Using Program Slicing to Improve Error

Reporting in Boogie

Karin Freiermuth

Master Project Report

Software Component Technology Group
Department of Computer Science
ETH Zurich

http://sct.inf.ethz.ch/

September 2007

Supervised by:
Joseph Ruskiewicz
Prof. Dr. Peter Miiller

Software Component Technology Group

L
I nf Informatik
Computer Science

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

http://sct.inf.ethz.ch/

Abstract

This paper presents a new program slicing approach, which provides, on one hand, slicing programs
containing contracts and, on the other hand, the handling of arrays for the purpose of obtaining
efficient slices.

Program slicing is useful in debugging complex programs. BoogiePL is an intermediate lan-
guage used for program verification. In order to apply program slicing on BoogiePL programs,
we have to handle contracts. The proposed slicing techniques so far, do not involve contracts.
This work presents program slicing in the presence of contracts which makes it possible to slice
BoogiePL programs.

Most slicing techniques suffer from generating slices approaching the size of the original pro-
gram. To overcome this, the thesis proposes an approach how to take advantage of Boogie’s
theorem prover to handle arrays in order to achieve more compact program slices.

Contents

1 Introduction
1.1 Overview
1.2 Structure

2 Background

2.1 Control Flow e
2.2 PDG - Program Dependence Graph
2.3 Program Slicingo
2.4 BoogiePL Language L
2.5 Boogie - A Static Verifier
3 Program Slicer
3.1 Handling of goto’s e e e
3.2 Dependencies of Program Statements
3.3 Dependencies of Contracts L
3.4 Extended Statements

4 Implementation

4.1 Control Flow Graph Generation

4.2 Program Dependence Graph Generation,

4.3 Using the Tool e
5 Using the Theorem Prover in the Presence of Arrays

5.1 Handling of Arrays using Static Flow Analysis

5.2 Using the Theorem Prover

6 Conclusion

21
21
22
24
29

31
31
32
34

37
37
37

41

CONTENTS

Chapter 1

Introduction

1.1 Overview

BoogiePL is an intermediate language providing a basis for verification condition generation of
object-oriented programs including specifications. Boogie is a static verifier [1] for BoogiePL
programs [2] and responsible for verification condition generation and theorem proving. Boogie
guarantees finding the error whenever the program is not correct. However, the reported error
does often not indicate the real cause of the error.

The goal of this master thesis is to reduce the complexity of the original BoogiePL program in
order to help the programmer debugging and understanding the program. The complexity should
be reduced by extracting only those parts of the original program that are relevant with respect to
a certain point of interest. Reducing the complexity of a program with respect to failed condition
helps the programmer understanding and fixing the error.

The applied technique in order to reach reduced complexity, is program slicing. Program slicing
takes a program and a point of interest, the slicing criterion, as input and generates a subset of
statements of the input program, called slice. A slice consists of at least all the parts that might
have influence on the input criterion.

Program slicing was introduced by Weiser in 1979 [3]. During the past decades several program
slicing techniques have been proposed. An overview is available in [4]. In theory most of these
slicing techniques work well. The proposed techniques, however, firstly do not involve contracts
neither have they proposed an efficient way of program slicing in the presence of arrays.

This thesis presents a program slicing approach which improves traditional slicing in that way
that it involves programs which contain contract statements, and slices programs which contain
arrays efficiently.

So far program slicing has been executed on programs containing only program statements.
Working with BoogiePL programs, which do not only contain program statements but also con-
tracts, program slicing needs to be extended to handle contracts. An implementation of extended
program slicing in the presence of contracts is given in this thesis.

In the presence of arrays, the size of the resulting slice based on static analysis does generally
less differ from the original program, which makes program slicing less attractive. BoogiePL
programs in practice mainly consist of arrays. Therefore a way has to be found how to treat
arrays in terms of program slicing to generate efficient slices. This thesis extends the technique of
static program slicing by using the theorem prover. The new slicing technique takes advantage of
the theorem prover in order to improve program slicing in the presence of arrays.

1.2 Structure

The thesis is organized as follows: Chapter 2 gives a short overview of the basic elements that
are used in this thesis. Sections 2.1 and 2.2 explain two internal program representations, that

7

8 1 Introduction

have been chosen as base for the presented implementation of program slicing. Program slicing
itself is described in detail in Section 2.3. Finally, the idea of program slicing based on a program
dependence graph as internal program representation is given. The subsequent sections go into
Boogie: Section 2.4 gives an overview of the relevant language specifications of the BoogiePL.
Section 2.5 introduces Boogie and its functions.

Chapter 3 introduces program slicing based on a program dependence graph (PDG). PDG gen-
eration uses static flow analysis and is based on the control flow graph (CFG) (Section 2.1). A
PDG is built up by finding data and control dependencies. Data dependencies of program state-
ments have already been introduced in earlier approaches. Section 3.2 explains data dependence
for the basic program statements using static flow analysis. Contracts in BoogiePL are assume
and assert statements. Section 3.3 presents an approach how to deal with contracts in terms of
dependencies. The described approach turns traditional program slicing into an extended slicing
technique, which is able to slice programs containing contracts.

The concrete application of the approach in Chapter 3 is described in Chapter 4. This chapter
illustrates the concrete implementation of the extended program slicing approach, which is able
to slice BoogiePL programs.

Chapter 5 extends the approach given in Chapter 3. This chapter introduces a new slicing
approach to generate efficient slices in the presence of arrays. After illustrating the problem
of redundant array dependencies in traditional static slicing, it gives an idea of how to include
Boogie’s static verifier to help eliminating redundant array dependencies.

1

2

3

5

8

10

11

12

13

14

15

16

Chapter 2

Background

2.1 Control Flow
CFG - Control Flow Graph

Flow analysis is used to determine invariant facts about a certain point of interest in a program.
These facts are independent of the execution path of the program. Flow analysis is used to get
information about a program at compile time and is often applied in compiler optimization [?].
A control flow graph is an internal program representation using graph notation and provides a
basis for flow analysis.

Definition 1 (Control Flow Graph). A control flow graph (CFG) is a directed graph consisting of
all possible flows of control in a program. In a CFG, the nodes represent blocks (Definition 2) and
the edges indicate the possible flow of control from block to block. CFGs contain special nodes,
namely the entry and exit node, corresponding to the beginning and the end of the program,
respectively.

Block

Definition 2 (Block). A block is a linear sequence of program statements. It has one entry point
and one exit point. A block may have many predecessors and many successors. An entry block
has no predecessors and exit blocks do not have any successors.

Example 1 (Original BoogiePL program).

where

int
int
int
int
int

where
where
where
where

N < M =
N X2
I
Il
OO O = =

entry :
assume x
assume y
assume 7z

Il
Il
o oo

X 1= wW;
y 1= w3
assume X == w;
Z = w;
goto a, b, c;

20

24

27

28

29

30

31

35

36

37

38

39

40

41

10 2 Background

a:
X 1= W;
goto exit;

b:
x = 1;
goto exit;

c:
call z := Max(u, w);
w o= 2;
X 1= 2;
z 1= 2
assert x == z;
y 1= X3
y = 1;
goto b;

exit:
havoc z;
W= 7;
Z = X +Y;
assert z == 3;
return;

Figure 2.1 shows the control flow graph of the BoogiePL program in Example 1.

