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Abstract

Program verification deals with the problem of proving or disproving
the correctness of a program with respect to its specifications. Such
verification can be automated thanks to verification infrastructures like
Viper. Viper is a tool chain and infrastructure for program verification
that natively supports permission-based reasoning in its intermediate
language. It also consists of the automated verification backend called
Silicon that is based on symbolic-execution. Silicon ultimately relies on
an SMT solver to discharge any resulting proof obligations.

In this work, we introduce a new version of Silicon that only produces
encodings that are fully conformant with the newest SMT-LIB stan-
dard. We add backend support in Silicon for multiple SMT solvers
and introduce the cvc5 solver as an alternative to the default Z3 solver.
We test and benchmark our changes to Silicon to show that SMT-LIB
conformance does not hinder performance compared to the original
version. Finally, we show that cvc5 can fix several open issues in Sili-
con and may prove to be a useful alternative to the Z3 solver for some
inputs.

i





Contents

Contents iii

1 Introduction 1

2 Viper 3
2.1 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Satisfiability Modulo Theories Solvers 7
3.1 SMT-LIB Standard: Version 2.6 . . . . . . . . . . . . . . . . . . 8
3.2 Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 cvc5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Implementation 11
4.1 SMT-LIBv2.6 Conformance . . . . . . . . . . . . . . . . . . . . 11
4.2 Backend Support for Multiple SMT Solvers . . . . . . . . . . . 12

4.2.1 Supporting cvc5 . . . . . . . . . . . . . . . . . . . . . . . 13

5 Evaluation 15
5.1 Completeness and Soundness Testing . . . . . . . . . . . . . . 16
5.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Original Against SMT-LIBv2.6 Flavored Silicon . . . . 18
5.2.2 Z3- Against cvc5-Based Silicon . . . . . . . . . . . . . . 18
5.2.3 To Force or Not To Force State Saturation Checks . . . 20

6 Discussion 23
6.1 Unsoundness With cvc5 . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Completeness and Improper Test Annotations . . . . . . . . . 24

7 Conclusion 27
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



Contents

A Per Test Directory Benchmarks And Statistics 29
A.1 Statistics Per Silicon Flavor . . . . . . . . . . . . . . . . . . . . 29
A.2 Original Against SMTLIBv2.6 Flavored Silicon . . . . . . . . . 29
A.3 Z3- Against cvc5-Based Silicon . . . . . . . . . . . . . . . . . . 30
A.4 To Force or Not To Force State Saturation Checks . . . . . . . 31

Bibliography 49

iv



Chapter 1

Introduction

Program verification is a critical component of ensuring that programs be-
have as intended, as per their correctness specifications. Automating these
verification techniques require scalable infrastructures on which such auto-
mated program verification tools can be built. Viper 1 [13], or Verification
Infrastructure for Permission-based Reasoning, is one such infrastructure.
More precisely, Viper is a tool chain and infrastructure for program verifi-
cation that is being developed by the Programming Methodology Group at
ETH Zurich, Switzerland 2. It consists of the Viper intermediate language,
based on separation logic to encode verification problems, automated veri-
fiers for the language, and several example front-end tools for popular lan-
guages such as Python, Rust, and Go.

Viper includes two automated verification backends: (1) Silicon 3 [16], a
verifier based on symbolic execution, and (2) Carbon 4, a verifier based on
verification-condition generation. Both of these verifiers ultimately rely on
an SMT solver to discharge resulting proof obligations. Silicon interacts
directly with an SMT solver, which prior to this work was the Z3 Theorem
Prover 5 [12]. Carbon instead uses the intermediate verification language
Boogie 6 [3] to abstract over the underlying SMT solver, which again in
Boogie is Z3.

Most widely-used SMT solvers offer support for the SMT-LIB command
language (or a dialect hereof) as input as defined by the SMT-LIB standard
[6], but use different combinations of logic-specific sub-solvers, strategies,
and heuristics to solve different problems, which in turn affects their com-

1http://viper.ethz.ch
2https://www.pm.inf.ethz.ch/
3https://github.com/viperproject/silicon
4https://github.com/viperproject/carbon
5https://github.com/Z3Prover/z3
6https://github.com/boogie-org/boogie
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1. Introduction

pleteness and efficiency. Hence, the completeness and efficiency of Silicon,
Carbon, and, by extension, the automated program verification capabilities
offered by Viper are closely tied to that of the underlying SMT solver. In-
troducing support for multiple SMT solvers in Viper’s verification backends
may result in improved performance for certain classes of inputs.

In this work, we focus on the symbolic-execution-based verification backend
Silicon. We introduce a new version of Silicon that produces only SMT
commands that conform to the newest SMT-LIB standard. We add extended
backend support for multiple SMT solvers and include the recently released
cvc5 solver 7 [2] as an alternative to Z3. Finally, we present several tests and
benchmarks to show that this new version of Silicon is equally performant
as the previous version using Z3-specific SMT commands and that cvc5 can
be used as an alternative solver to discharge resulting proof obligations in
Silicon.

The structure of this document is as follows: In Chapter 2, we begin with
a brief introduction to Viper and the symbolic-execution-based verification
backend Silicon. Next, in Chapter 3, we provide some background informa-
tion on SMT solvers and the SMT-LIB standard, contextualizing the required
changes made in Silicon. In Chapter 4, we report the implementation details
of modifying Silicon to conform to the newest SMT-LIB standard as well
as how the Silicon codebase can be generalized to support multiple SMT
solvers including cvc5. Chapter 5 describes the extensive testing and bench-
marking performed to evaluate our implementations of Silicon. The results
of the evaluation are then further discussed in Chapter 6. Ultimately, Chap-
ter 7 draws a conclusion on the contributions made and outlines directions
for future work.

7https://cvc5.github.io/
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Chapter 2

Viper

The Viper verification infrastructure is visualized in Figure 2.1 together with
the contributions to the Silicon-based pipeline of the stack found in this
work. Viper has already been successfully used to build several front-end
verification tools, including verifiers such as the Nagini verifier for Python 1

[10], the Prusti verifier for Rust 2 [1], and the Gobra verifier for Go 3 [18].

The Viper intermediate language is a powerful but simple imperative pro-
gramming language with extensive support for permission-based reason-
ing. It natively supports a notion of a program heap and access permis-
sions to heap locations. The language allows for convenient expression of
verification problems and techniques used in automated program verifica-
tion. In Listing 2.1 we show a simple example of a Viper program with-
out access permissions. The program proves (after verification with either
Silicon or Carbon) that our iterative implementation of computing the nth
Fibonacci number is indeed correct. We see that preconditions are specified
using the requires keyword, postconditions with ensures, and loop invari-
ants required to prove our postcondition can be specified using invariant.
Readers may consult the official Viper tutorial 4 for an extensive introduc-
tion to the Viper intermediate language and its many features, including
permission-based reasoning.

