
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

Consider a parallel mergesort: it splits an array into two parts, sorts each part in a separate
thread, and then merges the results. We want to implement this algorithm correctly, and
we want the correctness of the implementation to be automatically verified. More gen-
erally, we want to verify the correctness of algorithms that operate on unbounded data.
When implementing mergesort, for example, the size of the array is not statically known.

Silicon is an automatic verifier for concurrent programs, based on symbolic execution. Be-
fore this project, one had to specify algorithms on unbounded data structures with recur-
sive abstract predicates. These predicates dictate a specific traversal of the data structure
and thus do not harmonise with algorithms that traverse in a different way. For example,
binary search is hard to specify on an array that is modelled as a linked list. Thus, the speci-
fication of such algorithms with abstract predicates is unnatural and does not resemble the
implementation.

In this thesis, we describe how we extended Silicon to support permissions under univer-
sal quantifiers. Permissions model a thread’s access to heap cells, and we use permissions
under universal quantifiers to model the access to elements of a set or a sequence. We show
how we use permissions under quantifiers to specify permission-related aspects of algo-
rithms on unbounded data structures. Unlike predicates, our approach does not dictate a
specific traversal.

With our new feature, Silicon verifies the permission-related specification of algorithms on
unbounded data. Among others, we verified mergesort, a thread-safe mutable array, and
a union-find structure.
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1 Overview

1.1 Motivation

Have you ever implemented thread-safe collections? When we develop parallel algo-
rithms, we often make mistakes.

Consider a thread-safe mutable set: many threads can read the elements. But, to prevent
indeterminacy in the result, a thread that modifies elements requires exclusive access to
these elements. Or, consider a parallel mergesort: it splits an array into two parts, sorts
each part in a separate thread, and then merges the result. Both are algorithms that operate
on unbounded data: for mergesort, e.g., the size of the array is not statically known.

We want to implement these algorithms correctly, and we want the correctness of the im-
plementation to be automatically verified. Therefore, we have to prove that the imple-
mentation adheres to a specification of the algorithm’s properties. Mergesort, for example,
should never access a part of the array which is being sorted by another thread.

Many automated verifiers for concurrent programs, e.g. Verifast [JP08], Chalice [LMS09],
jStar [DP08], VeriCool [SJP08], and Silicon [Sch11] use the concept of permissions to control
the access to heap structures: at each program point, a thread has either read, write, or no
access to a given heap location.

When the number of accessed locations is statically unbounded, it is impossible for a spec-
ification to explicitly describe each of these accessed locations [SD13]. In the mentioned
verifiers, the only option to specify permissions for a statically unknown number of lo-
cations were recursive abstract predicates. A predicate is given as part of the program’s
specification and has an assertion as its body. The body may contain instances of the same
predicate, making the predicate recursive. With such a recursive predicate, one can im-
plicitly require permission to access, e.g., every next and value field in a linked list. The
disadvantage of specifying permissions in this way is that the recursive nature of a pred-
icate dictates a specific traversal of the data structure. Consider Figure 1.1, which shows
the typical heap structure of a linked list specified by a recursive predicate. It is designed
to be traversed from its beginning to its end. This implicitly dictated traversal complicates
correctness proofs of algorithms that traverse in a different way.

For example, imagine your model of an array looks similar to the specification of a linked
list. You decided to model it this way because your algorithms traverse the array from start
to end. Now, imagine you would like to implement binary search. The implementation
of binary search compares the value field with the value field of the center element, then
with the value field of the center element of the upper or lower half, and proceeds to
divide the remaining sequence. Intuitively, it would be hard to show that permission to
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1 Overview

Figure 1.1: Recursive predicates implicitly dictate a specific traversal.

access the value field of the center element is held, as it is unknown how often the body
of the predicate has to be “unrolled”. The verifier should offer a mechanism to specify
the permissions to access such data structures without dictating a specific traversal. We
propose such a new mechanism.

This mechanism allows to specify access permissions for sets and sequences without dic-
tating a specific traversal. Sets are unordered collections of mutually distinct elements,
sequences are ordered collection of elements that do not need to be distinct. We show how
to specify the mentioned algorithms and data structures with our new mechanism. Our
proposal extends the specification language with permissions under universal quantifiers.
It is implemented as an extension of the verification methodology used in Silicon, a verifier
for the intermediate verification language SIL.

To our best knowledge, no automated tool based on symbolic execution supports permis-
sion under quantifiers.

1.2 Silicon and its dependencies

• SIL is an intermediate verification language based on the concepts of implicit dy-
namic frames (IDF) [SJP09] and fractional permissions [Boy03]. It has sets and se-
quences as generic collection types.

• Silicon is a verifier for SIL based on symbolic execution. The project described in
this report extends Silicon to support assertions that contain permissions under uni-
versal quantifiers. Such assertions were allowed syntactically in SIL before, but not
supported by any verifier.

• Z3 is a SMT solver [DMB08]. It handles proof obligations that arise during the sym-
bolic execution of programs. This component is also called the prover.

1.3 Permissions under quantifiers

Specifications in SIL, i.e. method preconditions and postconditions, and loop invariants,
are written as assertions in the logic of IDF. This logic is similar to first-order logic, but
adds constructs to specify the access to heap locations. It already syntactically allows for
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1.4 Implementation outline

Figure 1.2: Permissions under quantifiers allow to specify random access for a sequence.

a universal quantifier. We added support for permissions under universal quantifiers to
express assertions such as “at this program point, it is known that read access to the field
value for all objects in set S is held”, or “for each index i of valid indices for sequence
S, access to the field value of the object at S[i] is held”. When we model an array with a
sequence, this resembles Figure 1.2. We omit the next pointer needed above, and instead
access elements by their index.

Thus, in contrast to recursive predicates, permissions under quantifiers allow to specify
access without fixing how this access is used. For example, they allow any traversal of a
sequence.

1.4 Implementation outline

Silicon keeps a representation of the content of the heap in the verifier, separate from the
prover. Whenever it needs to prove an assertion about heap contents, Silicon first uses Z3
to prove if the program may access the heap content in the current state. If the program
holds the required permissions, Silicon encodes the assertion with the current heap content
and lets Z3 prove it. Silicon passes only formulas to the prover.

To support sets and sequences, we modified the representation of the heap. As soon as
Silicon encounters permissions under quantifiers for a certain field, it changes the struc-
ture of the heap for this field to a new structure. Consequently, Silicon also modifies the
operations on contents of the heap, i.e. permission lookup, permission transfer, and keep-
ing track of the value of heap cells. It then transforms permissions under quantifiers to fit
this representation of the heap. To fulfil new proof obligations arising from that new heap
structure, we added new functions in the prover and axiomatised them.

Our approach is extensible such that further projects can implement new assertions that
are not yet handled. We separated permissions under quantifiers into so-called idioms. The
two available idioms are sets and “splitting sequences”. “Splitting sequences” is an idiom
that can handle assertions that are constrained to a range of indices of a sequence. We built
it to support e.g. how mergesort splits an array in two parts.

Silicon’s old heap representation is still important. It generates fewer calls to Z3, and is
thus significantly faster. So, Silicon keeps the fields without permissions under quantifiers
in the old representation.

3



1 Overview

1.5 Results

We verified the permission-related part of interesting algorithms that can be specified with
sets and sequences. These include mergesort, binary search, a thread-safe mutable array,
and a union-find structure. We verified many more artificial programs that now serve as a
test suite. Our extension does not affect the performance of Silicon for programs without
permissions under quantifiers substantially.
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2 Background

2.1 The Semper Intermediate Language SIL

The Semper Intermediate Language SIL is an imperative language targeted at static ver-
ification. It uses assertions such as pre- and postconditions as well as loop invariants to
specify the expected program behaviour. It is called an intermediate language because pro-
grammers rarely interact directly with SIL; rather, they use a front-end tool to translate
from their source language to SIL1. Then, they use a back-end tool such as Silicon to at-
tempt to verify the program.

2.1.1 Language concepts

SIL does not explicitly encode classes. All fields are globally declared and available to all
objects. All objects are referred to by a basic reference type, Ref.

At each point of a SIL program, it is known which fields of which objects may be read or
written. The idea is to frame methods: to compute an upper bound on the locations that are
read or written. Framing methods ensures modularity: each method implementation can
be verified on its own, without considering the implementation of other methods [SJP09].

In SIL assertions, access to a field is expressed as acc(e.f,p), where e evaluates to an
object that is called the receiver, f is a field name, and p is a permission amount with
0 < p ≤ 1. Having permission 1 to a field means write access (we also use write as 1).
Having permission 0 < p < 1 means read access, and permission 0 means no access. Write
access is exclusive, and the sum of all permissions to a field at any given time is ≤ 1. This
model of specifying access rights is called fractional permissions [Boy03].

An assertion may conjoin more than one such access predicate, e.g. the assertion acc(x.f,
1/2) && acc(x.f, 1/2). In SIL, && is not the logical conjunction (∧), but the so-called
separating conjunction2. Its semantics allows us to “add up” permissions that are given to
the same receiver. So, if the earlier assertion holds, we actually have full access to x.f. If
either side of the separating conjunction is pure, i.e. it does not contain access predicates,
then its semantics degenerates to the usual logical conjunction. This specification language
is a variant of IDF [SJP09].

Permissions can be transferred, e.g. between two threads or two method executions of the
same thread. For example, if a method happens to call another method, it must give away

1Examples for frontends are Scala2SIL and Chalice2SIL.
2Classically, in separation logic, the separating conjunction is written as the star ∗.
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2 Background

the permissions required by the method, and in return it gains the permissions ensured by
the method. Giving away permissions, e.g. via the postcondition or before a method call,
is called exhaling. Roughly speaking, exhaling an assertion means proving that an assertion
holds, and in particular the permissions required are held. Gaining permissions, e.g. via
the precondition or after a method call, is called inhaling. Inhaling an assertion assumes
it, and obtains the permissions in the assertion for the current thread. If permissions to a
location o.f are inhaled to which no permission was previously held, an arbitrary value is
assigned. This models the fact that another thread might have modified the location since
the current thread last accessed it [LM09]. Expressing permission as fractions makes sense:
a method can distribute permissions among its callees, i.e. letting each callee read some
field, and can then collect and still provably have its full permission back.

SIL has no explicit notions of concurrency, e.g. threads or monitors. Instead, these concepts
can be encoded in SIL with fractional permissions and permission transfer3. Hence, there
is no need to support them explicitly. Intuitively, write permission is exclusive, no other
thread can read the location. Read permission can be shared among multiple threads.

There are cases where the number of accessed fields is not statically known. For recursive
data structures, such as a linked list, SIL provides recursive abstract predicates. A predicate
is an assertion (called its body) with a name. The fold and unfold operations exchange the
predicate name for its body (and vice versa). Permissions are also held to access predicate
instances. So, more precisely, unfold exhales permission to a predicate instance and inhales
the predicate’s body, and fold exhales the predicate’s body and inhales permission to a
new predicate instance. If a predicate is recursive, its body contains an instance of the
same predicate. Recursive predicates can be used to model recursive data structures.

Listing 2.1: A linked list can be specified with recursive abstract predicates.

1 var value: Int
2 var next: Ref
3

4 predicate list(this:Ref) {
5 acc(this.value , write) &&
6 acc(this.next , write) &&
7 (this.next != null ==> acc(valid(this.next), write))
8 }
9

10 method add(this:Ref , value:Int)
11 requires acc(valid(this), write)
12 ensures acc(valid(this), write)
13 {
14 unfold acc(valid(this), write)
15 if(this.next != null) {
16 add(this.next , value)
17 } else {
18 var node:Ref
19 node := new()
20 node.next := null
21 node.value := value
22 fold acc(valid(node), write)

3Chalice2SIL encodes Chalice concurrency constructs in SIL.
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2.1 The Semper Intermediate Language SIL

23 this.next := node
24 }
25 fold acc(valid(this), write)
26 }

In Listing 2.1, the permissions for a linked list are specified in the recursive predicate list.
This predicate contains permission acc(this.value, write) to access a node’s value, and
acc(this.next, write) to its pointer to the next element. In case the given node is not the
last one, it also ensures the access to the rest of the list. Method add recursively unfolds
this predicate until it reaches the end of the list, and then adds a new node.