2.2 PDG - Program Dependence Graph

A program dependence graph (PDG) is an internal program representation. It is a directed graph
with nodes corresponding to statements and control predicates, and edges corresponding to data
dependencies (Section 2.2) and control dependencies (Section 2.2). Data and control dependencies
are based on the CFG (Definition 1) of a program.

Data Dependency

A data dependency between two statements exists, if one statement directly defines the referenced
value of the other statement. Directly means in this case that no other statements that redefine
the referenced value are in between.

Definition 3 (Data dependency). There is a data dependency from one to another statement if
there is some variable z such that

e the first statement may be assigned to z,

e the second statement may use the value in z, and

e there exists an execution path in the CFG between the two statements.

The data dependencies of a statement can be obtained by finding all transitive data dependen-

cies of its referenced variables. Figure 2.2 shows the data dependencies for statement z := x + y
in Example 1.

2.2 PDG - Program Dependence Graph

entry:
assume x==0;
assume y==0;
assume z—0;

XI=W,
Vi=w;
assuIme X==w,
zZ=w
goto ab,c;
c
call zz=Max(u,w);
wi=2;
x:=2;
z=2,
assert x—z,
Vi=x;
v=1
goto b;
a: b:
XI=W; x:=1;
goto exit; goto exit;
exit:
havoce z;
W=z,
z=xty;
assert z==3;
return;

Figure 2.1: Control flow graph of Example 1

12 2 Background

entry:
y=w,
goto a,b,c;

\c:

y=1;
goto b;

l

a b:
X=W; x=1;
goto exit; goto exit;

P

z=xty;

return;

Figure 2.2: Data dependencies of statement z := x + y in Example 1.

Control Dependency

A control dependency between two statements exists, if there is a trace in the CFG and if the
execution of one statement depends on the other statement.

Definition 4 (Control dependency). There is a control dependency from a control statement to a
program statement if the boolean outcome of the control statement decides whether the program
statement is executed.

if (z==0) x := 0;
else x := 1;
return;

Figure 2.3 shows the control dependencies of the program above.

2.3 Program Slicing

Program slicing is a technique to extract the parts of a program which are relevant to a given
criterion. The criterion usually is given by a variable at a certain program statement. Program
slicing was first introduced by Weiser in 1979 [3]. During the past years, many program slicing
algorithms have been introduced [1]. The original technique proposed by Weiser is based on
solving data flow equations. Program slicing generally reduces a certain program to a subset of
statements of the original program. Slicing means, to extract all those statements of the original
program which have influence on a certain variable at a statement of interest and get rid of
the redundant statements in terms of the specified criterion. The resulting slice is supposed to
be of reduced complexity compared to the original program. By this means, slicing helps the
programmer understanding and debugging a program.

Definition 5 (Slicing criterion). A slicing criterion is a variable at a certain statement of interest.

10

11

12

13

14

15

16

2.3 Program Slicing 13

e

returm;

X=

Figure 2.3: Control dependence graph

Example 2 (Slicing criterion).

One possible slicing criterion of the program in Example 1 is variable z in statement assert
z == 3.

exit :
Z = X +Y;
assert z == 3; //Slicing criterion
return;

Definition 6 (Program Slicing). Program Slicing is the process of generating a slice of a given
program. A slice is a subset of statements of the original program which, whenever the original
program terminates, behaves the same way as the original program, with respect to a certain
slicing criterion (Definition 5).

The following program represents a slice of the program in Example 1 with respect to the
slicing criterion in Example 2:

Example 3 (Slice).

int w where w =—— 1
int x;
int y;
int z;

entry:
assumme

assuime
assume
y = w;
assume X —— W
goto a, b, c;

N < M
Il
Il
o o o

X 1= W;
goto exit;

17

18

19

20

21

22

23

24

25

26

28

29

30

14 2 Background

x = 1;

goto exit;

assert x == z;

y =1
goto b;

exit:
Z = X +Y;
assert z == 3; //Slicing criterion
return;

Slices

Program slicing is a decomposition technique. Weiser’s original definition of program slicing is
based on an iterative solution of dataflow equations. Weiser defines a slice as an executable
program that is obtained from the original program by deleting zero or more statements. In order
to be a slice with respect to a slicing criterion (Definition 5), a subset of statements of the original
program has to satisfy the properties in Definition 6.

For a slicing criterion exists at least one slice, namely the program itself. A slice is minimal if
no other slice of the same slicing criterion contains fewer statements. According to Weiser, minimal
slices are not necessarily unique and the problem of finding the minimal slice is undecidable.

Program Slicing based on Solving Data Flow Equations from the CFG

Weiser described conventional slicing as obtaining a slice by iteratively solving data flow equations.
The data flow equations are based on the CFG of a program and on a slicing criterion. Weiser’s
iterative algorithm uses two distinct layers of iteration:

1. Tracing transitive data dependencies,

2. tracing control dependencies, which includes control predicates in the slice. For each such
predicate, step 1 has to be repeated to include the statements it depends on.

It is not difficult to see that in using Weiser’s iterative algorithm we have to start over new
for each slicing criterion. This means for every new slice that has to be generated the complete
set of data flow equations has to be established. Considering the efficiency of Weiser’s iterative
algorithm, it seems obvious that the process of generating different slices of a program is time
consuming. Generating a slice from a given criterion means solving a set of data flow equations,
which takes O(n?) time (where n is the number of statements). This process needs to be repeated
for every new criterion. The resulting cost in order to generate m slices finally results in O(m*n?).

Program Slicing based on a PDG
Reachability Problem

Since solving sets of data flow equations based on the CFG (control flow graph, Section 2.1) is
time consuming (Section 2.3) we want to take advantage of the PDG (program dependence graph,
Section 2.2). Using a PDG instead of a CFG as internal program representation prevents from
solving different sets of data flow equations for each point of interest. Using a PDG, program
slicing can be redefined as reaching problem. Slices are obtained by traversing the PDG. The
main advantage of the PDG is that slices can be extracted in linear time. The idea of defining

2.4 BoogiePL Language 15

program slicing as reaching problem based on a PDG was introduced by Ottenstein and Ottenstein
and is described in detail in [5]. The following section explains the main idea.

Using a PDG

Approaches considering program slicing as reachability problem are based on a PDG. Slice gener-
ation basically includes two steps: In a first step, a PDG is established from the original program.
The PDG consists of nodes representing a program statement. The nodes are connected according
to their data and control dependencies. A slicing criterion is represented as a node. In a second
step, from a given slicing criterion the slice can be obtained by following the edges backwards,
starting at the criterion node. The resulting slice consists of all those nodes collected on all pos-
sible backward walks starting at the criterion node and ending at the node representing the first
statement in the program.

