Quantified Permissions for Random
Access Data Structures

Korbinian Breu
Supervisors: Dr. Yannis Kassios, Dr. Alex Summers

October 4, 2013

1 Verifiers for Concurrent Programs Lack Random
Access

Most automated verifiers for concurrent programs, e.g. VeriFast [JP08] or Chalice
[LMS09], use abstract predicates to specify access permissions to data structures
[PBO05]. Abstract predicates are named assertions that abstract over access permis-
sions, which represent the right of a thread to access a given field. For recursive data
structures, such as trees, these predicates are also recursive. In those verifiers, abstract
predicates are currently the only way to specify properties over a statically unknown
number of fields.

Abstract predicates implicitly dictate a specific traversal of the data structure. The
nature of this implicitly dictated traversal complicates proofs of algorithms that tra-
verse in a different direction. Consider an algorithm performing binary search on a
sequence: It compares with the center element, then with the center element of the
upper or lower half, and proceeds to access elements randomly. It is designed to access
elements in this way and does not play well with a recursive data structure. Thus,
currently, designing and specifying such algorithms is hard and unnatural. We aim at
reducing the specification programmer’s burden and allowing for a more natural spec-
ification style. Thus, we provide a new mechanism to specify properties over random
access structures, i.e. sets, multisets, and sequences: We extend an automatic verifier
by universal quantifiers over access permissions. Our approach will be implemented
in Silicon, a verifier for the intermediate verification language SIL based on the con-
cepts of Implicit Dynamic Frames, Symbolic Execution, and Fractional Permissions
[Sch11].

© 0 O UL i W N+

Consider the example in listing (1), which illustrates a use case of the proposed feature.
The sample specifies a sorting algorithm in the style of SIL. SIL, like Chalice, uses
acc(o.f) to denote the permission to access field f of object o [LMS09]. The data
structure consists of a sequence of cells C, each cell with its value stored in field value.
Lines 6,7, and 9 show how the proposed feature could look. In line 6, the specification
quantifies over the elements in the sequence to gain access to all of the values. It hands
them all back in line 8, and line 9 ensures that the sequence is now sorted. Our goal is
that within the implementation, which is omitted here, access to the elements of the
sequence can now be random.

var C: Seq[Ref]
var value: Int

method sort (this:Ref)
requires acc(this.C)

requires Vi:Int :: 0<i A i<|this.C|-1 = acc(c.value)

ensures acc(this.C)

ensures Vi:Int :: 0<i A i<|this.C|—-1 = acc(c.value)

ensures Vi:Int :: 0<i A i<|[this.C|-1 = this.C[i].value <
this .Cli+1].value

ensures

// implementation

}

Listing 1: This specification of a sorting algorithm makes use of universally quantified
permissions by getting access to all values of the elements in the collection
C that is to be sorted.

2 Core

Ideally, it would be possible to state unrestricted universally quantified expressions

Vo, :Th,ae i Ty eyt Ty 0 Q21,29 .o,) (1)
in SIL. More precisely, in the language of Implicit Dynamic Frames, by stating (1) we

mean that) has to hold on a separate part of the heap for each instantiation. Thus,
equation (1) is equivalent to

Me@,. .. 2)) = Ql,....xp) *Qaf,... 22) *... (2)
J

where * denotes the separating conjunction! and ;L"f is the value of z; in the jth
instantiation?.

However, there are a lot of open questions: How to inhale and exhale universally
quantified expressions? How to represent them on the heap? How to encode them for
73 if necessary? Therefore, to make the problem more manageable, we plan to solve
a restricted variant first.

The first part of the core consists of extending Silicon by universal quantifiers over
permissions for sets instead of multisets. We also restrict ourselves to constant per-
missions. We expect this restricted version of the problem to be substantially easier to
solve. In the second part, we explore lifting these restrictions to allow multisets and
arbitrary permissions, and evaluate the results.

2.1 Restrictions of the problem
We impose the following restrictions on the first core part:
1. Quantify only over one variable
Vo T Q) (3)

Restricting ourselves to one variable still allows for interesting examples and
simplifies the mathematical representation for now.

2. The expression under the quantifier must be an implication of the form

Vo :T : B(x) = acc(er(x).f, ea(x)) (4)

where B is a pure boolean expression without permissions, e (x) is an expression
that evaluates to a receiver, f is the accessed field or an abstract predicate, and
ea(x) evaluates to a fractional permission. This may be more of a simplification
than a restriction, as based on the structure of our fragment of Implicit Dynamic
Frames, all expressions can be stated in this form.

We now simplify the permission expression es.

3. Only allow constant permissions of the form
Ve : T : B(x) = acc(ei(x).f, constant) (5)

where constant is either write, read, or a constant fraction. We thereby forbid
local variables, method parameters, and expressions dependent on the heap.

INote that in Silicon the separating conjunction is written “&&”.

2Using the logical conjunction instead of the separating conjunction would reduce the quantification
to quantification over sets instead of multisets. We impose this restriction differently, by fixing
the receiver, in section (2.1).

4. Fix the receiver to be a quantified variable

To restrict further, we take a look at the receiver expression e;. In its current
unrestricted form, it could evaluate to the same receiver object more than once.
This case of aliasing would require us, for example, to ensure that write permis-
sions are not given twice. To avoid having to deal with aliasing at first, it may
therefore be beneficial to restrict e;:

Vo : T : B(x) = acc(z.f, constant) (6)

The receiver x is now fixed to a quantified variable. Permissions to access z.f are
given exactly once or not at all. This restriction essentially reduces the problem
to sets, a problem which may be substantially more tractable than the previous,
unrestricted version in equation (1).

We will implement this restricted case in SIL/Silicon and test it on examples.

