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Abstract

A digital emblem is a cryptographically signed message that marks a set of
assets as protected under International Humanitarian Law (IHL). Authorities
such as nation-states create endorsements to attest to the authenticity of
an emblem’s signature; In turn, endorsements can themselves be endorsed.
Assets actively distribute emblems and endorsements using UDP, TLS, or
DNS. Parties can thus independently run the protocol’s verification procedure,
which determines an emblem’s security level by asserting the existence of a
valid chain of endorsements leading to a trusted party. [1]

The protocol has been modeled in Tamarin — a protocol verification tool
used to automatically prove (or disprove) security properties for a given
protocol model [2] — and a prototype has been implemented in Go. [3]

In this thesis, we formally verify the verification component of the an Authentic
Digital EMblem (ADEM) codebase. That is, we verify memory safety (e.g.
that there are no null-pointer dereferences), crash safety (e.g. no division
by zero), and data race freedom of the implementation. Then, we use the
methodology presented in [4], to show that the implementation is a refinement
of the aforementioned Tamarin model. That is, the implementation inherits
all security properties shown to be provided by the protocol’s model.
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Chapter 1

Introduction

In times of international or domestic armed conflict the Red Cross, Crescent,
and Crystal have served as a means for protected parties, such as members of
medical sectors and humanitarian organizations, to physically mark their personnel,
facilities, or objects as protected under International Humanitarian Law (IHL).
However, in recent years cyber operations have increasingly become part of
armed conflict, moving conflict to a realm in which physical markings bear no
meaning. The International Committee of the Red Cross (ICRC) therefore decided
to investigate the idea of a ‘digital emblem’ — a digital equivalent of the physical
markings. [5]

In partnership with the Centre for Cyber Trust (CECYT), the ensuing research
project led to the development of an Authentic Digital EMblem (ADEM).

A digital emblem is a cryptographically signed message that marks a set of assets
as protected under IHL. Authorities such as nation-states create endorsements
to attest to the authenticity of an emblem’s signature; In turn, endorsements can
themselves be endorsed. Assets actively distribute emblems and endorsements
using UDP, TLS, or DNS. Parties can thus independently run the protocol’s verifi-
cation procedure, which determines an emblem’s security level by asserting the
existence of a valid chain of endorsements leading to a trusted party. [1]

The protocol has been modeled in Tamarin — a protocol verification tool used to
automatically prove (or disprove) security properties for a given protocol model [2]
— and a prototype has been implemented in Go. [3]

In this thesis, we formally verify the verification component of the ADEM codebase.
That is, we verify memory safety (e.g. that there are no null-pointer dereferences),
crash safety (e.g. no division by zero), and data race freedom of the implementa-
tion. Then, we use the methodology presented in [4], dubbed Tamigloo, to show
that the implementation is a refinement of the aforementioned Tamarin model.
That is, the implementation inherits all security properties shown to be provided
by the protocol’s model.
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2 1. Introduction

Normally, Tamigloo shows a refinement by associating permissions with I/O oper-
ations: A protocol role can only perform a particular I/O operation when it holds
the required permissions. Until now, these I/O operations have been understood
to be network operations. However, in our case, the component under analysis
receives its input from and sends its output to the command line. To that end,
we assume that parts of the program’s command line input, that is, the emblem
and endorsements, are provided by the adversary and thus correspond to I/O
operations. We make further assumptions regarding the communication between
protocol parties, which are outlined in Sec. 4.2.1.

We evaluate the effectiveness and efficiency of our analysis. This includes collect-
ing and evaluating verification time measurements, reasoning about the overhead
in terms of lines of code introduced by formal code verification, and a depiction of
our experience using Gobra and Tamigloo, including a summary of found bugs.
We conclude that Tamigloo provides a way to bridge the gap between a highly
abstract, formal model of a protocol and its concrete implementation. However,
the approach is highly non-trivial and requires a deep understanding of both the
model and the code. To illustrate, the model needed to be iterated multiple times
until we could successfully relate it to the implementation. In our opinion, this
reflects a discrepancy in the abstraction of a protocol model and the complexities
of its real-world code implementation.

To summarize, we present the following contributions. First, as is standard, we
verify the memory safety of the implementation. Second, we show that it is a
refinement of the protocol’s model, written in Tamarin, using the approach outlined
in [4]. To apply the approach to our purposes, we make assumptions regarding the
format of I/O operations and the communication between protocol parties. Finally,
we evaluate our analysis and summarize our findings.

1.1 Outline

We proceed as follows. First, we summarize the required background knowledge
to understand the results presented in this thesis (ch. 2). Next, we present our
work and results relating to the safety verification (ch. 3) and refinement proof
(ch. 4) of the implementation. Finally, we describe our evaluation (ch. ??) and
conclusions (ch. 6), including suggestions for future work.



Chapter 2

Background

In this section, we present background on the ADEM protocol, and on used tools
and methodologies.