A PDG is an ideal program representation for constructing program slices because it consists
of exactly those dependencies, namely data and control dependencies which are used to generate
a slice. Compared to the CFG, a PDG omits redundant information, such as sequential depen-
dencies, which do not give any information in terms of slice generation. Working with a PDG a
slice can be extracted in linear time by graph traversing.

The advantage of the PDG approach is: Once a PDG has been established, slices can be
obtained with respect to any desired criterion without much effort. The process of generating slices
takes only linear time for each slice and is executed by graph traversing. However, establishing
a PDG from a program depends on the number of statements n, and takes O(n?) time. Due
to the fact that slice generation of every additional slice takes O(n) time, the resulting time to
generate m slices of a program consisting of n statements takes O(n?) +O(m=n) time. The slicing
approach based on a CFG, where for each slicing criterion a set of data flow equations has to be
solved, takes time O(n?) for every new slice, resulting in O(m * n?) for m slices. When focusing
on generating multiple slices according to varying criterions it is preferable to choose a PDG as
internal program representation.

2.4 BoogiePL Language

BoogiePL is an intermediate language for program analysis and program verification. The language
is a simple coarsely typed imperative language with procedures and arrays. Additionally, functions
can be introduced and properties of these functions can be declared. Boogie can generally be
used to represent programs in imperative source languages, such as Spec#. From BoogiePL one
can generate verification conditions or perform other program analysis afterwards. BoogiePL is
accepted as input to Boogie, a static program verifier.

16 2 Background

BoogiePL Types

BoogiePL has a simple type system containing the basic types bool, int, ref, name, any, type
name and array type. Type bool represents boolean values, Type int represents mathematical
integers, ref represents references such as objects, pointers and addresses. The type name rep-
resents various kinds of defined names like type and field names. Type any is a super type of
all other types. BoogiePL allows one dimensional and two dimensional arrays. Even if the type
information is erased during the verification process simple types are introduced in BoogieBL. The
reason for having types is to improve readability.

This section summarizes those parts of the BoogiePL language which are later used in this thesis.

Type = bool | int | ref | name | any | [Type]Type | [Type,Type] Type

BoogiePL Programs

A BoogiePL program consists of a set of declarations. Among others, variables and procedures
can be declared as follows:

Variables

In BoogiePL variables are global variables, local variables, parameter variables, such as input and
output variables and expression-bound variables. A global variable is accessible to all procedures.

Variable = var IdTypeList;
IdList = Id[, IdList]*

Id = String
Procedures

A procedure consists of an implementation body and might additionally contain specifications
such as pre- and postconditions and declarations of input and output variables. Input and output
variable declarations are described in detail later.

The procedure specification consists of requires, modifies and ensures clauses. The requires
and ensures expressions are of type bool. The input parameters are in scope of the requires
clause and input and output parameters are in scope of the ensures clause.

The implementation body consists of an optional set of local variables and a number of blocks.

The execution of a procedure consists of setting the output parameters and local variables
to arbitrary values of their types, and afterwards executing a sequence of blocks, beginning with
the first listed block and continuing to other blocks according to the listed labels in the transfer
commands. If the transfer command is a goto command the indicated blocks are executed, if the
transfer command is a return command then the execution of the procedure ends. Local variables
are accessible within the respective procedure and are declared as described in the previous section.

Each block is identified by a block label, that must be distinct from all other block labels in
the same procedure. A block is a sequence of commands. The last command of each block is a
transfer command, which is either a goto or a return command. Each label listed after a goto
must refer to a block in the same procedure.

A command is an assignment, a havoc statement, a passive command or a procedure call. A
havoc removes any information about the variable by assigning an arbitrary value. The type on
the right of an assignment must be assignable to the type on the left, which means, that either
the variable on the left is of type any or the types are identical.

Procedure = procedure String(Variable*) [returns(Variable)]’
Specification” ImplementationBody”

2.5 Boogie - A Static Verifier

17

Specification = SpecificationClause*

SpecificationClause = RequiresClause | EnsuresClause | ModifiesClause

RequiresClause = requires Expression;

EnsuresClause = ensures Expression™;

ModifiesClause = modifies Expression;

ImplementationBody = VariableDecl* Block™

Block = Id Command* TransferCmd

Command = String := Expression; | Id Index := Expression; |
assert Expression; | assume Expression; | havoc IdList; |
call [IdList :=] Id ([ExpressionList]);

Index = [Expression] | [Expression, Expression];

ExpressionList = Expression[, ExpressionList]*

TransferCmd = goto IdList; | return;

Id = String

IdList = Id[, IdList]*

Assertions in BoogiePL

In addition to program statements the BoogiePL language contains assertions. An assertion is a
contract. It is either an assume or an assert statement. With the use of assertions the programmer
can express the intended behavior of the program as follows:

e The programmer only cares about the program execution if the assume expression holds. In
case of an assume statement which does not hold, the program can do anything.

e The programmer claims the assert expression to hold. If it does not the program is not
correct.

In Boogie the two passive commands behave as follows:

e If the expression of an assume command holds then the command terminates. If the expres-
sion does not hold then the program execution stalls.

e If the expression of an assert command holds then the command terminates. If the expres-
sion does not hold then the program execution is aborted to prevent the program from a
wrong execution.

2.5 Boogie - A Static Verifier

This section summarizes some important aspects of Boogie. Details are given in [1].

Program Verification

Boogie is a static verifier used to verify BoogiePL programs (Section 2.4). To verify a program,
Boogie generates werification conditions (VCs) in a first step. Verification condition generation
(VC Generation) involves the statements and the declarations in the program. Additionally other
properties of the source language have to be guaranteed. The resulting VCs are passive commands,
namely assume and assert statements represented in first-order formulas. The resulting passive
commands can be verified by Boogie’s theorem prover. The theorem prover verifies the VCs using
weakest precondition calculus, which is explained in detail in the next section. If the program
is not correct, Boogie guarantees to find the error. In that case an error message containing the
failed condition is returned.

18 2 Background

T e e §
: Boogie i
l l
! I
| |
! Ireariant W Theorem !
i > Inference ® Generation > Prowving i
l :
I I
I I
U i

Figure 2.4: The Boogie pipeline: Boogie takes as input a BoogiePL program and returns a failed
condition in case of an error.

Verfication Condition Generation and Verification in General

BoogiePL programs are verified by performing a series of transformations. Before the verifying
process Boogie transforms all procedure statements into passive commands. The final verification
is done using weakest precondition (W P) calculus: Applying W P calculus, Boogie generates a VC
for each block. The idea behind weakest precondition is to check for every program state if it is
true or not. As soon as a program is in a false state the program the verification fails.

The W P process checks the program states using backwards analysis: As long as the prestate
(P) is at least as strong as both, the weakest precondition (W P) of a statement and the poststate
(Q), the program verification will not fail. For a prestate to be true, it has therefore to imply the
weakest precondition. This is expressed by the following implication:

P = W P(statement, Q).