2.1.2 Set and sequence syntax

SIL supports sets and sequences, and common operations on them. A set is a collection of
distinct objects, while a sequence is an ordered and indexed collection of elements that are
not necessarily distinct. Both sets and sequences are value types. The supported syntax is
illustrated in Listing 2.2.

Listing 2.2: SIL supports common operations for sets and sequences

1 method sets() {
2 // Set(x,y,...) constructs an explicit set
3 var a:Set[Int] := Set(1,2,3)
4 assert 2 in a
5 assert Set(1) subset a
6 assert 3 == |a| // |S| denotes the size of a set
7 assert Set(1,2,3,4) = a union Set(4)
8 assert Set(1) = a intersection Set(1)
9 assert Set(1,2) = a setminus Set(3)

10 }
11 method sequences () {
12 // Seq(x,y,...) constructs an explicit sequence
13 var c:Seq[Int] := Seq(1,2,3,4,5)
14 assert c[0] == 1
15 // S[i:=j] is S updated at index i to value j
16 var b:Seq[Int] := c[0:= -1]
17 assert b[0] == -1
18 // S[i..] drops all indices less than i
19 assert c[1..] == Seq(2,3,4,5)
20 // S[..i] takes all indices less than i
21 assert c[..1] == Seq(1)
22 // S[i..j] is the subsequence from i inclusive to j exclusive
23 assert c[1..3] == Seq(2,3)
24 // S1 ++ S2 concatenates two sequences
25 assert Seq(1,2,3) == Seq(1,2) ++ Seq(3)
26 // |S| denotes the length of a sequence
27 assert |c| == 5
28 // [i..j] denotes the sequence of integers from i inclusive to j

exclusive
29 assert [1..3] == Seq(1,2)
30 }

7



2 Background

2.2 Silicon

Silicon is a back-end for SIL. It takes a SIL program, and is either able to verify its validity,
or outputs potential bugs. Silicon is based on a verification methodology called symbolic
execution. It is sound and incomplete.

Intuitively, symbolic execution means executing the program with fixed, but unknown
(symbolic) values. Each assertion and statement modifies the symbolic state, which tracks
the current local variables, contents of the heap and permissions to access these contents,
and assumptions gained about symbolic values. How each program construct modifies
the state is formalized in symbolic execution rules. Proof obligations that arise, e.g. when
proving that a postcondition holds, are fulfilled by the prover, which, in Silicon’s case, is
the SMT solver Z3 [DMB08].

We are mostly interested in the model of the symbolic heap, as supporting permissions
under quantifiers means modifying the way Silicon keeps track of the heap contents and
permissions. Silicon represents the state of the symbolic heap with so-called heap chunks.
Heap chunks represent currently accessible memory cells, the permission which is held to
them, and their symbolic values. In particular, we consider field chunks, which hold the
permission and the value of a single field location. Later, we will extend the heap model.

In sections 2.2.1 to 2.2.3, we present an extended version of the formalism by Schwerhoff
[Sch11]. In his work, Schwerhoff describes the formalism and implementation of Silicon.
Schwerhoff’s formalism itself builds on the work by Smans et al. [SJP10].

2.2.1 Formalism

Definition 1 (Language). The following sets are used to refer to SIL code in definitions of
our symbolic execution algorithm:

• X , the set of variables with typical element x

• E , the set of expressions with typical element e

• Φ, the set of assertions with typical element φ

• S, the set of statements with typical element s

• F , the set of field names with typical element f

y

Assumptions gained during the symbolic execution of a program, e.g. from the precondi-
tion of a method, are encoded as first-order logic terms and formulas.

Definition 2 (Term). We use the word term for any first-order term or formula. The set of
terms is called T , with typical element t. y

Intuitively, each permission e ∈ E can be symbolically evaluated to a term, as long as
enough permissions are held to access needed heap contents. We use te to denote the term

8



2.2 Silicon

that results in the evaluation of e, assuming that the evaluation succeeded. So, examples
of terms are tx = ty encoding the expression x==y, and tx ∈ tS encoding the expression x
in S.

Definition 3 (Sort). Each term has a corresponding sort. We are mainly interested in the
sorts Int, Bool, Ref, Perm, and the generic sorts Set and Seq, where Int and Bool are integers
and booleans, respectively, Ref are object references, Perm are fractional permissions, Set
are sets and Seq are sequences with some sort as element type. We define the following
subsets of T :

• TR ⊂ T , the set of reference terms with typical element tr

• Tα ⊂ T , the set of fractional permission terms with typical element tα

• TBool ⊂ T , the set of boolean terms with typical element tbool

y

Definition 4 (Sort mapping). All of the types in SIL can straightforwardly be mapped to a
sort. We write sort(f) to get the sort of the type of a field name f. y

Definition 5 (Symbolic state). A symbolic state is a 4-tuple (γ, h, g, π) ∈ Σ composed of a
symbolic store γ, a symbolic heap h, a symbolic old heap g and path conditions π, all of
which will be defined in the rest of this subsection. y

The symbolic state contains all information available while symbolically executing the pro-
gram. It determines the result of assertion and expression evaluations, and is modified by
assertions and statements. Access to a component c ∈ {γ, h, g, π} of a state σ is denoted by
dot-syntax: σ.γ, σ.h, σ.g, and σ.π. Substituting a concrete state component c′ for a compo-
nent c yields a new state σ′ and is denoted by σ[c := c′]. For example, σ[h := ∅] clears the
current heap.

Definition 6 (Symbolic store). A symbolic store γ ∈ Γ is a partial function γ : X → T from
variables to terms. Its domain comprises all variables in the current scope of the symbolic
execution. y

We follow [Sch11] and introduce the shorthand σ + (x, t) to add a variable to a state, and
add new notation σ−x to remove a variable from the state4. Adding a variable corresponds
to pushing it into the current scope, and removing means that a variable is popped out of
scope, e.g. after evaluating a quantifier.

Definition 7 (Field chunk and field terminology). A field chunk is of the form tr.f 7→ tv # tα,
where

• tr ∈ TR represents a receiver object

• f ∈ F represents a field name

• tv ∈ T represents the field value

• tα ∈ Tα is a fractional permission representing the access to the field location tr.f.

4Strictly speaking, these are function updates of the component σ.γ. [Sch11] contains a more rigorous intro-
duction.
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If such a field chunk is part of the heap, then (1) the field location tr.f may be accessed
with permission tα and (2) the location’s current value is tv.

Let CH be the set of all field chunks. y

Definition 8 (Symbolic heap). A symbolic heap h ∈ H is a set of field chunks representing
currently accessible memory cells and their values5.

A chunk c ∈ CH can be added to and removed from a heap h, which is denoted by h′ = h+c
and h′ = h− c, respectively. y

Definition 9 (Path conditions). A set π ∈ Π of path conditions is a set of first-order logic
formulas representing assumptions gained from the symbolic execution in progress. y

For example, for a given field access x.f and a local variable y with current values tx.f
and ty, respectively, an assumption x.f > y would go to the path conditions as tx.f > ty.
Sources of path conditions are preconditions, postconditions of called methods and guards
of if-then-else statements. Path conditions can also arise from the evaluation of expressions
and inhale statements.

We update path conditions π by adding a term t, denoted by π′ = π + t.

In symbolic execution, we need a way to assign unused symbolic terms to variables. For
example, when verifying a method, all the method parameters need to be assigned such
values. We call these values fresh.

Definition 10 (Fresh). An atomic term (a variable) or a function is called fresh with respect
to a set of states if it is syntactically distinct from all terms and functions, respectively,
in these states. We write t = freshS to express that t is such a term of sort S, or t1 =
freshS1→S2

(t2) to express that t is a function application term of a fresh function from S1 to
S2 applied at a term t2 of sort S1. Note that freshS1→S2

itself is not a term, as only first-order
logic terms are allowed. y

The explicit naming of the sort is a hint for the reader, and to make it easier to distinguish
between fresh atomic terms and functions.

We may use fresh in places where a term is expected, e.g. tr.f 7→ freshsort(f) # tα.

The correctness of the rules of our symbolic execution algorithm depends on the freshness
property.

2.2.2 Symbolic execution rules

In the symbolic execution rules we use σ `z3 φ to denote that a formula φ has to be proved
in state σ. The z3 subscript is there to emphasise that these proof obligations are handled
by Z3.

The rules are presented in continuation-passing style (CPS) [FWH01]. In CPS, each function
has, as an extra argument, a function representing the remainder of the computation. For

5Other types of chunks exist which are orthogonal to this work.
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example, f(. . . , g) computes the result of f , then invokes the continuation g with this re-
sult, thereby continuing with the remaining computation. In the definition of the following
rules, the last (function) argument is the continuation.

Expressions are evaluated by the function eval:

• eval : Σ × E × (Σ × T → Bool) → Bool, evaluates an expression into a term. It is
implemented with the helper function

• eval’ : Σ×Π×E × (Π×T → Bool)→ Bool6, where the second argument accumulates
path conditions yielded by the ongoing evaluation.

Producing assertions corresponds to the concept of inhaling. In its simplest form, conjuncts
of the assertion that are access predicates acc(e.f,p) are evaluated and a chunk te.f 7→
freshsort(f) # tp is put on the heap. Pure parts of the assertion is evaluated and the resulting
term is used as an additional assumption during the rest of the execution. Producing an
assertion can affect the current heap and the path conditions.

Assertions are produced by the function

• produce : Σ × T × Tα × Φ × (Σ → Bool) → Bool, where the second argument is
the snapshot term used to produce the assertion7, and where the third argument is a
factor used to scale access permissions that are to be produced8. produce is defined
with the helper function

• produce’ : Σ × T × Tα × Φ × (H × Π → Bool) → Bool, which passes only the newly
produced heap chunks and path conditions to the continuation.

Consuming assertions corresponds to the concept of exhaling. For parts of the assertion
that are pure, the consumption attempts to evaluate them to a term and then prove them
in the current state. For conjuncts of the assertion that are access predicates acc(e.f, p),
the consumption tries to find a chunk te.f 7→ # tq on the heap and subtracts tp from tq. If
the heap chunk is then empty, i.e. σ `z3 tq− tp = 0, it is removed from the heap. In the case
that a heap chunk is modified, the snapshot term (read here: the value) of the modified
chunk is returned. Therefore, consuming an assertion can affect the current heap and the
path conditions, but the other state components will remain unaltered.

Assertions are consumed by the function

• consume : Σ×Tα×Φ×(Σ×T → Bool)→ Bool, where the second argument is a factor
used to scale the access permissions that are to be consumed9. consume is defined
with the helper function

• consume’ : Σ×H × Tα ×Φ× (H ×Π× T → Bool)→ Bool, which passes the remain-
ing heap, newly gained path conditions and the consumed snapshot to the contin-
uation. The additional heap argument (second argument) represents the remaining

6The third parameter in [Sch11], the currently evaluated functions, has since been removed.
7Snapshots are used to frame predicate and function applications. They summarise the field values at a given

state. They are orthogonal to this project.
8This is due to the fact that predicates are also heap objects, and is not relevant for this project.
9Again, this is due to the fact that predicates are also heap objects, and is not relevant for this project.
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2 Background

heap which can be modified, and which is eventually passed to the continuation.
The state (first argument) is used to evaluate expressions.

The three functions introduced so far – eval, produce, and consume – all handle asser-
tions or expressions, but do not cover statements are thus not suited to actually execute
programs.

Statements are symbolically executed by

exec : Σ × S × (Σ → Bool) → Bool , which executes a single statement. It is imple-
mented with eval, produce, and consume, and affects all components of the state.

Based on these functions, the validity of program functions, methods, and consequently, a
program, is defined. A slightly outdated version of these rules is presented in [Sch11]. In
particular, Silicon by now supports the evaluation of quantifiers with pure bodies. So, we
can focus on quantifiers with access predicates in the body.

2.2.3 Sets and sequences

All set and sequence operations in SIL have a direct corresponding term: e.g., getting a
sequence with the first n items of sequence S dropped, S[n..], is tS[tn..] as a term. As
sets and sequences are not natively supported by our SMT solver, assertions about set and
sequence operations would not verify without additional knowledge about the semantics
of the operations. Hence, to prove assertions about sets and sequences, Silicon comes with
an axiomatisation of these operations.

