply be categorized as macro.

The other categories concern themselves with semantic grouping:

e formatting comprises the calls involved in formatting strings, e.g. due
to the format! () macro or println! () etc. These calls almost always
originate from macros, which is why the slice is so large—otherwise those
calls would largely be part of the macro slice. They are shown here because
we noticed that macro involvement is not detected reliably for these methods,
so we instead decided to categorize them directly.

e issue_1221 represents specifications blocked by issue #1221, most notably
Deref and Index, as laid out in Subsection 4.2.6. The size of this slice
illustrates the importance of resolving that issue.

e iterators consists of the various methods defined on the Iterator trait,
as well as the ways to construct iterators from collections and vice versa
(into_iter, collect, [T]::iter, etc.). There has been prior work to
establish an approach for these [12], but it has yet to be added to Prusti’s
own specification library.

36



Annotating the Rust Standard Library with Specifications Julian Dunskus

e strings contains methods like string equality and mutation, which are likely
to be handled holistically by a future effort to improve Prusti’s support for
strings.

e calls is for methods that require call descriptions [10] to specify meaning-
fully, e.g. Option: :unwrap_or_else, which currently has a basic specifica-
tion, but whose usage of the passed-in function cannot yet be described.

e convert groups From::from() and Into::into(), which we will look at
in more detail in Subsection 5.1.2, since the group consists of a variety of
different conversions, not all of which are specified.

e async describes Rust’s futures and async/await system. Specifying this
area is likely to be the subject of future research.

e interior_mutability groups methods that will only be specifiable once
Prusti gains support for the notion of interior mutability. It comprises smart
pointer types like Arc and Pin.

Aside from the following subsection, the rest of this section goes into more detail
about some targets that cannot be adequately categorized without considering
generic parameters and more.

5.1.1 Macros

There were 41,554,923 calls written through macro expansion, 25,980,458 of which
are not currently specified or more specifically categorized. Out of the former, we
further investigated which specific macros were most popular—Figure 5.2 shows
these results.

The serde crate accounts for the biggest macro in terms of calls generated.
It provides facilities for serializing to and deserializing from data formats, notably
JSON. Fully specifying this crate would be difficult, requiring a powerful model of
the data format that is being read from or written to in order to model end-to-end
properties.

Other big macros include derivations of the Debug, Clone, and PartialEq
traits. Debug is unlikely to be relevant for the functional correctness of any pro-
gram, as it simply represents a type for printing to understand a program’s behav-
ior. The Clone expansion is correctly verified against the snapshot equality post-
condition (unless opted out of the SnapshotEqualClone trait). The PartialEq
trait is not yet specified, for reasons outlined in Subsection 4.2.8.

37



Annotating the Rust Standard Library with Specifications Julian Dunskus

serde_derive::Deserialize

5132 others

quote::quote
std::macros::panic
std::macros::printin
log::macros::debug
bitflags::bitflags
tracing::macros::debug
schemars_derive::JsonSchema
clap_derive::Parser
tracing::macros::trace

alloc::macros::vec core::fmt::macros::Debug

core::default::Default
core::macros::write

prost_derive::Message

core::cmp::PartialEq
alloc::macros::format serde_derive::Serialize

core::clone::Clone

Figure 5.2: The frequency of each macro-induced call, i.e. how
many calls resulted from an expansion of each. Macros whose
names match traits are derive macros for said trait.

5.1.2 Conve