As mentioned previously, Viper includes two automated verification back-
ends. One is the Carbon verifier based on verification-condition generation,
where the program under consideration is translated into a set of logical
formulas whose validity implies that the program must satisfy the speci-
fied correctness properties. Carbon uses Boogie and the Boogie interme-
diate verification language [11] for this purpose. The other verifier is the

1https://www.pm.inf.ethz.ch/research/nagini.html
2https://www.pm.inf.ethz.ch/research/prusti.html
3https://www.pm.inf.ethz.ch/research/gobra.html
4http://viper.ethz.ch/tutorial/
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2. Viper

0 // Fibonacci recurrence relation

1 function fib(n: Int): Int

2 {

3 (n < 2) ? n : fib(n-2) + fib(n-1)

4 }

5
6 // Iteratively computes nth Fibonacci number

7 method iter_fib(n: Int) returns (res:Int)

8 requires n >= 0

9 ensures res == fib(n) // prove equivalent to recursive

definition

10 {

11 res := 0

12 var i: Int := 0

13 var next_fib: Int := 1

14
15 while(i != n)

16 invariant i >= 0

17 invariant res == fib(i)

18 invariant next_fib == fib(i+1)

19 {

20 var old_res: Int := res

21 res := next_fib

22 next_fib := old_res + res

23 i := i + 1

24 }

25 }

Listing 2.1: Simple Viper program that after verification proves that our implementation of an
iterative method for computing the nth Fibonacci number is correct.

symbolic-execution-based Silicon that explores different program execution
paths. Silicon is the focus of this work, and we briefly introduce the verifier
in the following section.

2.1 Silicon

Silicon is an automated verification backend for Viper based on sound sym-
bolic execution. The verifier directly translates Viper programs into (usually
short) SMT commands in a stepwise fashion and then (frequently) issues
these commands to an underlying SMT solver to discharge proof obligations
that arise during verification. The interaction between Silicon and the un-
derlying SMT solver is based on standard I/O streams, where Silicon writes
to and reads from files in (some dialect) of the SMT-LIB command language.
Prior to this work, Silicon was only compatible with Z3 as the underlying
SMT solver due to utilizing Z3-specific SMT commands that were not de-
fined in the official SMT-LIB command language and were therefore not
supported by other SMT solvers. Interested readers may refer to Schwerhoff
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2.1. Silicon

Figure 2.1: The Viper verification infrastructure. Front-ends encode into the Viper intermediate
language which can then be verified using one of two verification backends, either Silicon based
on symbolic execution or Carbon based on verification condition generation. Both of these
automated verifiers rely on other tools; ultimately they both discharge proof obligations using
the Z3 SMT solver (prior to this work). The contributions of this work (shown in green) are
to the Silicon pipeline of this stack, where we generalize Silicon to produce encodings only in
the SMT-LIB command language and add backend support for multiple SMT solvers as well as
introduce an alternative solver in the form of cvc5.

[16] for a thorough description of Silicon’s inner workings and design.
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Chapter 3

Satisfiability Modulo Theories Solvers

Satisfiability Modulo Theories (SMT) is an area of automated deduction that
deals with the problem of deciding the satisfiability of first-order formulas
within (modulo) some logical background theory [4]. SMT solvers are tools
that can be used to help with this decision problem. These SMT solvers of-
ten utilize the lazy approach that combine propositional satisfiability (SAT)
solvers with theory-specific solvers. Unfortunately, the SMT problem is gen-
erally NP-hard, and for some of these logical theories, undecidable. There-
fore, depending on the strategies and heuristics used, SMT solvers have
varying levels of completeness and efficiency across different tasks and com-
binations of background theories. Nonetheless, SMT solvers have become an
invaluable tool in a variety of applications including program verification
with Viper.

Some publicly available SMT solvers that are under active development, at
time of writing, are: Alt-Ergo 1 [8], Boolector 2 [14], cvc5, veriT 3 [7], Yices
2 4 [9], and Z3.

In the following sections, we will introduce SMT-LIB, the SMT-LIB Standard
in its current version 2.6, and the two SMT solvers, Z3 and cvc5, that are
suitable for use in Silicon. Readers unfamiliar with SMT may refer to Bar-
rett and Tinelli [4] for background knowledge, since facilitating a deeper
understanding of SMT is outside the scope of this work.

1https://alt-ergo.ocamlpro.com/
2https://boolector.github.io/
3https://verit.loria.fr/
4https://yices.csl.sri.com/
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3. Satisfiability Modulo Theories Solvers

0 > (set -option :print -success true)

1 success

2 > (set -logic QF_LIA) ; integer arithmetic

3 success

4 > (declare -const a Int) ; declare integer constant a

5 success

6 > (declare -const b Int) ; declare integer constant b

7 success

8 > (assert (> (- a b) (+ a (- b) 2))) ; assert a - b > a + (-b)

+ 2

9 success

10 > (check -sat)

11 unsat

Listing 3.1: Example interaction of using the SMT-LIB command language with an SMT solver.
The symbol > indicates input to the solver.

3.1 SMT-LIB Standard: Version 2.6

The Satisfiability Modulo Theories Library or SMT-LIB [5] is an initiative
that aims to facilitate research and development in SMT. The initiative pro-
vides: (1) standards for relevant logical background theories and a language
with which to specify them, (2) an underlying logical and expression lan-
guage, (3) a language for sub-logics, and (4) a command language for in-
terfacing with SMT solvers, named the SMT-LIB command language. They
also arrange an annual SMT solver competition SMT-COMP 5, where SMT
solvers compete on a large collection of SMT-LIB benchmarks. The most re-
cent version of the SMT-LIB Standard is version 2.6 (SMT-LIBv2.6) [6] which
we will use in this work.

The SMT-LIB command language is built on S-expressions, a way of repre-
senting nested lists of tree-like data that is designed to be easy to parse and
process. Readers familiar with the programming language Lisp or Com-
mon Lisp [17] should recognize the parenthesized syntax (parsers support-
ing Common Lisp should also work for SMT-LIB scripts). In SMT-LIB an
S-expression is either a non-parenthesized token (e.g. abc) or a sequence of
0 or more S-expressions enclosed in parentheses (e.g. (abc (123))). The
command language both defines a standard set of these S-expressions that
the user may issue and a set of responses for SMT solvers such as: suc-

cess for successful execution of a supported command, unsupported if the
command is not supported by the solver, and sat and unsat for satisfiable
and unsatisfiable formulas, respectively. We show an example in Listing 3.1.
Readers may refer to the official standard [6] for further information on
SMT-LIBv2.6 and the SMT-LIB command language.