At this point of verification the program consists of passive commands only, which means that the
statement is a passive command. Given a passive command with an expression F and a poststate
@, WP for passive commands is calculated as follows:

WP(assumeE,Q) = E = Q.
WP(assertE,Q)=ENQ

With respect to the evaluation of the assume expression F, the two following cases can arise:

e The assume expression F evaluates to true implies: If) is true then the weakest precondition
is true. P is true because the weakest precondition is implied by P. Therefore the program
state P is true.

e The assume expression E evaluates to false implies: The weakest precondition of E and @)
is true anyway. P is true as well because P implies the weakest precondition. Therefore the
program state P is true.

2.5 Boogie - A Static Verifier 19

With respect to the evaluation of the assert expression F, the two following cases can arise:

e The assert expression E evaluates to true implies: If () is true then the weakest precondition
is true. P is also true because the weakest precondition is implied by P. There for the
program state P is true.

e The assert expression E evaluates to false implies: The weakest precondition of E' and Q is
false anyway. Therefore P is false because P implies the weakest precondition. Therefore
the program state is false.

As soon as a false program state is encountered (see last point), the verification fails.

Verification in Boogie

Using weakest precondition calculus explained above, Boogie tries to verify all execution paths in
the control flow graph. It does so by introducing a boolean block variable for each block. A block
variable corresponding to Block; is defined to be true if every execution path starting from Block;
is correct.

The control flow graph of Example 1 consists of the following execution paths:
o Blockentry — Blocky, — Blockeyt,

o Blockentry — Blocky — Blockegt,

o Blockentry — Block. — Blocky — Blockeg.

After introducing block variables block; the BlockEquations can be generated for each block.
The boolean value of block variable blockeyry is implied by

W P(PassiveCommands of Blockeniry, block, A blocky A block.).
This implication leads to the following BlockEquation for blockesiry:
W P(PassiveCommands of Blockeniry, block, A blocky A block.) = blockeniry

The WP function computes the weakest precondition of the PassiveCommands of Blockeniry
with respect to the postcondition block, A blocky, A block..

From the facts above the VC of the whole program can be concluded:
Azioms N BlockEquations = block pntryBiocks

where Azioms is the conjunction of all axioms in the program and BlockEquations is the conjunc-
tion of all BlockEquations and blockgniryBiock is the unique entry block of the implementation
(the first executed block).

The program verifier states a program as correct if the final VC of the program is true. For
a program where no failed condition could be encountered, Boogie guarantees the program to be
correct (Section 2.5).

Verification conditions are encoded in such a way that, in case of an error, the trace leading to
the error can be reconstructed from the failed verification proof. During the process of translating
the BoogiePL program into a verification condition, explained above, a mapping table is built
up. The mapping table maps labeled subformulas to the original BoogiePL program elements and
provides information to map back labeled output from the theorem prover into an error message
in terms of the original BoogiePL program.

20 2 Background

= =~f5pecSharp/Boogie/BoogieExamples

% Boogie Example.bpl

Speclt Frogram Verifier Uersion B.86. Copyright <{c> 2003-2887, Microsoft.
Error on line 792

Example .bpl<{79?2,.5%: Error BP5AB1: This assertion might not hold.

Speclt Program Uerifier fFinished with @ verified, 1 error

Figure 2.5: Boogie’s error report only contains the line number corresponding to the failed condi-
tion.

A Sound and Incomplete System

Boogie guarantees to be a sound system. This means that if the input program contains one or
more failed assertions Boogie guarantees to find them.

However, Boogie is incomplete. Due to incompleteness Boogie might, even in a correct program,
state failed assertions. This comes from underspecification. Boogie reports a program error and
returns the corresponding failed condition whenever it has not been able to verify the condition.

Error Reporting in Boogie

Boogie’s error report consists of a line that references the failed condition. One problem, the
programmer has to deal with, is Boogie’s incompleteness: Boogie’s error reports do not necessarily
belong to a program error, but they can be spurious errors. Thus, in case of a failed condition
returned by Boogie, the programmer can not imply a false condition.

Another problem, which arises especially in complex programs, is that the programmer might not
be able to understand the source of the error by only getting the failed condition. If one does not
understand the program, it may be difficult to detect and to fix the error.

Chapter 3

Program Slicer

The program slicer presented here is able to generate slices from a BoogiePL program in linear
time. The way the slicer obtains the resulting slices is by including statements into the slice that
might affect a slicing criterion. The rest is omitted. The included statements are obtained by
graph traversing: All those statements are included into the slice that might affect the slicing
criterion directly or indirectly.

Graph traversing is based on a program dependence graph (PDG). A PDG represents all pro-
gram dependencies of a program (Section 2.2). A program dependency is either a data dependency
(Section 2.2) or a control dependency (Section 2.2).

Program dependencies are based on the control flow graph (CFG) (Section 2.1) because the
CFG represents all possible execution paths, which are used to apply static analysis for dependency
generation.

The CFG is obtained according the transfer commands, namely goto and return statements,
occurring in each block.

This chapter gives a deep insight into the slicing process explained above, starting with estab-
lishing a CFG according to goto labels, generating a PDG based on the CFG, and ending with
extracting the slice from the PDG. The chapter is organized as follows: Section 2.1 explains how
to establish a CFG of a BoogiePL program according the transfer commands in the blocks.

So far program dependencies have only dealt with program statements. Establishing a PDG
out of a BoogiePL program the question arises how to deal with assertions, such as assume and
assert statements. Section 3.3 explains how assertions are handled in terms of PDG generation.
Beside the assertions, Section 3.2 explains the remaining BoogiePL statements in terms of their
data dependencies.

Sections 3.2 and 3.3 illustrate the dependencies of the basic statements, namely assignments
(to local variables and to arrays), havoc statements, local variable declarations, assume and as-
sert statements. The remaining statements, namely pre- and postconditions, procedure calls and
statements including quantifiers, are derived from the basic statements. They are explained in
Section 3.4.

3.1 Handling of goto’s

The CFG of a BoogiePL program is constructed according the transfer commands. The CFG
represents the program blocks as nodes and the control flow as directed edges. Each block contains
exactly one transfer command, which is either a goto or a return statement.

A goto command transfers control to one or more other blocks, depending on the block labels
listed after the goto. A block containing a goto command has as successor blocks in the control
flow graph all those blocks that are labeled after the goto. A return command indicates the end
of a control flow path. A block containing a return command has no successors and represents
the end of a control flow path.

21

22 3 Program Slicer

To establish a CFG, the first executed block in the program is set as root. According its goto
labels a CFG can now recursively be established by finding the successor blocks as long as goto
commands can be obtained. The CFG is complete, when for each control flow path the return
block is found.

3.2 Dependencies of Program Statements

A statement consists of two sets of variables, one set consisting of variables which are defined at
the statement, the other set consisting of the variables which are referenced at the statement.
In the following these two types of variables are called defined variables and referenced variables,
respectively.

Generally can be said that every statement is data dependent on all those statements that have
or, since the control flow is statically unknown, might have defined its referenced variable.