12



3 Permissions under quantifiers

3.1 Semantics

In general, a universal quantification has the form

forall x1:T1, ..., xn:Tn :: Q

with quantified variables x1, . . . , xn of types T1, . . . , Tn and expression Q. Such a quantifica-
tion can be expressed equivalently as a (possibly infinite) conjunction of its instantiations.
We define this conjunction to be the separating conjunction. For example,

forall i:Int :: i in [0..2] ==> acc(Seq(x,x)[i].f, 1/2)

is semantically equivalent to acc(x.f, 1).

The fragment of IDF supported by Silicon forbids access permissions on the left side of
implications. This allows us to deduce that quantifiers that mix access assertions and pure
expressions are actually syntactic sugar, and can be separated into pure quantifiers and
permissions under quantifiers with a special form.

3.1.1 Canonical quantifers

We separate pure and access assertions.

Definition 11 (Canonical quantifier). A canonical quantifier has the form

forall x1:T1, ..., xn:Tn :: Q

where Q is either a pure boolean expression or has the form

P ==> acc(e.f, p)

where P is a pure boolean expression. Here, e evaluates to the receiver, f ∈ F is a field, and
p is an expression that evaluates to a fractional permission. y

Lemma 1. Each quantifier forall x1:T1, ..., xn:Tn :: Q is equivalent to a conjunction of
canonical quantifiers.

13



3 Permissions under quantifiers

Proof. Our fragment of IDF is defined as follows:

expr : pure | acc(pure.f, pure) | expr && expr | pure ==> expr

where pure is a pure expression, i.e. it does not contain access predicates, and f is a field.
We assume that every expression is typed correctly. No access predicate may appear on
the left side of an implication. We do not consider nested quantifiers. Without loss of
generality, we only use one quantified variable.

We proceed by giving a tuple (n,m) to each quantifier forall x:T :: Q, where n is the
number of implications (==>) in Q, and m is the number of conjunctions (&&) in Q. We only
count implications and conjunctions when at least one side (for implications, it is always
the right side) is not pure.

Our proof is by lexicographic induction on the tuple (n,m). We have two induction bases:

1. (0, 0): We case-split on the structure of Q.

a) Q = P, where P is pure. forall x:T :: P is a canonical quantifier (and there-
fore equivalent to a conjunction of canonical quantifiers).

b) Q = acc(P1.f, P2), where P1 and P2 are pure. An implication true ==> Q is
equivalent to Q. Therefore, forall x:T :: true ==> acc(P1.f, P2) is the equiv-
alent canonical quantifier.

There are no other quantifiers with no implication and no conjunction.

2. (1, 0): We case-split on the structure of Q.

a) Q = P1 ==> P2, where P1 and P2 are pure. forall x:T :: P1 ==> P2 is a canon-
ical quantifier.

b) Q = P1 ==> acc(P2.f, P3), where P1, P2, and P3 are pure. forall x:T :: P1
==> acc(P2.f, P3) is a canonical quantifier.

There are no other quantifiers with one implication and no conjunction.

For the induction step, we assume now that Q contains n implications and m conjunctions.
To apply the induction hypothesis, we need to reduce the quantifier to a conjunction of
quantifiers for which each contains either fewer conjunctions and the same number of
implications, or fewer implications. We case-split on the structure of Q.

1. Q = E1 && E2, where E1 and E2 are expressions. We rewrite to a equivalent conjunc-
tion of two quantifiers, forall x:T :: E1 && forall x:T :: E2. Each of these
conjuncts has n implications, and m − 1 conjunctions, and is thus by the induction
hypothesis equivalent to a conjunction of canonical quantifiers.

2. Q = P1 ==> E1 && E2, where P1 is pure, and E1 and E2 are expressions. We rewrite to
forall x:T :: P1 ==> E1 && forall x:T :: P1 ==> E2. Each of these conjuncts
has n implications, and m − 1 conjunctions. We apply the induction hypothesis for
both conjuncts.
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3. Q = P1 ==> P2 ==> E1, where P1 and P2 are pure, and E1 is an expression. We rewrite
to forall x:T :: (P1 && P2) ==> E1, which has n−1 implications, andm conjunc-
tions (both sides of P1 && P2 are pure). We apply the induction hypothesis.

Hence, it is enough to consider canonical quantifiers, as all other quantifiers can syntacti-
cally be rewritten to conjunctions of canonical quantifiers. The proof constitutes an algo-
rithm for this rewriting. As we have shown that pure quantifiers can be separated from
permissions under quantifiers, and Silicon supports pure quantifiers already, we can now
focus our efforts on access permissions under quantifiers.

3.2 Introductory examples

Permissions under quantifiers can be used to create quite complex heap structures. They
introduce logic to the heap structure. As Silicon stores the heap structure separate from
the prover, also this logic is separated from the prover. The following examples introduce
some challenges that we will have to deal with.

3.2.1 Sets

Listing 3.1 shows how we can represent access to a set of objects with permissions under
quantifiers. The precondition of method sets requires write access to all elements in S.
Because it is known that the element a is in S, it should be possible to write to the location
a.f. For another element b, the value of b.f should not change.

A more intricate example is method sets intersect. If we have half permission to ele-
ments in S and half permission to elements in T, we should have full access to all elements
in S intersection T.

Listing 3.1: The access to field locations where the receiver is in a set can be represented
with permissions under quantifiers.

1 var f:Int
2

3 method sets(S:Set[Ref], a:Ref , b:Ref)
4 requires forall s:Ref :: s in S ==> acc(s.f, write)
5 requires a in S && b in S && b != a
6 ensures forall s:Ref :: s in S ==> acc(s.f, write)
7 ensures b.f == old(b.f)
8 {
9 a.f := 5

10 }
11

12 method sets_intersect(S:Set[Ref], T:Set[Ref], a:Ref)
13 requires forall s:Ref :: s in S ==> acc(s.f, write)
14 requires forall t:Ref :: t in T ==> acc(t.f, write)
15 requires a in S && a in T

15
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16 ensures forall x:Ref :: x in (S intersection T) ==> acc(x.f, write)
17 {
18 a.f := 5
19 }

3.2.2 Sequences

Listing 3.2 shows how we can represent access to a sequence of objects. Permissions are
given for each index. Note that the objects at each index are not necessarily distinct. That
is why, in the example, if two indices alias, write permission is held. So, an assertion
for sequences can inhale permission to a specific location more than once if objects in the
sequence alias. Additionally, if in the example S[0].f would be written, S[1].f would
also change.

Listing 3.2: Permissions are inhaled for each index of a sequence.

1 var f: Int
2

3 method sequences(S:Seq[Ref])
4 requires forall i:Int :: i in [0..|S|] ==> acc(S[i].f, 1/2)
5 requires |S| > 2 && S[0]==S[1]
6 {
7 // should work because half permission has been inhaled for indices

0 and 1
8 exhale acc(S[0].f, write)
9 }

3.2.3 Modelling arrays with sequences

Quantified permissions allow one to model the behavior of arrays with sequences. The
idea is to keep a sequence of location objects: each of these location objects models one
cell of the array. The object at each index holds the value in a designated field. Then, we
can distribute permission to access these field locations. It is important that these location
objects are mutually distinct: if one index is written, the values at other indices should not
be changed. We gain this distinctness of location objects implicitly if write permission for
each index is held.

Listing 3.3 illustrates this idea. From the distinctness of the cells the assertion S[b].f ==
old(S[b].f) can be established.

Listing 3.3: The behavior of arrays can be modelled with sequences and quantified
permissions.

1 var f:Int
2

3 method array(S:Seq[Ref],a:Int , b:Int)
4 requires forall i:Int :: i in [0..|S|) ==> acc(S[i].f, write)
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5 requires a >= 0 && b > a && b < |S|
6 {
7 S[a].f := 5
8 // implicitly , we know that S[a] != S[b]
9 assert S[b].f == old(S[b].f)

10 }
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4 Quantified Chunks

We have seen that Silicon uses field chunks of the form tr.f 7→ tv # tα to represent the
current state of a field location. If such a chunk exists in the heap at some program point,
it is known that permission tα is held for location tx.f, and its value is tv at that point. For
two field locations, two heap chunks can be put on the heap, three for three fields locations,
and so on. However, in the case of permissions under quantifiers, we need to represent
the access to an arbitrary number of field locations, for example for all elements of a set.
Therefore, we introduce quantified chunks, which generalise the idea of fields chunks to an
arbitrary number of field locations.

4.1 Form and semantics

Definition 12. A quantified field chunk has the form ∀x rx.f 7→ tv # tα where

• x ∈ Ref is the receiver object that is being quantified over

• f ∈ F is a field name

• tv ∈ T is a term that represents the field value

• tα ∈ Tα is a fractional permission term representing how much permission to access
the location is given

We define QCH to be the set of quantified field chunks, a subset of CH. y

If such a quantified field chunk exists on the heap, permission tα is held for the field f
of any non-null object x. If then additionally tα > 0, the value of x.f is currently tv. Else,
tα = 0, and the value of x.f may not be read. Note that both tα and tv are terms and usually
depend on x.

Example 1. A chunk ∀x r x.f 7→ t(x) # x ∈ S ? 1 : 0 on the heap entails that at this
program point, full permission is held for the field f of all objects in set S. Let y be an
object with y ∈ S. As (y ∈ S ? 1 : 0) is then strictly positive, the value of y.f is t(y), where
t is a function from objects to sort(f). y

As this example shows, quantified field chunks can be used to represent the permission to
a set of fields.

Quantified field chunks subsume “original” field chunks. A field chunk tx.f 7→ tv # tα
can be written equivalently as quantified field chunk

∀x rx.f 7→ tv # (x = tx ? 1 : 0) ∗ tα.
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4 Quantified Chunks

quantifyChunksForField(h, f) = map(h, (λ ch r
if ch = tx.f 7→ tv # tα

∀x rx.f 7→ tv # x = tx ? tα : 0

else ch))

isQuantifiedForField(h, f) = ∃ ch ∈ h rch = ∀x rx.f 7→ #

where map is the higher-order mapping function as e.g. available in Haskell with the first argu-
ment being the data structure to iterate over, and the second argument being the mapping function.

Figure 4.1: Non-quantified field chunks can be converted to quantified chunks.

Note that the value tv does not have to depend on x. Especially when converting non-
quantified chunks to quantified ones, tα > 0 for exactly one receiver, and so tv can as well
be a literal of sort(f).

With this conversion, we do not have to worry about different types of chunks on the heap
for a field: in particular, it allows us to stick to the simpler operations on non-quantified
chunks as long as there are no quantified chunks on the heap. As soon as a quantified
chunk is placed on the heap, all non-quantified chunks are converted using the transfor-
mation above. From then on, only the operations on quantified chunks are used.

Moreover, observe that each field can be considered separately, as all operations on chunks
only concern a single field and fields are never mixed. Therefore, while some fields oper-
ate with quantified chunks (we call them quantified fields), for the other fields the simpler
operations for non-quantified chunks can be used.

Based on this conversion, two functions are defined in Figure 4.1:

• quantifyChunksForField : H ×F → H

takes a heap and a field name and applies the conversion to all non-quantified heap
chunks for the given field name.

• isQuantifiedForField : H ×F → Bool

takes a heap and a field name and checks if the heap operates with quantified chunks
for the given field name. This function helps to decide if operations on quantified
chunks should be applied or the operations on non-quantified chunks suffice.

We will discover the subtleties of the semantics of quantified chunks while defining the
operations on them.
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permission(h, tx, f) = fold(h, 0, (λ sum, ch r
if ch = (∀x rx.f 7→ # tα)

sum+ tα[x→ tx]

else sum))

where fold is the folding higher-order function as e.g. available in Haskell with
the first argument being the data structure to iterate over, the second argument be-
ing the initial accumulator, and the third argument being the combining function.

Figure 4.2: The permission held for a specific location is the symbolic sum over all permis-
sions of chunks for that field name.

4.2 Operations on quantified chunks

4.2.1 Calculating the permissions held for a field location

When accessing a field location, we need to prove that we have positive permission to that
location. When writing a field location, we need to prove that we have write permission
to that location. Thus, we need an operation to get the permission for a location.