2.2 Relax the Restrictions

The second core part of the project explores lifting restrictions on our journey to
supporting the unrestricted case given in equation (1).

1. Examine the multiset case. Once we no longer restrict the receiver, the
receiver expression e; might evaluate to the same object twice or more often.
Therefore, we have to deal with aliasing. For example, when we assume and give
permissions according to

Ve:T : x € C = acc(x.a.f,write) (7)

and there are two or more objects in C that point to the same object in field a,
we need to be careful not to give away write permission more than once.

We will analyze the implications and experiment with changes to Silicon’s current
heap model.

2. Try to allow unrestricted permissions, e.g. abstract permissions, non-
constant permissions, and permission expressions that depend on the heap. It
might be interesting to distinguish the following three cases of permission ex-
pressions:

o write
e read with known upper bound on the number of reads

e read with with no such known upper bound

3. Explore examples and evaluate our implementation. We have some exam-
ples that already use quantified permissions in SIL, but they have to be checked
for errors and quite possibly debugged. Moreover, there might be many more in-
teresting examples, also smaller ones, that could employ universal quantification
in a useful way. We plan to evaluate our implementation on them: Is it conve-
nient and does it allow a natural proof style? Is the performance satisfactory?

2.3 Deliverables

The following deliverables constitute a successful core:

e An implementation of quantified permissions over sets is created as an
extension of the existing Silicon verifier. The usage resembles the notation in
the sample. Additionally, an implementation of the multiset case is devel-
oped. The required syntax and the capabilities of the implementation are well
documented.

e A description of the formal design as part of the report. This description
gives an abstract view of the involved operations, e.g. inhaling/exhaling, as well
as the modifications to Silicon’s core, e.g. the representation of heap chunks and
their lookup. It points out restrictions that are still imposed and clearly state
to what extent they simplify the problem. The description also argues for the
soundness of the chosen approach.

e An evaluation of the implementation as part of the report. The evaluation
exhibits samples to show the usefulness and functional correctness of the imple-
mentation. It also compares the performance of the modified Silicon with the
previous version.

3 Extensions to be Explored

We propose the following extensions:

1. Generalize the insights gained to other verification concepts. For exam-
ple, think about how the concepts used in Silicon and Symbolic Execution apply

to Verification Condition Generation. How do the problems relate, how do they
differ?

2. Support aggregates, e.g. sums, the mazx function, or the avg function. Ag-
gregates are useful to specify collections and recursive data structures. Universal

quantifications help to create self-framing assertions about aggregates, where self-
framing means an assertion includes permissions to all heap locations it accesses
[Kas06]. The assertion

yel
(Vo : T J:ECzacc(x.f,read))/\Zy.fZO (8)
y

is self-framing, as the universally quantified accessibility predicate gives access
to all heap locations needed in the sum.

3. Find efficient triggering strategies for the underlying prover, which is in
our case Z3. As we cannot predict Z3’s strength when dealing with quantified
expressions, it might be fruitful to tune the performance by providing appropriate
triggers.

4. Check if our new technique helps to specify recursive data structures
more succinctly. The Composite pattern is a recursive data structure, and was
proposed as a verification challenge in [LLMOT7]. Its invariant is specified from
top to bottom, but adding an element breaks the invariant at the bottom and
then fixes it from bottom to top. When relying on the conventional recursive
predicates, proving the correctness of this pattern results in lengthy solutions:
The VeriFast team’s proof consists of lemma methods that require five times as
many lines as the original code [JSP08]. Our approach may be well suited to
reduce the amount of lemma methods.

4 Time Plan

We plan to conduct this project in sprints, where each sprint consists of design, analy-
sis, implementation, and documentation of a milestone. These milestones will allow us
to integrate changes into the Silicon development release incrementally and iteratively.
We separated the project into three sprints:

16.09.—-04.10.2013 Finish proposal, prepare and give initial presentation

7.10.—08.11.2013 The restricted set case, 5 weeks: 4 weeks requirements, design,
and implementation — 1 week documentation and integration. Evaluate different
approaches for the set case and implement a feasible approach in Silicon.

11.11.-13.12.2013 The multiset case, 5 weeks: 3 weeks requirements, design, and
implementation — 1 week documentation and integration — 1 week prepare pre-
sentation. Explore the multiset case.

Mid of November Intermediate presentation: Gather feedback and ideas.

16.12.-20.12.2013 Evaluation of the implementation

06.01.—24.01.2014 Final testing, bugfixing and integration, buffer time
27.01.-28.02.2014 Writeup and final presentation

References

[JPOS]

[JSPOS]
[Kas06]

[LLMO7]

[LMS09]
[PBO5]

[Sch11]

Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical
report, Department of Computer Science, Katholieke Universiteit Leuven,
2008.

Bart Jacobs, Jan Smans, and Frank Piessens. Verifying the Composite Pat-
tern using Separation Logic. In SAVBCS, 2008.

Ioannis T. Kassios. Dynamic Frames: Support for Framing , Dependencies
and Sharing without Restrictions. FM, 4085(1):268-283, 2006.

Gary T. Leavens, K. Rustan M. Leino, and Peter Miiller. Specification and
verification challenges for sequential object-oriented programs. Formal As-
pects of Computing, 19(2):159-189, April 2007.

K. Rustan M. Leino, Peter Miiller, and Jan Smans. Verification of Concurrent
Programs with Chalice. pages 1-29, 2009.

Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.
ACM SIGPLAN Notices, 2005.

Malte Schwerhoff. Symbolic Execution for Chalice. Master’s thesis, 2011.

	Verifiers for Concurrent Programs Lack Random Access
	Core
	Restrictions of the problem
	Relax the Restrictions
	Deliverables

	Extensions to be Explored
	Time Plan