Assign Statements in General

To generate the relevant data dependencies of an assign statement, that might influence the
concerning assignment, it has to be examined how referenced variables are influenced.

Generally it can be distinguished between assign statements assigning a local variable, and
assign statements assigning an array element.

In case of assigning local variables, it is obvious which statements are responsible for the value
of the referenced variable in the current statement. The defining statements can be found by
considering all control flow paths leading to the current statement. For each of these paths, the
statement that has most recently defined the value of the current statement has to be found.
However, in case of assignments assigning array elements, where the value of the referenced array
element might only be known at runtime, it cannot be examined statically which statements define
the value of the referenced array elements.

The following two sections explain the data dependence generation of the two different assign-
ment types.

Assignments of Local Variables

The question is raised, how can the data dependencies in program in Example 1 for the assignment
z := x + y in block exit be obtained? First we look at the possible execution paths:

e entry — a — exit,
e entry — b — exit,
e entry — ¢ — b — exit.

To generate the data dependencies of z := x + y in exit we examine all control flow paths. For
each path those statements that have most recently defined the referenced variables x and y have
to be found.

e For the first control flow path consisting of the blocks entry — a — exit the influencing
statement for x is x := win block a, and the influencing statement for y is y := win entry.

e For the second control flow path consisting of the blocks entry — b — exit the influencing
statement for x is x := 1 in block b and the influencing statement for y is y := w in entry.

e For the third control flow path consisting of the blocks entry — ¢ — b — exit the influencing
statement for x is x := 1 in block b and the influencing statement for y is y := 1 in block
c.

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

3.2 Dependencies of Program Statements 23

Assignments of Array Elements

Considering assigned array elements and defining the dependencies similar to the previous case,
the following problem will arise:

Example 4 (Array dependencies).

ali] := x;

alj] = y;
z := alk];

Since the dynamic value of the array element assigned to z is only known at runtime the program
slicer can not determine statically which variables are responsible for the referenced value a[k] of
the concerning statement z := al[k]. Dependant on the values of the array indices, the following
situations can occur:

e Variable a[j] would influence the concerning statement if j = k.
e Variable a[i] would influence the statement if i = k and j # k.
e Variable a[k] would neither be influenced by ali] nor by al[j] if k£ # ¢ and k # j.

The fact that there is often more than one possible statement on one control flow which might
have an influence on a specific array element, leads to establishing multiple data dependencies on
the same path. In addition, for all assign statements a dependency that defines the index variable
is established.

Local Variables

Local variable declarations define the type of a variable. Additionally, the value of a local variable
might be assumed using a where clause. The following program shows a possible slice generated
from the program in Example 1 with respect to statement assert z ==

int w where w == 1;
int x;
int y;
int z;
entry:

assume
assume

N < M
Il
Il
o oo

assume
y = w;
assume X —= w;
goto a, b, c;

X 1= W;
goto exit;

x = 1;
goto exit;

assert x == z;
y = 1

25

26

27

28

29

30

24 3 Program Slicer

goto b;

exit:
Z :— X + ¥y;
assert z == 3; //Slicing criterion
return;

The variable declarations of the original program (before the slicing process) are:

int u where u == 1;
int w where w == 1;
int x where x == 0;
int y where y == 0;
int z where z == 0;

’

In order to slice the variable declarations, we keep only the declarations which declare variables
that appear in the slice. Additionally, only the where clauses of variables whose value is relevant
in the slice, are part of the slice.

According to that, the original variable declarations are sliced as follows: Variable u is not con-
tained in the slice, which means that its declaration will not be part of the slice. Further, the
where clauses assuming the initial values of x and z have no influence on the final value of z in
the slicing criterion: x is redefined in all control flow paths leading to the slicing criterion and
the initial value of z has no influence on the final value of z either. Thus, the where clauses of
the local variables x and z are not part of the slice. Variable y is already redefined in the first
statement. Since the first statement is contained in every control flow path its where clause can
be omitted as well. In contrary, the slicing criterion depends on the value of w assigned by the
where clause (used in the entry block in statement y := w). The where clause assigning the value
1 to w must therefore be included into the slice.

The sliced variable declarations are the followings:

int w where w == 1;
int x;
int y;
int z;

Havoc Statements

A havoc statement basically destroys the value of a variable by assigning a arbitrary value. A
havoc z does not depend on any statement since the value of z is destroyed anyway, no matter
what it was before. Therefore a havoc is neither control nor data dependent on other statements.
The statement defines one or more variables but does not reference any variables. The data
dependencies are generated analog to assign statements (see 3.2).

We look at block exit in Example 1:

havoc z;
w = z;

The value of z is set to an arbitrary value in statement 1. Therefore statement 2 is data dependent
on statement 1. Statement 1 does not depend on any other statements.

3.3 Dependencies of Contracts

Contract dependencies turn up as soon as assertions, namely assume and assert statements are
involved. This section shows how contracts depend on other statements, how they influence
statements and how they depend on each other.

3.3 Dependencies of Contracts 25

Assertions as Control Statements

As explained in Section 2.4 assertions can be considered as contracts to give a programmer the
possibility to express the behavior of a program. An assertion control statements because it
decides the further program execution: If an assume statement does not hold the program is no
longer controlled and if an assert statement does not hold the program execution fails. For this
reason, both, assume and assert statements, could be considered as control statements if we were
interested if the program terminates or not. Since we are only interested in the values of variables
in a certain statement if the program execution really gets to that point, we assume the contracts
to hold do not treat them as control statements but as defining statements. This means, that
contracts determine the value of subsequent statements in the control flow.

Assertions and Data Dependency

There is a data dependency between an assertion and the (target) statement pointing to by the
assertion if

e the referenced variables in the target statement are contained as free variables in the asser-
tion, and

e the two statements are in the same state space.

Dependencies can also arise among assertions in the same state space, which is explained later
in this section.
State Space of Assertions

Assertions are in the same state space in program if none of the values of any variable has been
changed. The following two program extractions both show two assume statements that are
obviously in the same state space:

assume X == y;
assume y == 0;
assume y == 0;
assume X == y;

The extractions show the same assume statements in different order. Obviously, the assume
statements within the same program influence each other: From both program extractions the
assertion assume x == 0 can be derived. It can generally be said that

e assume and assert statements can influence each other and

e the statements within a state space can be in any sequential order without changing the
semantics of the program.

Data Dependencies

Assertions (assume and assert statements) depend on statements appearing in the control flow
paths leading to the respective control statement. The variables of an assertion are considered as
referenced variables. An assertion is data dependent on those statements that have, for each path
in the control flow, most recently defined the value of its referenced values.

26 3 Program Slicer

Example 5.

x := 0;

y = 0;

w = 0;
assume X == w;
Z 1= W;

In Example 5 the assume statement in line 5 is data dependent on the assign statements on line 2
and 4 since the referenced variables x and w are defined in line 2 and 4 and there are no redefining
statements for the variables x and w in between.

On one hand, assertions depend on statements as explained before, on the other hand, they
influence other statements. In Example 5, the statement on line 6 is data dependent on the assume
statement on line 5 because the referenced value of w in line 6 is determined by the expression in
the assume statement x == w referencing w (and x).