The permission for a field may be distributed among multiple chunks for the same field
name:

Example 2. (Recall Listing 3.1) If chunks

∀x rx.f 7→ # x ∈ T ? 0.5 : 0 ∀x rx.f 7→ # x ∈ S ? 0.5 : 0

exist on the heap, full permission is held for any location tx.f where tx ∈ T ∩ S. y

In general, the permission held for a location is the symbolic sum over all permissions with
the field name, instantiated with the receiver. In the previous example, this is

(tx ∈ T ? 0.5 : 0) + (tx ∈ S ? 0.5 : 0)

which, as we know that tx ∈ T ∩ S, can be proved to be equivalent to 1. This insight is
captured in the function

permission : H × TR ×F → Tα

which is implemented in Figure 4.2. It takes a heap, an object term, and a field name, and
returns a term that represents the permissions for the field location.

4.2.2 Exhaling permissions

The permission function defined above already allows us to decide if we have enough
permission to exhale. For example, if we want to exhale full permission to x.f for all x ∈ S,
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min(tα, tβ) tβ −min(tα, tβ)

tβ

Figure 4.3: In one step of exhale, the permissions to be exhaled are split into two parts: the
permissions gained by the current chunk, and the permissions that remain to
be exhaled.

we take a fresh object variable tx, assume tx ∈ S, and try to prove permission(h, tx, f) = 1.
Still, what needs to be done is to calculate the modified heap after the exhale.

Observe that the required permissions might not reside in a single chunk: we might have
to exhale permissions for all x ∈ T ∪ S although we have separate chunks for x ∈ S and
x ∈ T . Moreover, some elements might be in x ∈ S ∩ T , while others are not.

Consider the situation where we have only one chunk

chα = ∀x rx.f 7→ # tα

on the heap. Let

chβ = ∀x rx.f 7→ # tβ

be a chunk representation of what we want to exhale. Let min(tα, tβ) be the minimum of
the permission terms. Formally, min(tα, tβ) is an abbreviation for the term tα < tβ ? tα : tβ .
Intuitively, min(tα, tβ) represents “what we can get” from chα when trying to exhale chβ
So, if we now analyse tβ − min(tα, tβ), there are two cases: (1) ∀ x r tβ − min(tα, tβ) = 0.
This implies that chα contains all the permissions in chβ . (2) else, ∃ x rtβ −min(tα, tβ) 6= 0.
This implies that there are still permissions left to exhale.

Figure 4.3 illustrates this process: Intuitively, we split chunk chβ in two parts: those
permissions that can be gained from chα, which is min(tα, tβ), and those that remain,
tβ −min(tα, tβ). The case distinction above decides whether the exhale for this one-chunk-
heap succeeded or failed. In the case the exhale succeeded, we have to subtract from chα
the permissions we took from it. Hence, the resulting heap would be

∀x rx.f 7→ # tα −min(tα, tβ)

Note that we can check whether or not tα −min(tα, tβ) = 0 and remove the chunk from
the heap if it carries no more permission.

The function

exhale : Σ×H ×QCH× (H → Bool)→ Bool

22



4.2 Operations on quantified chunks

generalises the discussed process for multiple chunks. Its first argument is the current
state, its second the initial heap, its third is a chunk representation of the permissions to
exhale, and the fourth argument is a continuation to which the resulting heap is passed if
the exhale succeeds. It is implemented in Figure 4.4.

The implementation folds over the chunks in the original heap. The accumulator holds
three components: the chunks representing the permission that is left to exhale, the mod-
ified heap, and a flag that indicates whether or not the exhale is already done. One call to
the combining function receives the current accumulator and a heap chunk, and proceeds
as follows:

1. If the exhale is already done or the heap chunk is for a different field, it continues
with the accumulator with the heap chunk added. This is to make sure that all un-
modified chunks are kept.

2. Else, the step is similar to the one we described above: the minimum of the permis-
sions is subtracted from both the chunk of the heap and the chunk that contains what
we want to exhale. The function then checks whether enough permissions have al-
ready been exhaled: if this is the case, the flag done is set and the rest of the chunks
are passed through unmodified. Otherwise, the function continues exhaling with the
subtracted permission. The heap chunk that we took permissions from is added if it
still carries permissions.

The exhale succeeds when at some point no permissions remain to exhale.

Example 3. We have the two chunks

∀x rx.f 7→ # x ∈ tS \ {tx} ? 1 : 0 ∀x rx.f 7→ # x = tx ? 0.5 : 0

on the heap. We want to exhale half permission to elements in tS , i.e.

∀x rx.f 7→ # x ∈ tS ? 0.5 : 0

We gain α := min ((x ∈ tS) ? 0.5 : 0, (x ∈ tS \ {tx}) ? 1 : 0) from the first chunk. What
remains in the chunk is (x ∈ tS \ {tx} ? 1 : 0) − α, which can be simplified to x ∈
tS \ {tx} ? 0.5 : 0. What is still left to exhale is (x ∈ tS ? 0.5 : 0) − α, which can be
simplified to (x = tx ? 0.5 : 0).

From the second chunk, we thus gain β := min(x = tx ? 0.5 : 0, x = tx ? 0.5 : 0). The
second chunk is then empty, because (x = tx ? 0.5 : 0) − β can be simplified to 0, and is
thus removed. For the same reason, but in a different prover call, the remaining permission
(x = tx ? 0.5 : 0)−β is shown to be 0, and we are done and the exhale succeeded. A single
chunk

∀x rx.f 7→ # x ∈ tS \ {tx} ? 0.5 : 0

remains on the heap. y

Note that when exhaling, the order of the chunks has an impact on the performance: If the
chunks that actually contain the permissions come first, prover calls can be avoided and
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exhale(σ, h, ch,Q) =

let
( , h′, success) = foldl(h, (ch, ∅, false), (λ(chβ, h1, done), chα r

if done
(chβ, h1 + chα, done)

else if chα = ∀x rx.f 7→ # tα ∧ chβ = ∀x rx.f 7→ # tβ

let
r = min(tα, tβ), d = σ `z3 (∀ x rtβ − r = 0),

ch′α = ∀x rx.f 7→ # tα − r,
ch′β = ∀x rx.f 7→ # tβ − r

in
if σ `z3 (∀ x rtα − r = 0)

(ch′β, h1, d)

else (ch′β, h1 + ch′α, d)

else (chβ, h1 + chα, false)))

in success ∧Q(h′)

Figure 4.4: exhale implements exhaling quantified chunks.
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expressions stay simpler. The order of the chunks could be controlled by heuristics, e.g.
when syntactically identical variables are mentioned (modulo known equalities). We have
not implemented such an optimisation.

4.2.3 Getting values

Until now, we ignored the values of these chunks. As the permission to access a field of a
receiver can be spread over multiple chunks, so can the information about the values:

• It might occur that the permission is greater than zero for the same receiver for more
than one chunk for the same field name. As a location can only have one symbolic
value at a program point, all these values need to be equal:

Example 4. We have the two chunks

∀x rx.f 7→ tv(x) # x = tx ? 0.5 : 0 ∀x rx.f 7→ 5 # x = tx ? 0.5 : 0

on the heap. The current value of tx.f is tv(tx) = 5. y

• The values for different receivers in the same set might reside in two or more chunks:

Example 5. We have the two chunks

∀x rx.f 7→ tv(x) # x ∈ S \ {tx} ? 0.5 : 0 ∀x rx.f 7→ 5 # x = tx ? 0.5 : 0

on the heap. The value of ty.f with ty ∈ S is ty.f =

®
5 if ty = tx
tv(ty) if ty ∈ S \ tx

. y

Both issues can be solved by using field value summaries. The idea is to create a fresh func-
tion that represents all the knowledge contained in the heap about the values for a certain
field at a program point.

Definition 13. A field value summary for field name f and heap h is a fresh function t from
objects to sort(f). It is axiomatised by the contents of the heap for field f: for each chunk
∀x rx.f 7→ tv # tα in the heap for field f, an axiom partially specifying t is added:

∀ x rtα > 0 =⇒ t(x) = tv

y

The field value is accordingly represented by the field value summary applied at the re-
ceiver.

Example 6. (continuing Example 4) The field value summary t for field f has the properties

∀ x r(x = tx ? 0.5 : 0) > 0 =⇒ t(x) = tv(x)

∀ x r(x = tx ? 0.5 : 0) > 0 =⇒ t(x) = 5

Thus, t(tx) = tv(tx) = 5. y
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4 Quantified Chunks

value(σ, tx, f, Q) =

let
t = freshRef→sort(f),

π′ = fold(σ.h, ∅, (λ π1, ch r
if ch = (∀x rx.f 7→ tv # tα)

π1 + (∀ x rtα > 0 =⇒ t(x) = tv)

else π1))
in
σ `z3 tx 6= null ∧ σ `z3 permission(h, tx, f) > 0 ∧Q(σ.π + π′, t(tx))

where t(x) denotes a symbolic function application.

Figure 4.5: value creates a field value summary for the given field.

Example 7. (continuing Example 5) The field value summary of t for field f has the prop-
erties

∀ x r(x ∈ S \ {tx} ? 0.5 : 0) > 0 =⇒ t(x) = tv(x)

∀ x r(x = tx ? 0.5 : 0) > 0 =⇒ t(x) = 5

Thus, t(ty) =

®
5 if ty = tx
tv(ty) if ty ∈ S \ {tx}

y

Function

value : Σ× TR ×F × (Π× T → Bool)→ Bool

implements field value summaries in Figure 4.5. Its first argument is the current state,
the second a receiver, third a field name, fourth the continuation to which the updated
path conditions and the new heap value summary at the receiver are passed. To ensure
consistency, it additionally succeeds only if the receiver is non-null and there is permission
to read the field location at all.

Some ideas could be experimented with to optimise how values are treated:

• If the permission to access a location resides only in one chunk, the value of this
chunk can be directly returned. (watch out for situations such as Example 4 though).

• value creates a fresh function each time it is called, and thus in particular for each
field access. It might be possible to cache these functions if the relevant heap chunks
have not changed. This could reduce the number of introduced functions and im-
prove the performance.

• Most often, the permission for a receiver resides in a subset of the chunks for a spe-
cific field. It might be enough to axiomatise the summary only with the values of this
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4.3 From quantified assertions to quantified chunks

subset, hence creating a partial field summary. A subset (though not necessarily the
minimal one) can be found with the exhale algorithm.

4.3 From quantified assertions to quantified chunks

We have already seen some quantified chunks. However, it is still unclear how a quantified
assertion

forall y:T :: P ==> acc(e.f, p)

can be represented as a quantified chunk

∀x rx.f 7→ tv # tα

on the heap.

Our idea is to give the chunk’s permission the form tα = count ∗ tp, where count is a
term that depends on x, and tp is the evaluated permission. count is a term that yields the
number of instantiations of y such that e evaluates to x. Each such instantiation inhales tp
permission to x.f, and thus count needs to be multiplied with tp. This is why we only need
a single quantified variable in the chunk and it is always of sort Ref : The idea of count is
that it condenses the instantiations of y into a term that yields the number of evaluations
of expression e for which x is “hit” by the quantifier.

Example 8. When a simple chunk tx.f 7→ # tp is converted, the converted chunk has the
form ∀x rx.f 7→ # (x = tx ? 1 : 0) ∗ tp. The permission x = tx ? 1 : 0 is the term that
counts how often permission tp is inhaled: exactly once, when x = tx. This is a special case
of the set idiom introduced in subsection 4.3.1. y

As a general encoding of count seems challenging1, the idea is to partition the assertions
into subsets, called idioms, and handle them separately. For each of these idioms, rules for
two transformation functions are given.

• transform : TR ×F × TBool × T × Tα → QCH
which takes a receiver, a field name, a guard, a value, and a permission, and returns
a quantified chunk.

• transformElement : TR ×F × T × Tα → QCH
takes the same arguments, but without the guard. It is used to rewrite non-quantified
assertions.

The implementation of these functions for the two supported idioms, sets and splitting
sequences, is given in Figure 4.6 and Figure 4.7; the rationale of the rules is explained in

1In general, one would have to axiomatise a term count that depends on the receiver x and yields how often
e evaluates to x with the guard being true. Formally, count(x) = |{(y|ey = x ∧ tguard}|. We suspect that
there is no simple, general first-order logic definition or axiomatisation of such a term, but made no further
effort to support this claim.
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transform(t, f, guard, tv, tα) =

∀x rx.f 7→ tv[t→ x] # (guard[t→ x] ? 1 : 0) ∗ tα[t→ x]

where t is a symbolic object literal of the variable the assertion quantifies over.

transform(S[i], f, i ∈ [start..end], tv, tα) =

∀x rx.f 7→ tv[S[i]→ x] # count(S[start..end], x) ∗ tα[S[i]→ x]

where i is a symbolic integer literal of the variable the assertion quantifies over,

and S[i] is a sequence access.