5https://smt-comp.github.io
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3.2. Z3

Table 3.1: Extract of Z3 commands and their equivalent in the SMT-LIB command language.

Explanation Z3 command SMT-LIB command Remark

Logical implication implies =>

Logical biconditional iff No equivalent i

Nullary sort (declare-sort s) (declare-sort s 0) ii

Empty annotation (! t) Not allowed
Pair-wise distinct (distinct · · · ) (distinct x1 x2 · · · ) iii

i Can e.g. be encoded as XNOR or a conjunction of two implications. ii Z3 can infer arities
in some scenarios while SMT-LIBv2.6 requires all associated arities to be specified. Z3 also
allows a similar shorthand for introducing algebraic datatypes. iii SMT-LIBv2.6 requires at

least two arguments while Z3 allows any number.

3.2 Z3

The Z3 theorem prover, also referred to as Z3, is a high-performance SMT-
LIBv2.6 conformant SMT solver developed at Microsoft Research. It is one
of the most popular SMT solvers, being widely used in both research and
industry, and has been in development since 2006. Z3 supports a wide array
of logical background theories, and with its broad support for quantifiers, it
is a common choice for program verification tools such as Boogie and Viper.

Z3 supports a superset of the SMT-LIB command language and introduces
several convenient shorthand commands. Z3 also generally allows a much
more lenient syntax than that specified in SMT-LIBv2.6. In Table 3.1 we
highlight a few differences between the Z3 dialect and SMT-LIBv2.6 that are
relevant for our work. We emphasize that Z3 is SMT-LIBv2.6 conformant
and therefore supports both the SMT-LIB command language and the Z3-
specific dialect.

3.3 cvc5

The cvc5 solver is the latest SMT solver in the cooperating validity checker
(CVC) tools developed jointly by Stanford University and the University of
Iowa. The solver builds on its successful predecessor CVC4 6 and supports
all standard SMT-LIB theories and many non-standard theories, including
reasoning about quantified formulas. It is further fully SMT-LIBv2.6 confor-
mant and therefore has support for the newest SMT-LIB command language.

Barbosa et al. [2] promisingly show that cvc5 frequently solves significantly
more non-incremental SMT-LIB benchmarks than Z3 when comparing across
the same divisions used for SMT-COMP 2021. We, however, note that Sili-

6Note the change in naming convention. Earlier solvers in the CVC family used capital
letters, whereas cvc5 use lower-case letter to acknowledge the tool’s advancement and the
authors finding it “more visually appealing” [2, p. 2].

9



3. Satisfiability Modulo Theories Solvers

con relies on incremental solving and the benchmarks performed by Barbosa
et al. therefore may not be representative of cvc5’s performance in Silicon.

10



Chapter 4

Implementation

In this section, we cover the implementation details of modifying Silicon to
only produce commands following the SMT-LIB command language, and
generalizing the Silicon backend to support multiple SMT solvers including
the cvc5 solver. We denote this new version of Silicon as SMT-LIBv2.6 Sili-
con. The interested reader is referred to pull request #609 in Silicon 1 for full
details of the changes introduced to the Silicon codebase.

4.1 SMT-LIBv2.6 Conformance

As discussed in Section 2.1, Silicon interacts with SMT solvers through stan-
dard I/O by writing to and reading from files in the SMT-LIB command
language. Internally, Silicon converts its own terms to S-expressions in the
SMT-LIB command language using the TermToSMTLib2Converter class. In
this class we e.g. define how to translate logical connectives such as logi-
cal conjunction or declaration of new sort symbols from its internal Silicon
representation to S-expressions understood by the SMT solver.

The previous version of Silicon (prior to this work) translated its internal
terms into a superset of the SMT-LIB command language that was sup-
ported by the Z3 solver (see Section 3.2). These Z3-specific commands, as
mentioned earlier, introduce shorthand expressions such as iff for the log-
ical biconditional and generally have a more lenient syntax than that spec-
ified by SMT-LIBv2.6. This results in commands that are not accepted by
the majority of other SMT solvers. For that reason, we modify the Sili-
con backend to only produce commands in the SMT-LIB command lan-
guage. Below, we highlight some changes that were needed primarily in
the TermToSMTLib2Converter class, and some in the static config preambles
forwarded to the SMT solver, to ensure this:

1https://github.com/viperproject/silicon/pull/609
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4. Implementation

1. Logical implication is encoded as => instead of the Z3-specific keyword
implies.

2. Logical biconditional is changed from the Z3-specific iff encoding to
the logical conjunction of a material implication and a converse impli-
cation, i.e., we now encode (P ⇐⇒ Q) as ((P =⇒ Q)∧ (Q =⇒ P)),
since SMT-LIBv2.6 does not define the biconditional. This encoding is
also equivalent to the XNOR boolean operator; both showed similar
performance in initial testing.

3. Explicit arities are introduced. Z3 can often infer arity by itself but
SMT-LIBv2.6 requires associated arities to be specified. E.g., when in-
troducing a new nullary sort symbol s, we now encode it as (declare-
sort s 0) instead of (declare-sort s).

4. Annotations, defined using (! t α1 · · · αn) for annotating term t
with attributes α1, . . . , αn, are omitted when they annotate terms with
zero attributes. Z3 ignores such annotations but SMT-LIBv2.6 specify
that annotations must contain one or more attributes.

5. Introducing algebraic datatypes now follow SMT-LIBv2.6, where the
datatypes are first defined with their respective arities followed by the
declarations. We now always use the command (declare-datatypes

((δ1 k1) · · · (δn kn)) (d1 · · · dn)) for introducing n > 0 algebraic
datatypes δ1, . . . , δn with arities k1, . . . , kn and declarations d1, . . . , dn
instead of using a Z3-specific command for single nullary datatypes,
where datatypes and declarations were only separated by whitespace.

6. Pair-wise distinct, called (distinct · · · ), is only encoded for at least
two arguments instead of one.

4.2 Backend Support for Multiple SMT Solvers

Prior to this work, the Silicon backend supported only the Z3 solver. For-
tunately, however, most of Z3’s external behavior and output follows the
SMT-LIB standard. As such, modifying Silicon to support multiple SMT
solvers require only minor changes to the backend once Silicon has been
modified to issue commands in the SMT-LIB command language.

We generalize the previous interface between Z3 and Silicon to instead be
an abstract class named ProverStdIO that defines how Silicon interacts with
other SMT-LIB conforming SMT solvers. Most of the previous methods
are solver-agnostic due to SMT-LIB and can be reused directly. A notable
exception is the setting of per query timeouts, whose method must now be
overridden in subclasses that define the specific solvers. Additional issues
with per query timeouts, specifically for cvc5, are discussed in Section 4.2.1.