In case of only one assertion (Example 5) the data dependencies are quite obvious.
Dependencies get much more interesting if there is more than one assertion: Assertions appearing
in a sequence.

Example 6.

x 1= 0;
y := 0
w = 0;
assume x == y;
assume w == X;
assume w == 0;
zZ 1= Y5

On which statements do the assume statements depend? Obviously, the statements can be treated
similar to the previous example. By finding the statements which have most recently defined the
referenced values of the control expressions, the following data dependencies can be obtained:

e assume x == y is data dependent on x := Qandy := 0,
e assume w == y is data dependent on w := O and y := 0,
e assume w == 0 is data dependent on w := 0.

Which statements are determined by the assume statements? At the first look, statement z
:= y on line 8 does not depend on the assume statement assume w == 0, neither does it depend
on assume w == x because the referenced variable y is not referenced by any of the variables
occurring in these two assume statements. It seems as if the only defining statement for y in the
assignment z := y is the assume statement on line 5, assume x ==
Statement assume x == y is data dependent on the assume statement on line 6, assume w ==
because it gives more information about the value of x. Further, assume w == x is data dependent
on the assume w == 0, which finally defines the value of y as 0. By generating the mentioned
transitive dependencies the value of y has finally been defined.

This example shows how assertions in the same state space influence each other. Thus, for a
referenced variable it has to be iterated through the set of assertions in the current state space in
order to decide whether or not an assertion influences the according variable.

3.3 Dependencies of Contracts 27

Iteration Process

In this section the iteration process of finding all assertions within a state space, which has been
introduced in the previous section, is explained in detail. The goal of the iteration process is to
extract those assertions of the original set that directly or indirectly influence a specific variable.
In a first step, all assertions in the same state are merged into one set. In a second step, the
iteration process for each set can be executed. In the following example the goal of the iteration
process is to find all those assume statements that directly or indirectly determine the referenced
variable (here y). The iteration process for Example 6 is executed as follows:

e Remaining set: {assume w == x, assume x == y, assume w == 0},
e referenced variables: {y},
e current set:{}.

Slicing according to variable y means traversing iteratively through the set of assume statements.
Since the assume statements with a state space can be in any sequential order the slicer has to
go iteratively through the set finding all directly and indirectly influencing dependencies until a
fix point is reached. Starting at the first element in the set, assume w == x, no dependency on
variable y can be detected. In contrary, the second set element, assume x == y, declares y and
will therefore be part of the resulting set of assumes. Additionally a new referenced variable,
namely x, is included in the set of referenced variables:

e Remaining set: {assume w == x, assume w == 0},
e referenced variables: {y, x},
e current set: {assume x == y}.

The last statement of the remaining set, assume w == 0, only defines the variable w, which is not
in the set of referenced variables and therefore does not give any information about the slicing
variable y yet. It is therefore not included in the current set at this moment. The next step
in the iteration process goes back to the first element in the set of the remaining statements.
For assume w == x can easily be obtained that this statement will now give more information
about y because it defines x (which has currently been included in the set of referenced variables).
Statement assume w == x is therefore included into the slice, as well. Additionally, w is included
into the set of referenced variables:

e Remaining set: {assume w == 0},

e referenced variables: {y, x, w},

e current set: {assume x == y, assume w == x}.
Now it is known that both, assume x == y and assume w == x, control the referenced variable
y. From that can be concluded that the remaining statement, assume w == 0, defines the value

of y indirectly as 0. Therefore the remaining statement has to be included, as well.
e Remaining set: {},
e referenced variables: {y, x, w},
e current set: {assume x == y, assume w == x, assume W == 0}.

The iteration process is aborted as soon as the the remaining set is empty or a fix point has been
reached. The fix point is reached, if no variable occurring in the set of referenced variable can be
obtained as referenced variable in the remaining set of assumes.

2

3

4

5

6

28 3 Program Slicer

Dependencies of multiple Variables

The previous example has illustrated the iterating process to generate a set of assume statements
determine a specified variable. When generating a complete program dependence graph, the
iteration process has to be executed for every referenced variable that might be dependent on the
set of assume statements. After determining the set of statements for every variable, the resulting
set of statements is obtained by unifying the single sets.

assume X == y;
assume w == X;
assume w ==
assume a —=

assume ¢ == 0(;
z = y;
z 1= a;
e Remaining set: {assume w == x, assume x == y, assume w == 0, assume a == b, assume
c == 0},

e referenced variables: {a, y},
e current set: {}.

Iteration process:

1. Generate determining set for variable a: {assume a == b}

2. Generate determining set for variable y: {assume w == x, assume x == y, assume w ==
0}

3. Merge sets: {assume a == b, w == x, assume x == y, assume w == 0}

Handling of Assert Statements

The examples in the previous sections have illustrated the handling of assume statements in terms
of data dependencies. In order examine the dependencies of assert statements we take a look at
the We have a look at the control flow path containing the blocks

entry — ¢ — b — exit

in the program in Example 1.

x 1= 1;
goto exit;
c:
call z Max(u, w);
w o= 2;
X 1= 2;
7 1= 2
assert x == z;
y = X3
y = 1

goto b;

10

11

3.4 Extended Statements 29

How does the assert statement assert x == z in block ¢ influence the variable x in y :=
x? We can assume that, if the program at some point reaches the statement y := x, the assert
statement must have held. Therefore the assert statement must be true in that case and the
expression in the assert statement can assumed to be true. Due to the fact that x==z can be
assumed, the variable x in y := x is influenced by the assert statement and therefore it exists a
data dependency.

Generally can be said that all assert statements on the execution path leading to a certain
statement are assumed to hold. Otherwise the execution would not have reached the statement.
Therefore all assert statements on the execution path can assumed to be true.

As know easily can obtained, assert statements behave similar to assume statements in terms of
data dependency generation. Assert statements can therefore be handled like assume statements.

3.4 Extended Statements

The program dependencies of the following statements can be derived from the basic statements
explained in the previous sections.

Calls

A call is basically data dependent on those statements, that define the variables given as input
to the called procedure. If the value(s) returned by the called procedure define(s) one or more
variables then the call might additionally have influence on other statements in terms of data
dependency. Dealing with calls we further have to take into account that the pre- and postcondi-
tions of the called procedure, which are desugared assume and assert statements, cause additional
assume and assert statements in the current procedure.

Example 7 (Procedure call). The original program in Example 1 calls procedure Max in block c.
The corresponding procedure Max is defined here:

call z := Max(u, w);
goto b;

procedure Max(int: i, int:g j)
requires i != j;

requires 0 < i;

ensures 0 < result;

ensures result == 1 || result == j;

In order to guarantee the proof obligations of the called procedure Max the requires clauses (the
ensures respectively) are desugared into assert statements (assume statements respectively).