Figure 4.6: transform takes a receiver, a field name, the guard, a value, and a permission,
and returns the chunk transformed by the corresponding rule.

transformElement(t, f, tv, tα) =

let s = freshRef in transform(s, f, s = t, tv, tα)

transformElement(S[i], f, tv, tα) =

let j = freshInt in transform(S[j], f, j ∈ [i..i+ 1], tv, tα)

Figure 4.7: transformElement takes a receiver, a field name, a value, and a permission, and
returns the chunk transformed by the corresponding rule.

the following sections. In addition, the required axiomatisation of functions that appear in
the transformation is given.

Note that we chose to rewrite on terms instead of expressions. There are two other options
to be considered: (1) One could take an expression, evaluate it to a term, and return a
chunk. This would have required a call to eval in the implementation of transform, which
we chose to leave to the symbolic execution rules. (2) One could directly rewrite the AST.
However, the transformation would include expressions that are technical and not meant
to be exposed as syntax.

A disadvantage of the separation into idioms is that these idioms cannot be fully mixed.
This incompleteness is described in subsection 5.3.2.
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4.3 From quantified assertions to quantified chunks

4.3.1 Sets

This idiom handles all assertions which have the quantified variable as receiver. This en-
sures that permission is inhaled either once per receiver, or not at all.

Supported assertions

We support all assertions of the form

forall x:Ref :: guard ==> acc(x.f, p)

where guard is pure. The assertion has to quantify over one variable of reference type,
which is also the receiver.

Transformation

Let tguard, tx, and tp be the evaluated expressions in the current state. Permission tp is
inhaled to tx.f iff the guard is true. Hence, the permission of the chunk is (tguard ? 1 : 0)∗tα.

For single elements ty, we let the guard be x = ty, and transform with this new guard.

Example 9. The assertion

forall x:Ref :: x in S ==> acc(x.f, 1/2)

is represented as chunk ∀x rx.f 7→ tv # (x ∈ tS ? 1 : 0) ∗ 1
2 , where tS is the symbolic value

of S in the current state, and tv is the value given as the fourth parameter to transform. The
value depends on the concrete use case of the transformation, e.g. inhaling or exhaling.

The assertion

acc(y.f, write)

is represented as chunk ∀x rx.f 7→ tv # (x = ty ? 1 : 0), where ty is the symbolic value of
y in the current state, and tv is the third parameter given to transformElement. Again, the
value depends on the concrete use case of the transformation. y

Axiomatisation

As this transformation introduces no additional functions, no axioms are needed.
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4.3.2 Splitting sequences

Sets have the inherent property that their contained objects are distinct. This no longer
holds true for sequences: in general, the same object might be stored at different indices of
a sequence. An assertion can thus inhale permission to the same location more than once.

To model this, we introduce a counting function and axiomatise it accordingly. We focus
on typical array usage scenarios: writing values, reading values, and splitting a sequence
into a number of parts, e.g. to treat each part in a separate thread. Our axiomatisation
is designed to split the sequence into parts where each part is expressed explicitly as a
subrange, i.e. from indices start to end.

Our axiomatisation is not complete for algorithms that need to split the permissions in a
more general way: For example, there might be algorithms that need to split permissions
to a sequence into even and odd indices. Our axiomatisation does not support this yet.
However, it works well for typical array usage scenarios, e.g. mergesort.

Supported assertions

Assertions of the form

forall i:Int :: i in [a..b] ==> acc(S[i].f, p)

are supported, i.e. the assertion quantifies over one variable of integer type, the guard
constrains the quantified variable to be in a range, and the receiver is a sequence that is
accessed at the quantified variable, with f being a field name. The integer expressions a
and b can be arbitrary but must not depend on i.

Transformation

Let ta, tb, tp, tS be the terms resulting from the evaluation of a, b, p, S, respectively, in
the current state. Permission tp is inhaled to the object at each index. We introduce the
(uninterpreted) function

count : Seq× Ref→ Int

which takes a sequence as well as an object and represents the count of how often this ob-
ject is contained in the sequence. Intuitively, if count(tS , x) = n, then there are n mutually
distinct indices 0 ≤ i1, . . . , in < |tS| for which tS[i1] = · · · = tS[in] = x. However, precisely
formulating this function in a SMT solver is challenging2. Therefore, we leave this function
uninterpreted and only give the required axioms to fulfil common proof obligations. The

2We could not come up with a non-recursive first-order logic formulation. A recursive formulation is possible
(count(S[a..b], x) = (S[a] = x ? 1 : 0) + count(S[a + 1..b], x)), but for an arbitrary set, it is unclear when
to terminate the recursion. Inductive proofs are not supported by Z3.
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4.3 From quantified assertions to quantified chunks

transformation produces a permission term

count(tS[ta..tb], x) ∗ tp.

For single elements tS[i], we let the guard be j ∈ [i..i + 1], and transform with this new
guard.

Example 10. The assertion

forall i:Int :: i in [0..|S|] ==> acc(S[i].f, write)

is represented as chunk ∀x rx.f 7→ tv # count(tS[0..|tS|], x). The value tv depends on the
use case, e.g. if the chunk is inhaled.

The assertion

acc(S[i].f, write)

is represented as chunk ∀x rx.f 7→ tv # count(tS[i..i + 1], x). Again, the value tv depends
on the use case. y

Axiomatization

We need to fulfil proof obligations over count: for example, if we want to read an index i of
sequence S, we will need to prove count(S[0..|S|], S[i]) > 0. Also, we need axioms to fulfil
proof obligations that arise when an algorithm tries to split the permission to a sequence.
Therefore, count is axiomatised as follows:

∀ S ∈ Seq, x ∈ Ref rcount(S, x) ≥ 0 (non-negativity)

∀ S ∈ Seq, x ∈ Ref, 0 ≤ start ≤ k ≤ end ≤ |S| ∈ Int r (splitting)
count(S[start..end], x) = count(S[start..k], x) + count(S[k..end], x)

∀ S ∈ Seq, x ∈ Ref, 0 ≤ start ≤ i < end ≤ |S| ∈ Int r (lookup)
count(S[start..end], S[i]) > 0

Note that these axioms are not meant to be complete, but rather describe the operations
that we want to support.

Example 11. Consider the partial specification of a mergesort in Listing 4.1. It takes a
sequence, and two bounds. It is supposed to sort by recursively splitting the array, calling
itself on the two parts. In the comments, the (simplified) state of the heap is shown. At the
annotated position, the following proof obligation needs to be fulfilled with the axioms:
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1. The call of sort requires the exhaling of permissions to

∀x rx.f 7→ # count(S[start..
start+ end

2
], x).

From the exhale algorithm, the proof obligation

∀ x r0 = count(S[start..
start+ end

2
], x)

−min(count(S[start..
start+ end

2
], x), count(S[start..end], x))

arises, which can fulfilled by one application of the splitting axiom together with
non-negativity.

Listing 4.1: A mergesort-like algorithm splits the sequence in the middle.

1 var f: Int
2

3 method sort(S:Seq[Ref], start:Int , end:Int)
4 requires 0 <= start && start <= end && end <= |S|
5 requires forall i:Int :: i in [start..end] ==> acc(S[i].f, write)
6 ensures forall i:Int :: i in [start..end] ==> acc(S[i].f, write)
7 {
8 // h : ∀x. x.f 7→ # count(S[start..end], x)
9 if(end -start >1) {

10 // (1)
11 // let the left part be sorted by a separate thread
12 exhale forall i:Int :: i in [start ..( start+end)/2] ==> acc(S[i].f,

write)
13 // h : ∀x. x.f 7→ # count(S[start..end], x)− count(S[start..(start+ end)/2], x)
14 // let the right part be sorted by a separate thread
15 exhale forall i:Int :: i in [(start+end)/2.. end] ==> acc(S[i].f, write)
16 // h : ∅
17 // both threads return
18 inhale forall i:Int :: i in [start..end] ==> acc(S[i].f, write)
19 // h : ∀x. x.f 7→ # count(S[start..end], x)
20 // merge ...
21 }
22 }

y

4.4 Symbolic execution rules

Now, we can put together the functions defined above to modify the symbolic execution
algorithm. We add two new rules for permissions under quantifiers, one for produce and
one for consume. These are the rules that introduce quantified fields. We add four other
rules to modify the behaviour of the symbolic execution after a field has been quantified.
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4.4.1 Rules that introduce quantified chunks

The two rules illustrated in Figure 4.8 result in the introduction of quantified chunks for a
specific field. As both rules begin identically, we start by introducing the identical part:

Both rules begin by temporarily adding the quantified variable with a fresh variable to the
state. They then evaluate the condition to a term. They check if the condition is known to
be false: if it is (e.g. x in Set()), then we can directly call the continuation: no access is
obtained or taken away.

This check is also important because the rules assume the condition afterwards. If they
assumed a term that introduced a contradiction, the following evaluations would always
succeed, also if required permissions are not held. An example for this is the assertion
forall x:Ref :: x in Set() ==> acc(x.f, x.k), where the field k has type Perm. If we
naively assumed tx ∈ Set(), then any assertion after that could be proved, e.g. that we have
access to x.k, although we might not have it.

Both rules then proceed to evaluate the receiver and the permission term. Also, they con-
vert all chunks to quantified chunks using quantifyChunksForField. Then, the rules di-
verge:

• The first rule, the production rule, uses the transform function to get the quantified
chunk. It then calls the continuation with the new chunk added to the heap. Addi-
tionally, it assumes that all receivers for which permission was given (i.e., for which
t2α > 0) are non-null. This assumption is made because it is convenient: otherwise,
each access predicate would have to be preceded by an additional assumption that
the receiver is non-null.

• The second rule, the consumption rule, first gets the field value summary by calling
value. This value has to be returned to the continuation as the snapshot3. Then,
similarly to the production rule, a chunk is created by calling transform. Note that
the value of this chunk is irrelevant, as exhale does never look at the value. That is
why null is used as the value. Function exhale returns the modified heap, which is
passed to the continuation.

4.4.2 Modified rules for quantified fields

Once quantified chunks are on the heap for a certain field, additional rules modify the
behaviour of old rules to make them compatible with quantified chunks. These rules apply
only if isQuantifiedForField returns true, otherwise the symbolic execution falls back to
the default rules. Figure 4.9 shows the modified rules for quantified fields. The following
list describes the rules in the same order in which they appear in the figure:

• To evaluate a field access, we can make use of the previously defined function value.
We defined it to additionally check if the required permissions are held. If calling
value succeeds, the resulting term can be passed to the continuation.

3Snapshots are e.g. used to frame predicate instances, and orthogonal to this project.
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produce’(σ, tv, tβ, forall x:T :: cond ==> acc(e.f, α), Q) =

eval(σ + (x, freshsort(T)), cond, (λ σ2, tcond r
if σ2 `z3 ¬(tcond) then Q(σ2.h, σ2.π) else

eval(σ2 + tcond, e, (λ σ3, te r
eval(σ3, α, (λ σ4, tα r

let
ch @ ∀x rx.f 7→ tv # t2α =

transform(te, f, tcond, freshRef→sort(f)(te), tα ∗ tβ)

h = quantifyChunksForField(σ4.h, f)

in
Q(h+ ch, σ4.π + (∀x ∈ Ref rt2α > 0 =⇒ x 6= null))))))))

consume’(σ, h, tβ, forall x:T :: cond ==> acc(e.f, α), Q) =

eval(σ + (x, freshsort(T)), cond, (λ σ2, tcond r
if σ2 `z3 ¬(tcond) then Q(h, σ2.π, unit) else

eval(σ2 + tcond, e, (λ σ3, te r
eval(σ3, α, (λ σ4, tα r

let h1 = quantifyChunksForField(h, f) in
value(σ4, te, f, (λ π1, te.f r

let ch = transform(te, f, tcond, null, tα ∗ tβ) in
exhale(σ4, h1, ch, (λ h2 r
Q(h2, π1 − tcond, te.f)))))))))))

Figure 4.8: Producing and consuming permissions under quantifiers introduces quantified
chunks on the heap.
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• When writing a field location, the write permission might be split across one or more
quantified chunks. There are two options: first, we could update each value of the
chunks that contain permission to the location. Second, we could exhale write per-
mission to the written location and place a new chunk on the heap that contains the
written value. We chose the latter, as it is straightforward to define with the given
operations on quantified field chunks. We use the previously defined transformEle-
ment to get the suitable quantified chunk.