12



4.2. Backend Support for Multiple SMT Solvers

To easily swap between different solvers in Silicon, we also add a new com-
mand line option to select which SMT solver should be used to discharge
resulting proof obligations. The cvc5 solver can now be selected by run-
ning Silicon with the command --prover=cvc5. Furthermore, we gener-
alize command line options to target all provers, where previously these
were only targeting Z3. The naming of the new options follow the pattern
--prover<Option> instead of --z3<Option>. We ensure backwards compat-
ibility by fundamentally aliasing the old options as well as preserving any
Z3-specific settings.

All the changes to the backend mean that we can now add support for a
new SMT solver in Silicon in the following few steps:

1. Add a static config preamble defining the options that should be for-
warded to the solver after instantiation (see e.g. cvc5config.smt2).
Note that non-SMT-LIB conforming commands may be set as settings
are often solver specific.

2. Implement a new object and a new class for the solver that extends
the abstract ProverStdIO class defining solver details. Override the
abstract methods setTimeout and getProverPath to define how per-
check timeouts are set and the location of the solver binary, respec-
tively.

3. If any, add reserved keywords used by the solver to SmtlibNameGen-

erator.scala to avoid Silicon-generated name clashes.

4. Add the new solver to the prover options in the command-line parser
Config.scala and create a new case in the factory method getProver-

StdIO found in Decider.scala.

5. Add solver dependencies to Silicon.scala.

4.2.1 Supporting cvc5

After introducing backend support for multiple SMT solvers, adding sup-
port for cvc5 was relatively straightforward following the aforementioned
steps. The static config preamble was based on the default options used
for cvc5 by Boogie as well as translated options from the previous Z3 static
config preamble in Silicon (z3config.smt2). We also experimented exten-
sively with different settings defined by cvc5 to increase completeness and
decrease runtime for the Silicon test suite but to no avail.

The only major issue faced in the implementation was that cvc5 does not
support varying per query timeouts. After beginning a cvc5 instance using
incremental solving, unlike Z3, we cannot change the per query timeout. It
must either be disabled or set in the static config preamble as a global per

13



4. Implementation

query timeout that remains for the entire lifetime of the cvc5 instance. Ef-
fectively, this means that per assertion and per check timeouts in Silicon, re-
spectively through the --assertTimeout and --checkTimeout options, are
ignored for the cvc5 solver. More importantly, it also implies that we are
either forced to use Silicon’s state saturation checks 2 with no timeout, or
we have to disable these checks entirely.3 Forcing state saturation checks
may, however, result in some subset of queries taking significantly longer
to prove or hanging indefinitely, even if the statements could otherwise be
proved without these checks. In the latter case of disabling these checks, we
may experience situations where lemmas are learned repeatedly in subse-
quent push and pop scopes as well as increased or indefinite query time.
By default, we force state saturation checks with no timeout to keep options
similar between all provers, but this can be changed through setting both
--proverSaturationTimeout and --proverSaturationTimeoutWeights to
any positive number. We explore the consequences of these forced or dis-
abled state saturation checks in Chapter 5.

2In state saturation checks we issue additional (check-sat) commands to the prover in
order to saturate its state and learn new lemmas early. Please refer to https://github.com/

viperproject/silicon/wiki/Performance-of-Silicon-on-long-running-examples-(e.

g.-Nagini) for details and earlier experiments with these checks in original Silicon using
Z3.

3Likewise, this lack of varying per-query timeouts also affects Silicon’s path feasibility
checks. In path feasibility checks we query the SMT solver before branching to check whether
the branching condition is already known to be true or false, and we can therefore avoid
exploring an additional (and potentially expensive) path. By default, SMT-LIBv2.6 Silicon
using cvc5 performs these checks with no timeout.
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Chapter 5

Evaluation

We evaluate our implementation of an SMT-LIBv2.6 conformant Silicon us-
ing Z3 and cvc5 as SMT solvers against the original Silicon prior to this work
with Z3-specific commands using Z3. Specifically, we test and benchmark
the following “flavors” of Silicon:

1. Original Silicon with Z3-specific commands using Z3 vs. SMT-LIBv2.6
conformant Silicon using Z3

2. SMT-LIBv2.6 conformant Silicon using Z3 vs. using cvc5 with forced
state saturation checks

3. SMT-LIBv2.6 conformant Silicon using cvc5 with forced state satura-
tion checks vs. with disabled state saturation checks 1

The purpose of the evaluation is twofold: (1) to assess whether Silicon’s
performance relies on any Z3-specific commands, and (2) to assess whether
Silicon may benefit from supporting another SMT solver, specifically cvc5,
in terms of runtime, soundness, or completeness. Moreover, we compare
Silicon using cvc5 with forced and disabled state saturation checks in aid of
purpose (2).

Both testing and benchmarking were performed on the standard Silicon
test suite (SiliconTests) 2 with a timeout of 60 s and replicating every
run 10 times. Further increasing the timeout to 5 minutes did not in-
crease completeness for the tests but vastly increased the total runtime (from
hours to days) and as such we only report results using a 60 s timeout. We

1A similar test and benchmark could be performed for path feasibility checks. We omit
this due to time constraints.

2The standard test suite for Silicon consists of the following test directories in
Silicon and Silver, respectively: consistency, issue387, heuristics, symbExLogTests

and all, quantifiedpermissions, quantifiedpredicates, quantifiedcombinations,

wands, termination, examples.
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5. Evaluation

Table 5.1: Details of tools used in testing and benchmarking.

Tool Version Release date

cvc5 1.0.0 Apr 06, 2022
Java 11.0.13 LTS Oct 19, 2021
Silicon (original) 1.1-SNAPSHOT edb5d079 Dec 07, 2021
Silicon (SMT-LIBv2.6) 1.1-SNAPSHOT a1badb18+@cvc5 Apr 21, 2022
Silver SNAPSHOT 7228e714 Dec 02, 2021
Z3 4.8.7 Nov 20, 2019

did not experiment with increasing timeouts beyond 5 minutes as we be-
lieve user-friendliness, e.g. for frontend verifiers, would be severely im-
pacted, and the verification would likely be interrupted regardless. Ad-
ditionally, we include a short discussion of some simple arithmetic tests
(SimpleArithmeticTermSolverTests) and some type tests (SiliconBackend-
TypeTest) defined in Silicon.

Our testing and benchmarking were performed on a 2021 MacBook Pro
(Model Identifier MacbookPro18,3) with the Apple M1 Pro chip and 16 GB
of memory running macOS Monterey 12.3.1. The details of the tools used
are listed in Table 5.1.

5.1 Completeness and Soundness Testing

Before benchmarking, we tested the completeness and soundness of our
implementation against the original Silicon with Z3. In Table 5.2 we list a
high-level overview of our test results for the four different combinations
of Silicon and SMT-solvers. Both the original Silicon and the SMT-LIBv2.6
Silicon were able to pass all tests as expected.