The following sequence of statements shows block c after translating the pre- and postconditions
of procedure Max (Example 7) into assume and assert statements:

c:
assert u != w;
assert 0 < u;
call z := Max(u, w);
assume 0 < z;
assume z == u || z == w;

goto b;

30 3 Program Slicer

Considering the input variables of as referenced variables of the call and the assigned variables as
defined variables the data dependencies of a call statement can generally constructed analog
to assign statements explained in Section 3.2.

Pre- and Postconditions

Preconditions and postconditions in a BoogiePL program can basically be treated as assume and
assert statements. All preconditions have first to be translated into assume statements. Afterward
they are inserted at the beginning of the program, which is at the beginning of the unique entry
block. Postconditions have to be translated into assert statements and inserted at the very end of
the program, which is at the end of a return block.

Quantifiers

Assertions containing quantifiers can be considered as usual assume and assert statements. Ex-
ample 6 shows a sequence of assume statements all of which containing an equality as expression.
The following example slightly differs from Example 6: The expression on line 7 has been replaced
by a quantifier expression.

x = 0;

y = 0;

w = 0;

assume X == y;

assume w == X;

assume (forall i :: w==1); \\Quantifier expression
z = y;

To generate the data and control dependencies of a quantifier expression first the referenced
variables have to be determined. The referenced variables of a quantifier statement are the free
variables in the expression. After extracting the referenced variables quantifier expressions can be
handled similar to assume and assert statements.

Chapter 4

Implementation

This chapter provides some implementation details of the program slicer, whose main functions
are described in Chapter 3. The program slicer has been implemented as part of Boogie. Section
4.1 describes the overall idea of the implementation of the slicer. The subsequent sections describe
the important parts of the implemented program slicer, which are the block nodes, statement
nodes and the process of slice generation.

4.1 Control Flow Graph Generation

Block Nodes

As described in detail in Section 2.1 a control flow graph (CFG) consists of block nodes, each
node representing a block. The implemented control flow graph consists of one entry block of type
EntryNode and one or more exit blocks of type ReturnNode. Both, EntryNode and ReturnNode,
extend the type of the basic block, the CFNode (control flow node).

CFG Generation

The CFG of blocks of type CFNode is established according to the labels in the specific transfer
statements, which are part of each block (Section 3.1). A block containing a return statement as
transfer command is of type ReturnBlock and has no successors. The remaining blocks contain
a goto command, which specifies one or more successor blocks listed as labels after the goto.
A CFNode represents a block and contains a list of all successor nodes representing the successor
block of the corresponding block. To generate the control flow graph of the program, starting
with the entry node the Slicer looks recursively for all successors of the current block according to
the labels, generates a CFNode and adds it successor blocks as nodes to its intern list of successor
nodes. It stops when each control flow path has reached a block containing a return command
as transfer statement.

Algorithm 1 (Control flow generation).

1 CreateSuccessors (currentBlock) {
2> foreach (successorBlock of the currentBlock){

3 Add successorBlock to successorList of currentBlock;
4 if (successorBlock has return command) {

5 //break

6 return;

c

8 else {

9 //recursive call

31

32 4 Implementation

10 CreateSuccessors(successorBlock);
11 }

12 }

13 }

4.2 Program Dependence Graph Generation

The construction of the program dependence graph (PDG) consists of program dependence gener-
ation between nodes.

Program Dependence Nodes

All program statements, such as assignments, calls, havoc, assume and assert statements, are
implemented as PDNodes (program dependence nodes). The construction of data dependencies
is established according to the data dependencies described in Sections 3.2 and 3.3. The process
of finding all data dependencies in a program is done by finding the influencing statements for
each node. All PDNodes that might directly influence another PDNode are finally pointing to its
respective node.

Assignment Nodes

The dependencies between nodes representing an assign statements are described in Section 3.2
in detail. Assign statements referencing a local variable are treated in a different way than assign
statements referencing an array elements.

The data dependencies of assign statements are found recursively. For each node, the potentially
influencing assignments are found.

To establish all data dependencies of a PDNode representing an assign statement, Algorithm 2 is
executed for every assign statement in the program.

Algorithm 2 (Data dependence generation).

1 CreateSuccessors (inputStatement)

2

s if (inputStatement references a local variable){

4 Lookup in the current block for the most recently defining statement
)

5 if (defining statement found in the current block){

6 Create dependency;

7 return;

s}

0 else {

1w // No statement found in the current block

11 foreach trace in the CFG leading to inputStatement {

12 Lookup for the most recently defining statement in a previous
block ;

13 Create dependency;

14 }

15 return;

6w}
)}

18
1v else if (inputStatement references an array element){
20 Lookup in the current block for all defining statements;

4.2 Program Dependence Graph Generation 33

w:=0 Xx:=1; yi=2
Z=W,
Figure 4.1: The value of z only depends on statement w := 0.
21 if (defining statement found in the current block){
22 create dependency;
23 // No return because lookup goes on anyway

24 }

25 //No else clause because the CFG is traversed anyway

26 foreach trace in the CFG leading to inputStatement {

27 Lookup for the all defining statements in all previous blocks;
28 Create dependency for all defining statements;

o}

30 return;

31}

Example 8 (Local variable dependency).

I
F o= o

Y
?

)

[V
N < K =
I

The local variable z depends on the statement which has most recently defined w (Figure 4.1).

Example 9 (Array dependency).

valw] 1= 0;
2 a[x] = 1;
saly] 1= 25
s alz] 1= alw];

The array element a[z] depends on all statements that have ever defined an array element of the
array a (Figure 4.2).

Assertion Nodes

The goal is to find those assertions of a program, which might have influence on the slicing variable.
Assertions following directly one after the other are in the same state. The order of assertions
does not matter. Each set of assume resp. assert statements in the same state represents one
node, namely an assertion node. An assertion node is either an AssumeNode or an AssertNode.
Each assertion node consists of a set of assertions which is either a set of assume statements or
a set of assert statements. A slice of such a set with respect to a given slicing variable is found
by determining all the assertions within the set, which might affect the given variable. To find all
dependencies, transitive dependencies within the set have to be considered as well. A sliced set of
assertions can basically be found by iterating and finding all relating assertions recursively until
a fix point is reached (as described in Section 3.3).

34

4 Implementation

a[x] :=1;

afw]:=0

aly]:=2;

Ny

a[z] := a|w];

Figure 4.2: The value of a[z] depends on all statements on the control flow trace to the current

statement defining a.

4.3 Using the Tool

The program slicer takes as input a program statement and a program and slices the program
with respect to the input statement. It can be used for debugging a failed condition by giving as
input the failed condition returned by Boogie and the failed program. The program slicer slices
the failed program with respect to the failed assertion, which helps the programmer to understand

and fix the error.

New command line options are introduced:

e /showSlice
e /slicingLevel
e /slicingLine

e /slicingVar

showSlice takes a BoogiePL program as input and generates a slice with respect to the input

statement.

slicingLine takes an integer parameter as input specifying the slicing statement.
slicingLevel can be set to 0 or 1. It specifies the slicing approach:

e Slicing level 0 generates a slice using static flow analysis

e Slicing level 1 slices with the help of the static verifier in a dynamic way.