• When producing a (non-quantified) field access, we place the transformed chunk on
the heap. Likewise, consuming a (non-quantified) field access for that field means
transforming to a quantified chunk and exhaling that chunk.

4.5 Triggering strategy

It is challenging for a SMT solver to choose the terms with which to instantiate quantifiers.
Instantiating with all possible combinations of terms that have been syntactically seen is
infeasible. First of all, that number explodes quickly. Second, some quantifiers are prone
to generate infinitely many instantiations. Consider an axiom for calculating the factorial

∀ n ∈ Int rn > 0 =⇒ fac(n) = n ∗ fac(n− 1)

The prover might have seen a term a + b. So, if it instantiates the axiom naively, it will
instantiate the axiom with a + b, which yields a new term a + b − 1. This new term can
again be used to instantiate the axiom. This gives rise to a possibly infinite number of
instantiations, a situation that is called matching loop4.

This is why Z3 requires hints (so-called triggers) to control how and when to instantiate
quantified expressions. A trigger is a set of expressions that the prover must have seen
syntactically, modulo equality, to instantiate a quantifier. In particular, recursive functions
require sensible choice of the trigger, as they produce syntactic expressions that could be
used to instantiate the quantifier again. We want instantiations to be controlled by us, and
therefore we have to provide sensible triggers.

We write a trigger in curly brackets before the body of the quantifier:

∀ x {trigger} rbody
4.5.1 Non-null checks

The symbolic execution rules assume the receiver of a field access is non-null when per-
missions are given. If the permissions are under quantifiers, this assumption is also a
quantification. These quantifiers should be instantiated whenever the symbolic execution
asserts receivers to be non-null, e.g. when a field is accessed. Therefore, we introduce a
new function

4Note that the fact that the axiom is constrained to positive values does not affect the instantiation. Values
are not taken into account when instantiating quantifiers.
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eval’(σ, π, e.f, Q) if isQuantifiedForField(σ.h, f) =

eval’(σ, π, e, (λ σ2, te r
value(σ2, te.f, (λ π1, te.f r
Q(π1, te.f)))))

exec(σ, e.f := g, Q) if isQuantifiedForField(σ.h, f) =

eval(σ, e, (λ σ2, te r
eval(σ2, g, (λ σ3, tg r
σ3 `z3 te 6= null ∧ σ3 `z3 permission(σ3.h, te.f) ≥ 1 ∧
let ch = transformElement(te, f, tg, 1) in

exhale(σ3, ch, (λ h
′ r

Q(σ3[h := h′] + ch))))))

produce’(σ, tv, tβ, acc(e.f, α), Q) if isQuantifiedForField(σ.h, f) =

eval(σ, e, (λ σ2, te r
eval(σ2, α, (λ σ3, tα r

let ch = transformElement(te, f, freshsort(f), tα ∗ tβ) in

Q(σ3.h+ ch, σ3.π + (te 6= null))))))

consume’(σ, h, tβ, acc(e.f, α), Q) if isQuantifiedForField(σ.h, f) =

eval(σ, e, (λ σ2, te r
eval(σ2, α, (λ σ3, tα r

value(σ3, te.f, (λ π1, te.f r
let ch = transformElement(te, f, , tα ∗ tβ) in

exhale(σ3, h, ch, (λ h1 r
Q(h1, π1, te.f)))))))))

Figure 4.9: If the heap is quantified for a field, slightly modified symbolic execution rules
are used.
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null : Ref→ Bool

and use null(x) as a trigger for the non-null quantifiers:

∀x ∈ Ref {null(x)} rtα > 0 =⇒ x 6= null

The symbolic execution rules are adapted to assert null(x) ∨ x 6= null when asserting that
a receiver is non-null, thus triggering the axioms.

Example 12. Producing the assertion forall x:Ref :: x in S ==> acc(x.f, 1/2) as-
sumes ∀ x ∈ Ref {null(x)} r Ä(x ∈ tS ? 1 : 0) ∗ 1

2 > 0
ä

=⇒ x 6= null. Now, when a location
ty.f with ty ∈ tS is accessed, Silicon asserts ty 6= null ∨ null(ty). The term null(ty) triggers
the quantifier and allows ty 6= null to be proved. y

As the function null is not exposed as SIL syntax, it cannot be used to trigger non-null
assertions in a program. This results in an incompleteness described in subsection 5.3.3.

4.5.2 Value summaries

Field value summaries emit quantifiers to summarise heap contents. It is natural to choose
the emitted function itself as a trigger. However, this is still incomplete:

Example 13. Consider Listing 4.2. It illustrates an incompleteness that would arise if only
the fresh field value summary’s function would be chosen as the trigger. The problem is
that then the two summaries cannot be proved to be equal.

Listing 4.2: Choosing only the fresh field value summary’s function as trigger is
incomplete.

1 var f:Int
2 // ...
3 inhale forall x:Ref :: x in S ==> acc(x.f, 1/2)
4 // h : ∀x r x.f 7→ t(x) # x ∈ tS ? 1

2
: 0

5 inhale forall x:Ref :: x in S ==> x.f > 0
6 // fresh t′

7 // π :
{
∀x {t′(x)} r ((

x ∈ tS ? 1
2

: 0
)
> 0

)
=⇒ t′(x) = t(x), ∀x {} r x ∈ tS =⇒ t′(x) > 0

}
8 exhale forall x:Ref :: x in S ==> x.f > 0
9 // fresh t′′

10 // π + ∀x {t′′(x)} r ((
x ∈ tS ? 1

2
: 0

)
> 0

)
=⇒ t′′(x) = t(x)

11 // cannot prove assertion ∀x {} r x ∈ tS =⇒ t′′(x) > 0
12 // as t′′(x) = t′(x) cannot be established. The axiom for t′ needs t(x) as a

trigger.

y

That is why both sides of each equality axiom for a field value summary t have to be chosen
as the trigger: if the value of a chunk is a function application t′(x), the equality axiom for
that chunk has the form and triggers

∀ x ∈ Ref
{
{t(x)}

{
t′(x)

}} rtα > 0 =⇒ t(x) = t′(x)
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4.5.3 Split axiomatisation

The splitting axiom is count(S[start..end], x) = count(S[start..k], x) + count(S[k..end], x),
which is prone to uncontrolled instantiation as it produces terms that are of the same
shape. These terms not only trigger the splitting axiom again, but also other axioms of
count (e.g. the lookup axiom). Therefore, in the SMT solver, we encode this axiom differ-
ently: First, we introduce a new function

split : Seq× Ref× Int→ Bool

that carries no semantics, and exists only to trigger the splitting axiom. A term split(S, x, i)
indicates that i is a valid index to split sequence S when counting x. Splitting terms are
generated from counting terms:

∀ S ∈ Seq, x ∈ Ref, a, b ∈ Int {count(S[a..b], x)} r
split(S, x, a) ∧ split(S, x, b)

These terms trigger the splitting axiom rewritten with a new function count′ : Seq× Ref→
Int:

∀ S ∈ Seq, x ∈ Ref, 0 ≤ start ≤ k ≤ end ∈ Int
{split(S, x, start), split(S, x, k), split(S, x, end)} r
count′(S[start..end], x) = count′(S[start..k], x) + count′(S[k..end], x)

We use count′ instead of count to not produce new terms of count that could be used to
instantiate other axioms. We need additional axioms to extract meaning from the splitting
axiom:

∀ S ∈ Seq, x ∈ Ref
{
count′(S, x)

} rcount′(S, x) ≥ 0

∀ S ∈ Seq, x ∈ Ref {count(S, x)} rcount(S, x) = count′(S, x)

4.5.4 Pure quantifiers and user-defined triggers

User-defined triggers are not yet supported.
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5.1 Applications

5.1.1 An access invariant for a union-find structure

A union-find structure manages the partition of a set. Each node points to a parent node,
until eventually a node points to itself, which is the representant of its partition.

We model this structure as follows: One class, UnionFind, keeps the set of elements of the
second class, Node, in the field nodes. Each of these nodes has a pointer struct back to its
UnionFind structure. Listing 5.1 shows how an access invariant for this data structure can
be defined. For an object of class UnionFind, predicate inv ensures:

• Write access for the set of nodes is held. Nodes can be added or removed.

• Read access for the UnionFind structure of each node is held. The idea is, that after a
node is added, it is immutably bound to the structure. The invariant also makes sure
that each node points correctly to its structure.

• Write access to the parent field of all nodes is held. This allows to modify the union-
find structure itself, e.g. to implement union. Moreover, each parent is guaranteed
to be non-null and in the set of nodes. Therefore, the structure can be traversed
upwards while maintaining access.

Now, functions such as allNodes require only read access for inv, and can thus be executed
in parallel. Methods such as add require acc(inv(struct), write) and thus have exclusive
access to all nodes of the structure. Note that add needs to additionally ensure that find of
all nodes except the added node has not changed. Let us take a close look at add and see
where our algorithms are relevant. We omit the values of the chunks for simplicity.

Line 45 unfolds the invariant inv, which inhales its body. In particular, inhaling line 12
adds a quantified chunk (1) ∀x r x.parent 7→ # x ∈ tstruct.nodes ? 1 : 0. This causes
chunks for field parent to be quantified, i.e. the chunk tthis.parent 7→ # 1 (inhaled by
line 34) is converted to a quantified chunk (2) ∀x r x.parent 7→ # x = tthis ? 1 : 0.
Now, line 46 changes the set of all nodes to include the new node, i.e. we get a fresh term
t′struct.nodes = tstruct.nodes ∪ {tthis}. Line 47 folds inv, now line 12 has to be exhaled for the
new set of nodes. This corresponds to a call to exhale that gets the required permissions
from the chunks (1) and (2). It comes up with this interesting (simplified) proof obligation:

∀y r0 =
(
y ∈ t′struct.nodes ? 1 : 0

)
− (y ∈ tstruct.nodes ? 1 : 0)− (y ∈ {tthis} ? 1 : 0)

It can be solved with the set axiomatisation.
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Listing 5.1: A union-find structure can modelled with permission under quantifiers

1 // class UnionFind
2 var nodes: Set[Ref]
3 // class Node
4 var struct: Ref
5 var parent: Ref
6

7 predicate inv(this: Ref /* of class UnionFind */)
8 {
9 acc(this.nodes , write)

10 && forall o : Ref :: o in this.nodes ==> acc(o.struct , wildcard)
11 && forall o : Ref :: o in this.nodes ==> o.struct == this
12 && forall o : Ref :: o in this.nodes ==> acc(o.parent , write)
13 && forall o : Ref :: o in this.nodes ==> (o.parent != null && (o.parent

in (this.nodes)))
14 }
15

16 function allNodes(this:Ref /* of class UnionFind */): Set[Ref]
17 requires acc(inv(this), wildcard)
18 {
19 unfolding acc(inv(this), wildcard) in this.nodes
20 }
21

22 function find(this:Ref /* of class Node */) : Ref
23 requires acc(this.struct , wildcard)
24 requires acc(inv(this.struct), wildcard)
25 requires valid(this)
26 {
27 (unfolding acc(inv(this.struct), wildcard) in (this ==( this.parent))) ?

this : (unfolding acc(this.struct.inv(), wildcard) in find(this.
parent))

28 }
29

30

31 /* add to structure */
32 method add(this: Ref , struct: Ref)
33 requires acc(inv(struct), write)
34 requires acc(this.parent , write)
35 && ...
36 ensures ...
37 && (this.struct == struct) && acc(inv(this.struct), write)
38 && allNodes(struct) == old(allNodes(struct)) union Set(this)
39 && this == find(this)
40 && (forall o: Ref :: o in old(allNodes(struct)) ==> (unfolding acc(inv(

struct), wildcard) in find(o)) == old(unfolding acc(inv(struct),
wildcard) in find(o)))

41 {
42 this.struct := struct
43 this.parent := this
44

45 unfold acc(inv(struct), write)
46 struct.nodes := (struct.nodes union Set(this))
47 fold acc(inv(struct), write)
48 }
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Listing 5.2: Mergesort splits the sequence into two parts, an operation well supported by
our axiomatisation.