Swapping the SMT-solver from Z3 to cvc5, however, resulted in a significant
amount of tests failing or timing out. The discrepancy between cancelled
tests for Silicon using Z3 and cvc5 is explained by the fact that the remain-
der (19 and 18) of these cancelled tests failed or timed out for SMT-LIBv2.6
using cvc5 with forced and disabled state saturation checks instead. After
close inspection of the failed tests, we present their reasons for failure in Ta-
ble 5.3. We note that using cvc5 results in identical failed tests for both forced
and disabled state saturation checks except for issues/silicon/0512.vpr 3.
This test timed out when forcing checks but is imprecise and failed to verify
when checks were disabled. Unfortunately, Silicon using cvc5 is suspected
to be unsound for six tests with no obvious common cause. We explore this
unsoundness in Section 6.1. Surprisingly, however, using cvc5 resulted in 10

3Paths to test files are relative to the Silver and Silicon test directories.
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5.1. Completeness and Soundness Testing

Table 5.2: Overview of results from the standard Silicon test suite. Note that failed tests do
not include those that timed out. Cancelled tests indicate that the test passed, but there were
annotations for unexpected or missing input (or, in general, the test failed with some specific
unrelated error type). SSCs is an abbreviation for state saturation checks.

Original Silicon SMT-LIBv2.6 Silicon

Z3 Z3 cvc5 (forced SSCs) cvc5 (disabled SSCs)

Passed 956 956 868 869
Failed 0 0 39 40
Timed out 0 0 68 65
Cancelled 80 80 61 62

Table 5.3: Reasons for failure in the standard Silicon test suite. Unsound denotes that the
verification was unsound. Precise denotes that Silicon was able to verify the program correctly
and may indicate that some test annotations are incorrect. Imprecise denotes that Silicon was
not able to verify the program.

SMT-LIBv2.6 Silicon

cvc5 (forced SSCs) cvc5 (disabled SSCs)

Unsound 6 6
Precise 10 10
Imprecise 23 24

test programs being verified correctly that Z3-based Silicon failed to verify.
These tests were incorrectly marked as failed, often due to the fact that some
tests rely on the SMT-solver not being able to prove assertions that actually
hold. Similarly, some tests rely on and are annotated with some unexpected
(and incorrect) output of the SMT-solver. We elaborate on this increased
completeness compared to Silicon using Z3 in Section 6.2. The remaining 23
(and 24) tests do not indicate any unsoundness; cvc5 was simply not able to
prove entailment. The majority of these 23 (24) failed tests involve universal
quantification, often in the form of quantified permissions or predicates.

Finally, all simple arithmetic tests passed for all evaluated combinations of
Silicon with Z3 and cvc5. However, two type tests failed with SMT-LIBv2.6
Silicon using cvc5, namely typeCombinationFail and fieldTypeSuccess.
This is due to cvc5 only having experimental support for floating points
with sizes other than 8/24 (Float32) and 11/53 (Float64) while the aforemen-
tioned two tests use floating points of size 6/23. Enabling the experimental
FP solver allows these tests to pass but due to known issues with the solver,
we chose not to enable it by default in Silicon’s cvc5 instances. Users may,
as previously, forward any options to cvc5 via the command line options
--proverArgs and --proverConfigArgs in Silicon, including enabling this
experimental FP solver.
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5. Evaluation

5.2 Benchmarking

In the following, we benchmark the runtime performance of our implemen-
tation on the standard Silicon test suite in the three previously mentioned
settings, respectively: (1) Original Silicon vs. SMT-LIBv2.6 Silicon using Z3,
(2) SMT-LIBv2.6 Silicon using Z3 vs. cvc5, and (3) SMT-LIBv2.6 Silicon us-
ing cvc5 with forced vs. disabled state saturation checks. We discard failed,
cancelled and ignored tests. Benchmarks per test directory in the standard
Silicon test suite can be found in Appendix A.

5.2.1 Original Against SMT-LIBv2.6 Flavored Silicon

A runtime comparison between original Silicon and SMT-LIBv2.6 Silicon
using Z3 is shown in Figure 5.1. Both versions showed very similar per-
formance, as expected due to their minor differences, with a mean runtime
of (0.704± 0.026) s across all tests in original Silicon and (0.714± 0.029) s in
SMT-LIBv2.6 Silicon.

We, however, noticed two outliers where SMT-LIBv2.6 was significantly
slower. The first and most extreme outlier is examples paper/list in-

sert.vpr with a mean runtime of (26.428± 3.001) s in SMT-LIBv2.6 Silicon
compared to just (2.061± 0.100) s in original Silicon. Upon examination, we
were not able to explain this 12-fold increase in runtime by the content of
the test program and its new translation to the SMT-LIB command language.
Furthermore, we were not able to reproduce this difference in runtime when
rerunning the test. Here we found no significant difference and as such we
assume this to be a spurious outlier. The other noticeable outlier is third -

party/testTranspose.vpr with a mean runtime of (2.553± 0.047) s in SMT-
LIBv2.6 Silicon compared to (1.429± 0.018) s in original Silicon. Again this
significant difference was not reproducible or explained by the new com-
mand translation.

Discarding these outliers, we have a mean runtime of (0.701± 0.026) s across
all tests in original Silicon and (0.685± 0.026) s in SMT-LIBv2.6 Silicon. Over-
all, it is likely that there is no significant difference in runtime between the
two versions.

5.2.2 Z3- Against cvc5-Based Silicon

Similarly, Figure 5.2 shows a runtime comparison between SMT-LIBv2.6 Sil-
icon using Z3 and cvc5 with forced state saturation checks. The mean run-
time across all tests when using Z3 was, as before, (0.714± 0.029) s and
(5.030± 0.021) s when using cvc5. This major difference was due to 68 tests
timing out after 60 s with cvc5. Excluding timeouts, we instead have a mean
of (0.622± 0.024) s and (0.710± 0.021) s for Z3 and cvc5, respectively.
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5.2. Benchmarking

Figure 5.1: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis). Data points are means ± standard deviation of 10 repetitions of every
test in the standard Silicon test suite. Passed tests are blue circles and timed out tests are red
squares. Failed, cancelled or ignored tests are not depicted.
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The majority of tests timing out involve universal quantifiers, especially
quantified permissions. Particularly, in just the Silver test directory quanti-

fiedpermissions, 45 out of 140 (32.14 %) tests timed out. These quantified
permission-related timeouts therefore accounted for 66.18 % of all those tests
that timed out when using cvc5 with forced state saturation checks, even
though they only made up 140 out of 1036 (13.51 %) of the total number of
tests. Comparatively, in the more general tests in the Silver test directory
all, only 13 out of 669 (1.94 %) tests timed out. Tests with frequent use of
universal quantifiers experienced a greater-than-average amount of timeouts
or failures compared to those without. Statistics and benchmarks for each
test directory can be found in Appendix A.