Figure 4.3 shows an example of the slicing command.

4.3 Using the Tool 35

= ~fSpecSharp/Boogie/BoogieExamples

¢ Boogie /shouwSlice ~sslicingLevel @ /slicingLine 39 ~slicinglar = Example.bhpl

Figure 4.3: Command to generate a slice of the program Example. Using static analysis (slicing
level 0) with respect to variable z in the statement on line 39.

36

4 Implementation

Chapter 5

Using the Theorem Prover in the
Presence of Arrays

5.1 Handling of Arrays using Static Flow Analysis

Section 3.2 describes the static dependencies of array elements. Using static flow analysis to
determine data dependencies of array elements, an array update generates an update on every
array element in the corresponding array. This solution is obviously not very efficient since it
might generate far more dependencies than actually needed. Example 9 in the previous chapter
has dealt with array dependencies:

alw] := 0

alx] := 1;
aly] := 2

alz] := a

The critical point here is that it can not be decided whether the two array elements aw| and a[y]
on line 3 and 4 are equal or not, when using static flow analysis. Thus, the PDG generator is
forced to establish a potential dependency. This obviously leads to redundancy in the PDG.

The variable values of w and y influence the array elements as follows:

e w=y=alw] =aly| and

o w#y = au] # aly)

Equality of w and y guarantees that the referenced variable a[w] in line 4 is equal to the defined
variable a[y] in line 3. This means that statement 4 depends definitely on statement 3. Knowing
that two array elements are equal would obviously help to avoid redundant data dependencies.
However, whether a[w] and a[y] on line 4 and 3, respectively, in Example 9 are equal or not can
not be determined using static flow analysis. Therefore an array update can potentially influence
all referenced array elements occurring in subsequent statements on the control flow path. On the
other hand, a referenced array element can potentially depend on all array updates of the same
array on the control flow path: If we look at Example 9 then the referenced array element a[w]
on line 4 can potentially be defined in line 1 or in line 2 or in line 3. Therefore a data dependency
from each array update on the control flow leading to a[w] on line 4 has to be defined. This,
of course, leads to redundant data dependencies, which, considering the slicing process, further
results in complex slices approaching the size of the original program.

5.2 Using the Theorem Prover

Boogie’s theorem prover is responsible for proving passive commands (Section 2.5). As we have
seen in the previous section knowing the fact that two array elements are equal would help to

37

38 5 Using the Theorem Prover in the Presence of Arrays

avoid redundant data dependencies.

The idea is to take advantage of Boogie’s theorem prover and make it verify if two array
elements are equal. When giving an assertion containing an equality of two array elements to the
theorem prover it will return a failed condition if it has not been able to verify the assertion. In
the other case, when a failed condition is returned, Boogie guarantees that the assertion is true,
which implies equality of the two array elements.

To optimize the PDG in the presence of arrays, in particular to get rid of unnecessary array
dependencies, an assertion containing an equality of the indices of two array elements is given
to the theorem prover as input. A data dependency between the two concerning statements is
established or not according to the boolean output of the theorem prover: If the assertion does
not fail we can assume that the array elements are equal. Equality of the two array indices implies
a data dependency and previous assignments to array elements of the same array can be omitted.
However, a failed assertion does not imply that the two indices are not equal. The failed assertion
could also be a spurious error (Section 2.5). Thus, the potential dependency must not be omitted.
In order to establish all potential dependencies further dependencies have to be found.

In order to take advantage of the theorem prover provided by Boogie, Algorithm 2 in Section
4.2 is extended to Algorithm 3.

Algorithm 3 (Data dependence generation with the help of the theorem prover).

1 CreateSuccessors (inputStatement){
> if (inputStatement references a local variable){

.Y

5 else if (inputStatement references an array element){

6 Lookup in the current block for the most recently defining
statement ;

7 if (defining statement found in the current block){

8 //Use help of the theorem prover to check array elements on

equality

9 Create assertion;

10 Make the theorem prover verify the assertion;

11 if (assertion has not failed){

12 //array elements are equal

13 Create dependency; //Definitive dependency

14 return;

15 }

16 else{

17 Create dependency; //Potential dependency

18 //No return because lookup goes on

19 }
20 }

21 foreach trace in the CFG leading to inputStatement {

22 while (No definitive dependency is found)({

23 Lookup for the definitive and potential defining statements in
the previous blocks;

24 Create dependency for all definitive and potential defining
statements ;

2 }
26 }
27 }

5.2 Using the Theorem Prover

39

a[x] :=1;

afw]:=0

aly]:=2;

Ny

Figure 5.1: Array dependencies using static flow analysis contain redundant dependencies.

a[z] == a[w];

aly] =2,

afw] =0

a[x] =1,

l

a[z] .= a[w];

Figure 5.2: Dependencies in case of equality of aJw] and a[y]: With the help of the theorem prover
redundant dependencies as they occur in Figure 5.1 can be omitted.

40

5 Using the Theorem Prover in the Presence of Arrays

Chapter 6

Conclusion

This thesis has presented a program slicer for BoogiePL programs. In addition to traditional
program slicing applications our slicer is able to slice programs including contracts. The slicer
generates efficient slices for programs consisting of scalar variables. However, as in many slicing
techniques, slices in the presence of arrays tend to reach the size of the original program. Since
BoogiePL programs in practice mainly consist of heap statements a method had to be found, to
generate compact slices in the presence of arrays, in order to turn the slicer into a useful tool in
practice. With Boogie’s theorem prover we have found a powerful resource to avoid redundant
dependencies. The technique of program slicing in combination with the theorem prover has
turned program slicing into an attractive technique to generate efficient slices even in the presence
of arrays.

As future work we plan an extension of the static program slicer to include the theorem prover.
Furthermore, the slicer is planned to be extended in that way, that it generates slices automatically
from the failed condition.

41

42

6 Conclusion

Bibliography

(1]

(2]

3]

(4]

(5]

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs 0002, and K. Rustan M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In FMCO, pages 364-387, 2005.

Rob DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for checking object-oriented programs.
Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software Engineering, pages
439-449. IEEE Computer Society Press, 1981.

Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam, The Netherlands, The Netherlands,
1994.

Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a software development environment. In
SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments, pages 177-184, New York, NY, USA, 1984. ACM Press.

43

	1 Introduction
	1.1 Overview
	1.2 Structure

	2 Background
	2.1 Control Flow
	2.2 PDG - Program Dependence Graph
	2.3 Program Slicing
	2.4 BoogiePL Language
	2.5 Boogie - A Static Verifier

	3 Program Slicer
	3.1 Handling of goto's
	3.2 Dependencies of Program Statements
	3.3 Dependencies of Contracts
	3.4 Extended Statements

	4 Implementation
	4.1 Control Flow Graph Generation
	4.2 Program Dependence Graph Generation
	4.3 Using the Tool

	5 Using the Theorem Prover in the Presence of Arrays
	5.1 Handling of Arrays using Static Flow Analysis
	5.2 Using the Theorem Prover

	6 Conclusion