1 // class Cell
2 var value:Int
3

4 // class ArrayOfInt
5 var array:Seq[Ref] // containing Cell(s)
6

7 method mergesort(a:Ref , b:Ref , start:Int , end:Int)
8 requires ...
9 && forall i:Int :: i in [start..end] ==> acc(a.array[i].value , write)

10 && forall i:Int :: i in [start..end] ==> acc(b.array[i].value , write)
11 ensures ...
12 && forall i:Int :: i in [start..end] ==> acc(a.array[i].value , write)
13 && forall i:Int :: i in [start..end] ==> acc(b.array[i].value , write)
14 && forall i:Int :: i in [start..end -1] ==> b.array[i].value <= b.array[i

+1]. value
15 {
16 var middle: Int
17 if(end -start > 1)
18 {
19 middle := start + (end -start)\2
20 mergesort(a,b, start ,middle)
21 mergesort(a,b, middle ,end)
22 merge(a,b,start ,middle ,end)
23 // copy b to a...
24 }
25 }
26

27 method merge(a: Ref , b:Ref , start:Int , middle:Int , end:Int)
28 requires ...
29 && forall k:Int :: k in [start..end] ==> acc(a.array[k].value , write)
30 && forall k:Int :: k in [start..middle -1] ==> a.array[k].value <= a.array[

k+1]. value
31 && forall k:Int :: k in [middle ..end -1] ==> a.array[k].value <= a.array[k

+1]. value
32 && forall l:Int :: l in [start..end] ==> acc(b.array[l].value , write)
33 ensures ...
34 && forall i:Int :: i in [start..end -1] ==> b.array[i].value <= b.array[i

+1]. value
35 {
36 ...
37 }

5.1.2 Mergesort

Mergesort is among the first candidates to demonstrate our splitting of sequences. List-
ing 5.2 shows the specification. The method mergesort takes two arrays: a contains the
values to be sorted, and b contains the result. To call it recursively, it also takes two bounds,
start and end. It acquires permission to write the arrays a and b from start to end. In the
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recursive case, it splits the array in the middle and calls mergesort two times. Each of
these calls causes a call to exhale, which presents proof obligations similar to the ones in
Example 11. After line 21, we have two chunks on the heap, one for the part of the se-
quence from start to mid, one from mid to end. Merge requires permission for all indices
from start to end. So, the splitting axiom has to be applied backwards to combine the two
chunks.

Method merge takes a partly sorted array and merges it. After exhaling its preconditions,
the call to merge in line 22 then inhales its postcondition. Inter alia, this inhales a chunk (1)
∀x rx.value 7→ t(x) # count(tb.array[start..end], x). It also inhales (2) ∀i ri ∈ [start..end −
1] =⇒ t(tb.array[i]) ≤ t(tb.array[i + 1]) from line 34. This is simplified: in practice, both
sides of the inequality would cause a new call to value, creating two fresh field value
summary functions t′ and t′′. The emitted axioms would then allow to show t′(x) = t′′(x).
With the chunk (1) and axiom (2), it is possible to show lines 13 and 14 of mergesort’s
postconditions, respectively. Again, in line 14, each field access to value creates a fresh
field value summary.

An orthogonal problem that is not yet reflected in this specification is to ensure that the
sorted array is actually a permutation of the original array. It would be very easy to return
a sequence [1, 2, 3, . . . ] and claim that this is the sorted sequence. Specifying permutations
is challenging, but orthogonal to handling permissions under quantifiers.

5.1.3 Mutable Array

Listing 5.3 illustrates the specification of a (fixed-length) mutable array with permissions
under quantifiers. Method init takes an uninitialised array, initialises it to a given size,
and returns write permission for each index in the sequence. Note that it does not return
write permissions for the array’s underlying sequence itself, but only allows the caller to
read the sequence. This effectively fixes the size and the locations of the array. Maybe the
most subtle implication of init is that the locations of the array are mutually distinct: If
for i != j, this.array[i] == this.array[j], then more than write permission would be
handed back for this.array[i] by init’s postcondition.

Method set sets a value at a certain index of an array. Note that only write permissions
for the specific index are required, which allows to conclude that the other values are left
unchanged. get is implemented as a pure function.

Listing 5.3: A mutable array can be specified with permissions under quantifiers.

1 var value: Int /* class Location */
2 var array: Seq[Ref] /* class MutableArray */
3

4 method init(this:Ref , size:Int)
5 requires acc(this.array , write)
6 ensures acc(this.array , wildcard)
7 ensures |this.array| == size
8 ensures forall i:Int :: i in [0.. size] ==> acc(this.array[i].value , write)
9 {

10 assume |this.array| == size
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11 /* generate new permissions for the array */
12 inhale forall i:Int :: i in [0.. size] ==> acc(this.array[i].value ,

write)
13 }
14

15 method set(this:Ref , index:Int , val:Int)
16 requires acc(this.array , wildcard)
17 requires 0 <= index && index < |this.array|
18 requires acc(this.array[index].value , write)
19 ensures acc(this.array , wildcard)
20 ensures acc(this.array[index].value , write)
21 ensures this.array[index].value == val
22 {
23 this.array[index].value := val
24 }
25

26 function get(this:Ref , index:Int):Int
27 requires acc(this.array , wildcard) &&
28 requires 0 <= i && i < |this.array|
29 requires acc(this.array[index].value , wildcard)
30 {
31 this.array[index].value
32 }

5.2 Runtime performance for programs without permissions
under quantifiers

Our changes to Silicon influence the performance also for programs without permissions
under quantifiers. We do not use quantified chunks for these, as they require more calls to
Z3. This keeps the performance loss due to quantified chunks minimal.

Table 5.1 compares Silicon with and without quantified chunks. It shows the test cases
with the highest runtime increase.

The following changes of the original code cause the performance drop:

• When proving that a receiver is not null, Silicon uses the null trigger (see subsec-
tion 4.5.1), also if there are no quantified chunks on the heap. The consequence is
that some “shortcut” decisions of Silicon, e.g. if an assertion is syntactically con-
tained in the path conditions, no longer apply. Thus, Silicon calls Z3 slightly more
often.

• We added additional axioms for sequences. They lead to more quantifier instantia-
tions when sequences are used, even in a context unrelated to permissions.

• The symbolic execution checks isQuantifiedForField to choose between the rule for
quantified chunks and the rule for traditional chunks. These checks are already
cheap, but they could be improved by keeping a flag for each field.
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Table 5.1: Comparison of the runtime performance for programs without permissions un-
der quantifiers. The table shows the ten programs for which the runtime in-
creases most.

Test case Quantifier instantiations Time
issues/carbon/0002.sil ±0 +21ms (20%)

chalice/test8.sil ±0 +56ms (14%)
sequences/nil.sil ±0 +28ms (14%)

issues/silicon/0053.sil ±0 +39ms (14%)
basic/unique.sil ±0 +29ms (13%)

basic/func3.sil ±0 +37ms (13%)
issues/silicon/0039b.sil ±0 +71ms (12%)

sequences/sequences.sil +245 (36%) +33ms (12%)
issues/sil/0008.sil ±0 +33ms (12%)

chalice/AVLTree.nokeys.sil +118 (1%) +4234ms (11%)

5.3 Completeness

A number of incompletenesses are induced by our handling of permissions under quanti-
fiers and have not been not solved at the time of writing. We distinguish between incom-
pletenesses in supported idioms, and unsupported idioms, where the latter are discussed
in section 5.5.

5.3.1 Multiple indices point to the same object

For sequences, multiple indices can point to the same object. This influences exhaling:
Listing 5.4 shows a situation where it should be possible to exhale write permissions for
an object that is known to be at index 0 and 1 of a sequence S, each giving half permission
to a field.

• Mentioning a sequence at a certain index does not trigger the splitting axiom, i.e. it
is unknown that count(S[0..2], S[0]) = count(S[0..1], S[0]) + count(S[1..2], S[0]). Such
a split would currently only be triggered by a field write. Triggering the split with a
field access is possible, but presumably influences performance, as more quantifier
instantiations are triggered.

• There are no base cases for count. The lookup axioms yields count(S[0..1], S[0]) ≥ 1,
but nothing is known for count(S[1..2], S[0]). It seems that adding an axiom for the
base case

∀ S ∈ Seq, x ∈ Ref, a ∈ Int {count(S[a..a+ 1], x)} r
a ≥ 0 ∧ a < |S| ∧ S[a] = x =⇒ count(S[a..a+ 1], x) = 1

would suffice.
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Listing 5.4: The axiomatisation does not allow exhales over multiple indices of a sequence.

1 var f:Int
2

3 method m(S:Seq[Ref])
4 requires |S| == 2
5 requires S[0] == S[1]
6 requires forall i:Int :: i in [0..2) ==> acc(S[i].f, 1/2)
7 // fails: Insufficient permission to S[0].f
8 ensures acc(S[0].f, write)
9 {

10 }

5.3.2 It is not possible to mix idioms

The current axiomatisation of sets and sequences reaches its limits when sets and se-
quences are mixed. In general, when more idioms are added, it has to be decided which
idioms should be able to play well together. For example, we did not focus on mixing sets
and sequences as we had no real-world use case, but that may change.

Listing 5.5 illustrates this incompleteness. It fails with the message that y could be null in
the postcondition. This is because the axiomatisation fails to show that for ty ∈ Set (tx), it
holds that count (Seq (tx) [0..|Seq (tx) |], ty) > 0.

Fixing this special case might be easy by adding a special axiom. Nevertheless, it may be
harder to come up with a small set of general axioms that allow sets and sequences to be
mixed.

Listing 5.5: Sets and sequences cannot be mixed.

1 var f:Int
2

3 method m(S1:Seq[Ref],S2:Set[Ref], x:Ref)
4 requires S1 == Seq(x)
5 requires forall i:Int :: i in [0..|S1|) ==> acc(S1[i].f, write)
6 requires S2 == Set(x)
7 // fails: "y could be null"
8 ensures forall y:Ref :: y in S2 ==> acc(y.f, write)
9 {

10

11 }

5.3.3 Non-nullness cannot be asserted

In subsection 4.5.1, we introduced a function null to trigger the non-null assumptions.
This works fine when Silicon proves that a receiver is non-null, e.g. when accessing a
field. However, the assumption is not triggered if the specification manually asserts that
an object is not null, such as in Listing 5.6.
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It would be ideal to trigger the non-null assumptions when seeing 6= null as a term. Un-
fortunately, “=” is a special operator for Z3 and cannot be used as a trigger.

• A simple solution would be to syntactically check for non-null assertions and emit
the trigger. But, this would fail whenever 6= null is not seen syntactically, e.g. only
modulo equality.

• One could introduce a special referential equality function Eq(x, y) and use this as a
trigger.

• Instead of having null as an object literal, one could attach semantics to the function
null(x).

Listing 5.6: Manual assertions that objects are non-null fail.

1 var f:Int
2

3 method m(S:Set[Ref], b:Ref)
4 requires forall s:Ref :: s in S ==> acc(s.f, write)
5 requires b in S
6 {
7 // works: Silicon assumes the nullTrigger
8 var t:Int := b.f
9 // fails: "b != null might not hold"

10 assert(b != null)
11 }

5.3.4 Distinctness cannot be asserted

It is not possible to manually assert the distinctness of objects when they are distinct be-
cause write permission was inhaled to each of them (see Listing 5.7). Logically, one can
infer x != y from acc(x.f, 1) && acc(y.f, 1). In practice, this knowledge is not always
available, because the heap is kept separate from the prover. However, it is available im-
plicitly: as shown in Listing 5.7, it can be proved that S[b].f has not changed after writing
S[a].f.