Moreover, we note that passing quantifiedpermissions tests take signif-
icantly (often several magnitudes) longer to verify when using cvc5 com-
pared to Z3. This is not a trend that can be ascribed to all passed tests
with universal quantifiers but seem to be specific to those with quantified
permissions.

In general, tests that were able to verify in less than 0.8 s with both Z3 and
cvc5, verify slightly faster in cvc5. For these tests cvc5 provides up to a
1.75x speedup over Z3, generally experiencing higher speedups for tests
with shorter verification times. Tests that take longer than 0.8 s to verify
were usually significantly faster with Z3.

5.2.3 To Force or Not To Force State Saturation Checks

The final benchmark is depicted in Figure 5.3, where we compare SMT-
LIBv2.6 Silicon using cvc5 when forcing and disabling state saturation checks.
The mean runtime across all tests, timeouts included, were (5.030± 0.021) s
for forced and (4.925± 0.020) s for disabled checks. Excluding timeouts, the
means were reduced to (0.706± 0.021) s and (0.764± 0.020) s for forced and
disabled checks, respectively

We observed a trade-off between forcing and disabling these state saturation
checks. Both configurations introduced some impreciseness in the verifica-
tion that was not present in the other. For example, with forced checks we
passed the tests issues/carbon/0196.vpr and issues/silicon/0362.vpr

but with disabled checks, they timed out. Comparably, with disabled checks
we were able to pass issues/issue 0081b.vpr, issues/issue 0170.vpr,
and sequences/mergesort.vpr, but the three tests timed out when checks
were forced. By inspection, we were not able to exactly determine what trig-
gers this behavior, but we suspect matching loops were introduced in each
case.

Overall, forcing state saturation checks significantly decreases runtime for
tests that take longer than ∼5 s to verify and tests taking longer than ∼5 s
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5.2. Benchmarking

Figure 5.2: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using cvc5
with forced state saturation checks (x-axis). Data points are means ± standard deviation of 10
repetitions of every test in the standard Silicon test suite. Passed tests are blue circles and timed
out tests are red squares. Failed, cancelled or ignored tests are not depicted.
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5. Evaluation

Figure 5.3: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks. Data points are means ± standard deviation of
10 repetitions of every test in the standard Silicon test suite. Passed tests are blue circles and
timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.

to verify generally only see a minor increase in runtime. Forcing checks,
however, comes at the cost of potentially introducing more timeouts. Users
willing to sacrifice general runtime in longer verification tasks may opt to
disable state saturation checks when using cvc5 through the command line
options mentioned in Section 4.2.1 for improved completeness.
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Chapter 6

Discussion

In this section, we highlight and elaborate on some interesting results found
during testing and benchmarking.

6.1 Unsoundness With cvc5

In our testing of SMT-LIBv2.6 Silicon using cvc5 with forced and disabled
state saturation checks, we discovered six tests on which the two Silicon fla-
vors were unsound.1 Three of these tests relate to access permissions, where
the Silicon flavors are expected to fail with insufficient permission but did
not. One is related to indexing a sequence using two nested universal quan-
tifiers, where an index exceeding sequence length is not detected. Another
is related to cardinality for multisets, where the assertions should fail due
to multisets having no strong axioms, but verification succeeded instead. In
the following, we will briefly elaborate on the last test concerning postcon-
ditions in functions.

A minimal extract of the test showing unsound behavior in the discussed
cvc5-based Silicon flavors is depicted in Listing 6.1. The test declares a field
called x of type Int and function called postFunction2 that takes as argu-
ment a non-null reference with permission to field x. The function simply
returns 1. We expect not to be able to prove the postcondition in line 4 since
it is not guaranteed by the function. However, the discussed Silicon flavors
verify this in contrast to Z3-based Silicon flavors where verification fails.

The observed unsoundness appears to be caused by the postcondition refer-
encing something other than its result. We illustrate this by a minimal un-
sound example in Listing 6.2 that incorrectly verifies for the discussed cvc5-

1The six unsound tests are (in the order as mentioned): issues/carbon/0271.vpr,
new syntax/QPFields.vpr, new syntax/QPPredicates.vpr, issues/silver/0175.vpr,
multisets/multisets.vpr, and issues/carbon/0069.vpr.
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6. Discussion

0 field x: Int

1
2 function postFunction2(this: Ref): Int

3 requires this != null && acc(this.x)

4 ensures this.x == 0

5 {

6 1

7 }

Listing 6.1: Minimal extract of unsoundness discovered in test issues/carbon/0069.vpr for
SMT-LIBv2.6 Silicon using cvc5. This behavior was observed for both forced and disabled state
saturation checks.

0 function unsound(this: Int): Int

1 requires this == 0

2 ensures false

3 {

4 1

5 }

Listing 6.2: Minimal example of unsoundness discovered in SMT-LIBv2.6 Silicon using cvc5.

based Silicon flavors but correctly fails for Z3 flavors. Relevant sections of
the corresponding SMT-LIB script generated by Silicon as well as responses
by the SMT solver are shown in Listing 6.3. We omit large amounts of SMT-
LIB commands such as those defined in the static preambles as well as some
well-definedness assertions. In this case, we see that the SMT solver (here
cvc5) responds to the last (check-sat) command with unsat indicating that
the formula is valid. As such, the verification (incorrectly) succeeds and the
postcondition must (incorrectly) hold. If we instead use Z3 flavors of Silicon,
Z3 responds unknown indicating correctly that the postcondition might not
hold. Similar examples can be constructed for the other five unsound tests
we discovered. Further investigation is required to determine whether these
unsound examples are caused by unsoundness in cvc5 or whether they only
emerge in the specific Silicon flavors.

6.2 Completeness and Improper Test Annotations

During our testing we found 10 tests in the standard Silicon test suite, where
cvc5-based Silicon flavors were able to correctly verify the test programs but
Z3-based flavors were not.2 The results of these tests were, however, incor-
rectly marked as failed since they contain annotations that rely on Z3 not

2The tests are: basic/quantifiers.vpr, functions/heap dependent triggers.vpr,
issues/silicon/0005b.vpr, issues/silicon/0183.vpr, issues/silicon/0491.vpr,
issues/issue 0064.vpr, issues/issue 0147.vpr, misc/triggers field deref.vpr,
misc/unbounded.vpr, and sets/nonnull.vpr.
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6.2. Completeness and Improper Test Annotations

0 ...

1 (declare -fun unsound ($Snap Int) Int)

2 ...

3 ; ---------- FUNCTION unsound ----------

4 (declare -fun this@0@00 () Int)

5 (declare -fun result@1@00 () Int)

6 ...