To establish distinctness explicitly, one would have to use the fact that no more than full
permission can ever be distributed for each field location. This is captured by the “axiom”

∀ h, x, f rpermission(h, x, f) ≤ 1

This cannot be a real axiom encoded in Z3, as permission is a function in the verifier.
Instead, it has to be emitted for a specific heap h, receiver x, and field name f by computing
the term tr := permission(h, x, f) in the verifier and then emitting tr ≤ 1. Therefore, one
has to decide when, and for which location to emit this axiom. One could, for example,
emit this axiom every time permission is called. In our implementation, we chose not to
emit it at all, as it affects completeness only if distinctness is asserted explicitly, which was
not necessary for our examples.
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Example 14. If the chunks

∀x rx.f 7→ # x = tx ? 1 : 0 ∀x rx.f 7→ # x = ty ? 1 : 0

are on the heap, permission(h, tx, f) results in the term (tx = tx ? 1 : 0)+(tx = ty ? 1 : 0),
which can be simplified to tr := 1 + (tx = ty ? 1 : 0). If we assume tr ≤ 1, we can deduce
tx 6= ty. y

Listing 5.7: Distinctness cannot be explicitly asserted.

1 var f:Int
2

3 method m(S:Seq[Ref], a:Int , b:Int)
4 requires forall i:Int :: i in [0..|S|) ==> acc(S[i].f, write)
5 requires a >= 0 && a < b && b < |S|
6 {
7 S[a].f := 5
8 // works
9 assert(S[b].f == old(S[b].f))

10 // fails: S[a] != S[b] might not hold
11 assert(S[a] != S[b])
12 }

5.4 Known Issues

5.4.1 Sort wrappers for functions

Silicon uses snapshots to summarise the relevant state of the heap when folding a predi-
cate. To this end, every result of consume has an associated snapshot, which is returned
as the second parameter to the continuation of consume.

For simple chunks, this snapshot is just the value, converted to a snapshot by a so-called
sort wrapper. For quantified chunks, the snapshot is still the value. However, there are
currently no sort wrappers for functions.

This results in an incompleteness illustrated in Listing 5.8. Values in quantified chunks are
not preserved when folding and unfolding predicates.

This issue of missing sort wrappers is orthogonal to the symbolic execution rules, except
for a minor detail: the production rule in Figure 4.8 should use snapshot tv instead of fresh
as the value for the new chunk.

Another, more complete solution may be to introduce sort wrappers for functions. How-
ever, we did not look further into this, as Silicon’s way of producing fresh snapshots is
likely to change in the future1.

1Personal communication with Malte Schwerhoff, 12.2.2014
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Listing 5.8: It cannot be proved that the value of a quantified chunk is preserved after fold-
ing and unfolding.

1 var f:Int
2

3 predicate inv(s:Set[Ref]) {
4 (forall x : Ref :: x in s ==> acc(x.f, write))
5 }
6

7 method m1(this:Set[Ref])
8 requires acc(inv(this), write)
9 ensures acc(inv(this), write)

10 {
11 unfold acc(inv(this), write)
12 var t:Ref
13 assume (t in this)
14 var a:Int := t.f
15 // no sort wrapper for functions , value of chunk is stored "

directly" in snapshot
16 fold acc(inv(this), write)
17 unfold acc(inv(this), write)
18 // fails because the quantified chunk has a fresh value instead

from the snapshot of inv
19 assert a == t.f
20

21 }

5.4.2 The composite pattern

The composite pattern is a design pattern and was proposed as a verification challenge
in [LLM07]. Smans et al. verified it using Verifast and predicates [JSP08]. It would be
very interesting to verify it using permissions under quantifiers, as we could then directly
compare the specifications. However, our implementation does not terminate for our spec-
ification.

Consider Listing 5.9, which in particular shows our attempt to specify an invariant for the
composite in predicate inv. Upon closer inspection, we see that inv is supposed to hold the
access to the set of all nodes. Each node has two pointers, left and right, to its subnodes.
To let us traverse the structure, line 18 and 21 specify inclusion properties. Both have the
form forall x:Ref :: in(x) && ... ==> in(left(x)) && ....

This form is prone to a matching loop: Z3 might choose the naive trigger in(x). Then,
the axiom can be instantiated with in(left(x)), in(left(left(x))), . . . . As the symbolic
execution does not terminate, apparently Z3 does choose such a trigger2.

This suggests that the problem is caused by the lack of good triggers for these inclusion
properties. We do not support triggers for user-supplied quantifiers yet. Solving this prob-
lem is orthogonal to the handling of permissions.

2Note that line 13 of our union-find example Listing 5.1 has the same form, but union-find does terminate.
We suspect that in this simpler case, Z3’s heuristics detect the matching loop.
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Listing 5.9: The invariant predicate emits quantifiers that cause our implementation not to
terminate.

1 // class "Node"
2 var value: Int
3 var left: Ref
4 var right: Ref
5 var parent: Ref
6 var parentStruct: Ref /* pointer to the node’s composite */
7

8 // class "Composite"
9 var all: Set[Ref]

10

11

12 predicate inv(this: Ref)
13 {
14 acc(this.all , write)
15 && forall m: Ref :: m in this.all ==> acc(m.parent , wildcard)
16 && forall o: Ref :: o in this.all && o.parent != null ==> acc(o.

parentStruct , wildcard)
17 && forall q: Ref :: q in this.all ==> acc(q.left , 1/2)
18 && forall r: Ref :: r in this.all && r.left != null ==> r.left in this

.all && t.left.parent ==this
19 && forall s: Ref :: s in this.all && s.left == null ==> acc(s.left ,

1/2)
20 && forall v: Ref :: v in this.all ==> acc(v.right , 1/2)
21 && forall w: Ref :: w in this.all && w.right != null ==> w.right in

this.all && x.right.parent ==this
22 && forall y: Ref :: y in this.all && y.right == null ==> acc(y.right ,

1/2)
23 && forall x: Ref :: x in this.all ==> acc(x.value , write)
24 && forall y: Ref :: y in this.all ==> y.value == (y.left==null ? 0 : y

.left.value) + (y.right==null ? 0 : y.right.value) + 1
25 }
26

27 function valid(this: Ref) : Bool
28 requires acc(this.parentStruct , wildcard) && this.parentStruct !=null &&

acc(inv(this.parentStruct), wildcard)
29 {
30 unfolding acc(inv(this.parentStruct), wildcard) in (this in (this.

parentStruct.all))
31 }
32

33 function getLeft(this: Ref) : Ref
34 requires acc(this.parentStruct , wildcard) && this.parentStruct !=null &&

acc(inv(this.parentStruct), wildcard) && valid(this)
35 {
36 unfolding acc(inv(this.parentStruct), wildcard) in this.left
37 }
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5.5 Unsupported Idioms

5.5.1 Multiple field access

A new idiom could have the form forall y:Ref :: y in S ==> acc(y.f.g, p), where f
is a field of type Ref. An object y.f is then called a pivot. For an object x, we then have p
permission for each y in S with y.f = x.

It is unclear how to count these elements. A simple, but incomplete solution could be to
transform to the chunk ∀x rx.f 7→ # (∃ y ry ∈ tS ∧ ty(y) = x) ? tp : 0. This does not
regard that two elements might point at x, inhaling 2 ∗ tp permission. It is also unclear to
us how an algorithm would use this idiom.

5.5.2 Additional constraints for sequences

Currently, we are very restrictive about the syntax for sequences. It could be that some
algorithms want to split the sequence differently, e.g. in odd and even indices (see List-
ing 5.10).

Presumably, such requirements could be captured in special axioms for count.

Listing 5.10: An algorithm could split a sequence in even and odd indices.

1 var f:Int
2 method even_odd(S:Seq[Ref])
3 requires forall i:Int :: i in [0..|S|] ==> acc(S[i].f, write)
4 {
5 exhale forall i:Int :: i in [0..|S|] && i % 2 == 0 ==> acc(S[i].f,

write)
6 exhale forall i:Int :: i in [0..|S|] && i % 2 == 1 ==> acc(S[i].f,

write)
7 }

5.5.3 Multiple quantifiers

We do not support more than one quantified variable. Two quantified variables could be
useful e.g. to give access to elements of a multidimensional sequence. This is illustrated in
Listing 5.11. Note that the syntax given in the example does not exist in SIL yet.

Listing 5.11: Two quantified variables could be used to give access to a matrix-like
structure.

1 var f:Int
2 method multiply(A:Seq[Ref][Ref],B:Seq[Ref][Ref])
3 requires forall i,j:Int :: i in [0..|A|] && j in [0..|A|] ==> acc(S[i][j].f

,write)
4 {}
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6 Conclusion

We extended Silicon to support permissions under quantifiers for sets and sequences. To
this end, we introduced a new kind of heap chunk called quantified field chunk. In contrast
to the old field chunks, quantified chunks allow the representation of access to many field
locations on the heap. We defined the permissions held for a receiver, exhaling, and value
lookup for quantified chunks and gave the modified symbolic execution rules. Quantified
chunks are only introduced when a program uses permissions under quantifiers.

With permission under quantifiers, we showed how to model the following data structures
and algorithms: a union-find structure can be specified by a predicate that keeps access to
the set of all nodes, where each node’s parent is specified to be in this set. A parallel
mergesort can be specified by splitting the array in two parts, an operation that is well
supported by our axiomatisation. Also, we showed how to model a mutable array with a
predicate that keeps access to all indices of a sequence.

Our approach is limited by the axiomatisation for sets and sequences. Access to sequences
has to be specified in explicit subranges, e.g. S[a..b] for a sequence S and integers a, b with
0 ≤ a ≤ b ≤ |S|. We do not support multiple field access, access to sequences that cannot
be specified in explicit subranges (e.g., splitting in even and odd indices), and multiple
quantifiers (e.g., to access matrices).

Let us reflect on our initial goal: to elegantly specify algorithms on unbounded data with
sets and sequences. Quantified permissions are a solution for this problem: they spec-
ify access to sets and sequences without dictating a way of traversal. We showed how
permissions under quantifiers can be implemented in Silicon with quantified chunks, and
demonstrated the usefulness of our solution.

6.1 Related work

Permissions under quantifiers are closely related to the iterated star, a commonly used
idiom in separation logic [Rey02].

Smans et al. implemented the iterated star in Vericool [SJP09]. Their assertions have the
form ∀∗x ∈ (min : max) r φ, where min and max are integer expressions. Smans et
al. give the intuition that the latter assertion states that φ holds for all integers between
min (inclusive) and max (exclusive), and that for any two different integers in that range,
the locations required to be accessible by φ are disjoint. This is different to our fractional
permissions under quantifiers. For example, when specifying access to a sequence, the
objects at two different indices do not have to be disjoint. In addition, our approach also
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supports sets, which does not seem to be expressible in the form given by Smans. To our
knowledge, the iterated star is only supported in the VCG variant of VeriCool. This makes
the implementation different.

As far as we know, no other automated verifier supports permissions under quantifiers.

6.2 Future work

6.2.1 Native support for arrays

SIL and Silicon do not natively support arrays yet. In our work, we mostly used sequences
to model arrays. Arrays would therefore be a good addition to the language. We showed
how to model arrays with sequences and permission under quantifiers. This could be
used to implement arrays natively by keeping a dedicated field to hold the array values,
alongside a sequence.

6.2.2 General axiomatisation for counting

It would be interesting to know whether there is a general solution for counting (see sub-
section 4.3.2), and if it can be encoded as a formula for a SMT solver. Such a general
approach would solve our issue of unsupported idioms and e.g. allow the specification
of permissions for multiple field accesses. We suspect that this is not possible with our
approach, but made no efforts to support this claim.

6.2.3 Analyse usefulness of quantified chunks for other applications

While implementing quantified chunks, we noticed that they can also be useful in sit-
uations unrelated to permissions under quantifiers. Consider Listing 6.1, which fails to
verify, also in Silicon with quantified chunks. The reason is that it does not use permis-
sions under quantifiers, and hence the field f is never quantified. However, as laid out
in the comments, it could be solved with quantified chunks and the operations on them.
The example is artificial, and we are unsure whether this would be needed in practice. It
could, however, be worthwhile to implement a backtracking algorithm that uses quanti-
fied chunks when the verification fails due to insufficient permission.

Listing 6.1: Quantified chunks could solve incompletenesses that do not regard permis-
sions under quantifiers.

1 var f:Int
2

3 method q(a:Ref , b:Ref , c:Ref)
4 requires acc(a.f, write) && acc(b.f, write)
5 requires c == a || c == b
6 {
7 // fails with simple chunks , as neither c==a nor c==b can be proved
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8 c.f := 5
9 // it would , however , work with chunks

10 // ∀x r x.f 7→ # x = ta ? 1 : 0
11 // ∀x r x.f 7→ # x = tb ? 1 : 0
12 // because then it can be proved that full permission to c.f is held
13 }
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