7 ; ----- Verification of function body and postcondition -----

8 (push) ; 1

9 (assert (= s@$ $Snap.unit))
10 (assert (= this@0@00 0))

11 ; State saturation: after contract

12 (check -sat)

13 ; unsat

14 (assert (= result@1@00 1))

15 (push) ; 2

16 (assert (not false))

17 (check -sat)

18 ; unsat

Listing 6.3: Extract of the SMT-LIB script generated by SMT-LIBv2.6 Silicon using cvc5 with
forced state saturation checks when verifying the example in Listing 6.2.

being able to prove assertions that actually hold or where Z3 has unexpected
output. Several of these tests are related to open issues in the original flavor
of Silicon such as issue #80 3, #183 4, and #204 5. Using cvc5 as the back-
end solver of SMT-LIBv2.6 Silicon fixes both issue #183 and #204 as well as
partially fixes problems mentioned in issue #80.

In Listing 6.4 we show an extract of issue #183 involving non-linear real
arithmetic with permissions that fails to verify with Z3-based Silicon flavors
but succeeds with cvc5-based flavors. The test annotations rely on the SMT-
solver not being able to prove the assertion even if it actually holds. The
test is thus marked as failed even when cvc5-based Silicon flavors correctly
verify the program.

Finally, we remark that Silicon has always been developed with Z3 in mind
and the entire Silicon test suite is heavily biased towards Z3. All tests pass
and are verifiable in a reasonable amount of time with Z3-based Silicon
flavors by design. Front ends are developed such that programs can be
verified with Z3 as the backend SMT solver. Consequently, it is difficult to
utilize the existing test suite to illustrate scenarios where Silicon may benefit
from other SMT solvers such as cvc5 (except for improperly annotated tests
as seen here). Highlighting weak spots, such as reduced completeness or
increased runtime for some inputs, is much easier.

3https://github.com/viperproject/silicon/issues/80
4https://github.com/viperproject/silicon/issues/183
5https://github.com/viperproject/silicon/issues/204
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6. Discussion

0 method foo_fail_gist(self: Ref , rd: Perm)

1 requires none < rd && rd < write

2 {

3 //:: UnexpectedOutput(assert.failed:assertion.false , /

Silicon/issue /183/)

4 //:: UnexpectedOutput(assert.failed:assertion.false , /Carbon

/issue /83/)

5 assert none < rd * rd

6 }

Listing 6.4: Extract of issue #183 that can be verified with cvc5-based Silicon flavors.

26

https://github.com/viperproject/silicon/issues/183


Chapter 7

Conclusion

We presented a new flavor of Silicon introducing SMT-LIBv2.6 conformance
and backend support for multiple SMT solvers with equal performance to
the original Silicon flavor. To do so, we identified Z3-specific SMT com-
mands that Silicon previously relied on and implemented new SMT-LIBv2.6
conformant Silicon with a generalized SMT-solver interface. Subsequently,
we were able to introduce support for the cvc5 solver yielding increased
completeness for 10 tests in the standard Silicon test suite compared to Z3
but also unsoundness in six tests. The cvc5-based flavors of Silicon were
imprecise and failed 23 tests when state saturation checks were forced (and
24 when disabled) that otherwise passed with Z3-based flavors. Likewise,
we observed 68 and 65 tests timing out for cvc5-based flavors with forced
and disabled state saturation checks, respectively, indicating a significant
decrease in completeness relative to Z3-based flavors for the current test
suite, especially in tests using quantified permissions. Finally, we performed
comprehensive benchmarking of the different flavors of Silicon that we in-
troduced, and showed that SMT-LIBv2.6 conformance did not hinder per-
formance compared to the original flavor of Silicon. While the cvc5 solver
may not replace Z3 as the default backend of Silicon yet, it may still prove
to be a useful alternative.

7.1 Future Work

Future work might explore several directions focused on the backend SMT
solvers used by Viper.

Additional benchmarking for cvc5-based Silicon flavors may be interesting.
For example, in this work we have ignored Silicon’s path feasibility checks
and instead focused on state saturation checks. These checks may have
equally interesting trade-offs such as the one seen for state saturation checks,
where runtime in large verification tasks can be sacrificed for improved com-
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7. Conclusion

pleteness. Likewise, it may prove fruitful to experiment with cvc5’s syntax-
guided quantifier instantiation technique [15] that uses a counterexample-
guided approach to synthesize terms for quantifier instantiation with its
SyGuS solver.

Introducing support for cvc5 in the VC-generation-based verifier Carbon
can also be a worthwhile endeavor with the same benefits as seen here in
Silicon. This support should effectively come for free once the Boogie ver-
sion used by Carbon is upgraded to one of the later versions that include
(experimental) support for cvc5 and Yices 2.

Lastly, exploring heuristics to swap between solvers depending on input is
an interesting idea that could help increase completeness and efficiency if
the solvers have complementing strengths and weaknesses.
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Appendix A

Per Test Directory Benchmarks And
Statistics

A.1 Statistics Per Silicon Flavor

Statistics of test results per test directory are shown in Table A.1, Table A.2,
Table A.3, and Table A.4 for original Silicon using Z3, SMT-LIBv2.6 Sili-
con using Z3, SMT-LIBv2.6 Silicon using cvc5 with forced state saturation
checks, and SMT-LIBv2.6 Silicon using cvc5 with disabled state saturation
checks, respectively.

Table A.1: Overview of test results per test directory for original Silicon using Z3.

Passed Failed Timeout Cancelled Total

all 621 0 0 48 669
consistency 1 0 0 0 1
examples 13 0 0 0 13
heuristics 0 0 0 1 1
issue387 15 0 0 0 15
quantifiedcombinations 9 0 0 0 9
quantifiedpermissions 126 0 0 14 140
quantifiedpredicates 22 0 0 4 26
symbExLogTests 10 0 0 0 10
termination 28 0 0 1 29
wands 111 0 0 12 123

A.2 Original Against SMTLIBv2.6 Flavored Silicon

Per test directory benchmarks are shown in the following figures: Fig-
ure A.1, Figure A.2, Figure A.3, Figure A.4, Figure A.5, Figure A.6, Fig-
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Table A.2: Overview of test results per test directory for SMT-LIBv2.6 Silicon using Z3.

Passed Failed Timeout Cancelled Total

all 621 0 0 48 669
consistency 1 0 0 0 1
examples 13 0 0 0 13
heuristics 0 0 0 1 1
issue387 15 0 0 0 15
quantifiedcombinations 9 0 0 0 9
quantifiedpermissions 126 0 0 14 140
quantifiedpredicates 22 0 0 4 26
symbExLogTests 10 0 0 0 10
termination 28 0 0 1 29
wands 111 0 0 12 123

Table A.3: Overview of test results per test directory for SMT-LIBv2.6 Silicon using cvc5 with
forced state saturation checks.

Passed Failed Timeout Cancelled Total

all 593 22 13 41 669
consistency 1 0 0 0 1
examples 9 2 2 0 13
heuristics 0 0 0 1 1
issue387 14 1 0 0 15
quantifiedcombinations 7 1 1 0 9
quantifiedpermissions 81 8 45 6 140
quantifiedpredicates 19 3 2 2 26
symbExLogTests 10 0 0 0 10
termination 26 0 2 1 29
wands 108 2 3 10 123

ure A.7, Figure A.8, Figure A.9, Figure A.10, and Figure A.11. Note that
some plots are empty due to having no passed or timed out tests. The
zoomed in region shows the region between the 10 % and 90 % quantiles.

A.3 Z3- Against cvc5-Based Silicon

Per test directory benchmarks are shown in the following figures: Fig-
ure A.12, Figure A.13, Figure A.14, Figure A.15, Figure A.16, Figure A.17,
Figure A.18, Figure A.19, Figure A.20, Figure A.21, and Figure A.22. Note
that some plots are empty due to having no passed or timed out tests. The
zoomed in region shows the region between the 10 % and 90 % quantiles.
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A.4. To Force or Not To Force State Saturation Checks

Table A.4: Overview of test results per test directory for SMT-LIBv2.6 Silicon using cvc5 with
disabled state saturation checks.

Passed Failed Timeout Cancelled Total

all 591 23 13 42 669
consistency 1 0 0 0 1
examples 9 2 2 0 13
heuristics 0 0 0 1 1
issue387 14 1 0 0 15
quantifiedcombinations 7 1 1 0 9
quantifiedpermissions 84 8 42 6 140
quantifiedpredicates 19 3 2 2 26
symbExLogTests 10 0 0 0 10
termination 26 0 2 1 29
wands 108 2 3 10 123

Figure A.1: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the all test directory. Data points are means ± standard deviation
of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue circles and
timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.

A.4 To Force or Not To Force State Saturation Checks

Per test directory benchmarks are shown in the following figures: Fig-
ure A.23, Figure A.24, Figure A.25, Figure A.26, Figure A.27, Figure A.28,
Figure A.29, Figure A.30, Figure A.31, Figure A.32, and Figure A.33. Note
that some plots are empty due to having no passed or timed out tests. The
zoomed in region shows the region between the 10 % and 90 % quantiles.
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Figure A.2: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the consistency test directory. Data points are means ± standard
deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue
circles and timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.

Figure A.3: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the examples test directory. Data points are means ± standard
deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue
circles and timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.
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Figure A.4: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the heuristics test directory. Data points are means ± standard
deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue
circles and timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.

Figure A.5: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the issue387 test directory. Data points are means ± standard
deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue
circles and timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.
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Figure A.6: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the quantifiedpermissions test directory. Data points are means
± standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed
tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are
not depicted.

Figure A.7: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the quantifiedcombinations test directory. Data points are means
± standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed
tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are
not depicted.
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Figure A.8: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the quantifiedpredicates test directory. Data points are means
± standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed
tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are
not depicted.

Figure A.9: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the symbExLogTests test directory. Data points are means ±
standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests
are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are not
depicted.
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Figure A.10: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the termination test directory. Data points are means ± standard
deviation of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue
circles and timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.

Figure A.11: Runtime comparison between original Silicon using Z3 (y-axis) and SMT-LIBv2.6
Silicon using Z3 (x-axis) for the wands test directory. Data points are means ± standard deviation
of 10 repetitions of every test in the standard Silicon test suite. Passed tests are blue circles and
timed out tests are red squares. Failed, cancelled or ignored tests are not depicted.
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Figure A.12: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the all test directory. Data points are
means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.13: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the consistency test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.
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A. Per Test Directory Benchmarks And Statistics

Figure A.14: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the examples test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.15: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the heuristics test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.
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A.4. To Force or Not To Force State Saturation Checks

Figure A.16: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the issue387 test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.17: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the quantifiedpermissions test directory.
Data points are means ± standard deviation of 10 repetitions of every test in the standard Silicon
test suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.
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A. Per Test Directory Benchmarks And Statistics

Figure A.18: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the quantifiedcombinations test directory.
Data points are means ± standard deviation of 10 repetitions of every test in the standard Silicon
test suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.

Figure A.19: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the quantifiedpredicates test directory.
Data points are means ± standard deviation of 10 repetitions of every test in the standard Silicon
test suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.

40



A.4. To Force or Not To Force State Saturation Checks

Figure A.20: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the symbExLogTests test directory. Data
points are means ± standard deviation of 10 repetitions of every test in the standard Silicon
test suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.

Figure A.21: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the termination test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.
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A. Per Test Directory Benchmarks And Statistics

Figure A.22: Runtime comparison between SMT-LIBv2.6 Silicon using Z3 (y-axis) and using
cvc5 with forced state saturation checks (x-axis) for the wands test directory. Data points are
means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.23: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the all test directory. Data points are means
± standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed
tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are
not depicted.
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A.4. To Force or Not To Force State Saturation Checks

Figure A.24: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the consistency test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.25: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the examples test directory. Data points are
means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.
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A. Per Test Directory Benchmarks And Statistics

Figure A.26: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the heuristics test directory. Data points are
means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.27: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the issue387 test directory. Data points are
means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.
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A.4. To Force or Not To Force State Saturation Checks

Figure A.28: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the quantifiedpermissions test directory.
Data points are means ± standard deviation of 10 repetitions of every test in the standard
Silicon test suite. Passed tests are blue circles and timed out tests are red squares. Failed,
cancelled or ignored tests are not depicted.

Figure A.29: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the quantifiedcombinations test directory.
Data points are means ± standard deviation of 10 repetitions of every test in the standard Silicon
test suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.
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A. Per Test Directory Benchmarks And Statistics

Figure A.30: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the quantifiedpredicates test directory. Data
points are means ± standard deviation of 10 repetitions of every test in the standard Silicon test
suite. Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or
ignored tests are not depicted.

Figure A.31: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the symbExLogTests test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

46



A.4. To Force or Not To Force State Saturation Checks

Figure A.32: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the termination test directory. Data points
are means ± standard deviation of 10 repetitions of every test in the standard Silicon test suite.
Passed tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored
tests are not depicted.

Figure A.33: Runtime comparison between SMT-LIBv2.6 Silicon using cvc5 with forced (y-axis)
and disabled (x-axis) state saturation checks for the wands test directory. Data points are means
± standard deviation of 10 repetitions of every test in the standard Silicon test suite. Passed
tests are blue circles and timed out tests are red squares. Failed, cancelled or ignored tests are
not depicted.
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