2.1 An Authentic Digital Emblem

In ADEM a digital emblem marks a set of assets as protected. On a technical level,
an emblem is a signed JSON Web Token (JWT). A JWT is an encoding of claims
as a JSON object that is used as the payload of a JSON Web Signature (JWS)
or as the plaintext of a JSON Web Encryption (JWE). [6] An emblem, or, more
specifically, the public key used to create the emblem’s signature, can be endorsed.
An endorsement is used by party P1 to attest that a particular public key K
belongs to party P2 and that P2 may signal protection under IHL. Furthermore,
an endorsement may introduce constraints regarding the issued emblems. For
example, an endorsement can constrain the lifetime of an issued emblem or only
allow a single website to be protected.

Note that, technically, a party can endorse itself. Such internal endorsements
could, for example, be used to maintain more fine-grained control over which keys
are used to protect which assets. A chain of internal endorsements eventually
ends in a public key that is not further internally endorsed. Such a public key is
called a root key. To provide accountability, a party can commit to a root key by
encoding it as a Web PKI certificate and successfully submitting the certificate to
Certificate Transparency (CT) logs. The certificate is signed by standard certificate
authorities. The root key itself might still be endorsed by other parties. It is
expected that most verifiers will only accept emblems endorsed by parties they
trust. That is, there is a valid chain of endorsements, starting at the emblem,
possibly including an endorsement of the Protected Party (PP)’s root key, and
ending in the root key of a trusted party.

An agent that wishes to attack lawful targets will pay attention if an asset presents

3



4 2. Background

a digital emblem to determine its protection status under IHL. We call such agents
verifiers.

The verification of an emblem, and possibly an accompanying set of endorsements,
returns a set of security levels. Depending on what additional information is
available to a verifier, they may require varying levels of security to deem an
emblem trustworthy. However, it is expected that in practice most verifiers will only
accept emblems with the security level endorsed-trusted, which is returned only if
there is a valid chain of endorsements ending in the root key of a party trusted
by the verifier. The chain of endorsements cannot have any arbitrary shape: An
emblem lists an issuing PP whose root key was, possibly indirectly through a chain
of internal endorsements, used to create the emblem’s signature, and only that
root key can be endorsed by other authorities.

ADEM defines the following three security requirements, the latter two of which
have been verified using the protocol verifier Tamarin [2].

(1) Covert inspection requires that an agent who wishes to verify whether an
asset is protected under IHL must be indistinguishable from agents who
interact with that asset for other purposes.

(2) Verifiable authenticity requires that agents must be able to correctly asso-
ciate emblems to the issuing PP and the respectively marked assets.

(3) Accountability requires that independent parties must be able to identify
misbehaving parties. For example, parties might misbehave by issuing
a fraudulent emblem, where a fraudulent emblem is to be understood as
marking an asset not protected under IHL, akin to the illicit display of a
physical red cross.

A prototype implementation of ADEM has been written in Go and can be found on
GitHub [3]. It includes components for emblem and endorsement generation and
verification, command line support, utilities for root key registration, and example
usage snippets.

2.2 ADEM implementation

In this section, we present a brief, high-level overview of the ADEM codebase, and
highlight some of its complexities.

The codebase is available open-source [3] and consists of 9 packages, 6 of which
are relevant to the verification procedure. We treat the VerifyTokens function
in pkg/vfy/vfy.go as the entry point for our verification. The function accepts
two arguments: a slice of byte slices where each byte slice represents a single
ADEM token, that is, an emblem or an endorsement, and a set of trusted signature
verification keys. Consider the file cmd/emblemcheck/main.go for an example of
how to use the function.
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Upon its invocation, the VerifyTokens function stores all trusted public keys in
the keyManager, a struct used to store and supply verified verification keys. Next,
VerifyTokens starts a goroutine for each byte slice by calling the vfyToken function,
giving each a reference to the keyManager and to a shared channel results, used
to communicate verification results.

In short, the vfyToken function parses a provided token into a JWT and verifies
its signature. Most of the parsing and signature verification is handled by a call
to jwt.Parse, which is provided by the external lesstrat-go/jws library. The
FetchKeys function in key_manager.go is invoked to provide the verification keys
used in the signature verification.

If the token encodes a root public key, FetchKeys verifies that a correspond-
ing, correctly-configured X.509 certificate is logged in the CT logs. Otherwise,
FetchKeys will check if a corresponding endorsement of the verification key has
been verified by another thread or if its verification key is contained in the set of
trusted keys. If no verification key is available at the time of invocation, the function
call will block until one becomes available. Only once these checks have been
performed will the FetchKeys return a verification key to the jwt.parse function.

There are two important observations we make here. First, this implementation
creates dependencies between threads: The verification of a token can only
proceed when the verification of the preceding token has successfully terminated,
or when its public key commitment has been verified. Second, we note that any
verified token is transitively endorsed either by a root key with a corresponding
public key commitment or by a trusted key.

If a JWT’s signature has been verified, it is stored in an ADEMToken struct, along
with its verification key and metadata. Finally, the struct, or an error in the case of
unsuccessful verification, is sent on the results channel.

After creating a goroutine for each byte slice, the results is used by the main
thread to collect verification results. For each verified endorsement, the endorsed
verification key is passed to the keyManager, allowing any waiting threads to
continue execution.

The main thread checks the metadata of each collected token and splits them into
endorsements and emblems. If it encounters multiple or no emblems, it terminates,
outputting security level INVALID.

Finally, it proceeds to determine the emblem’s security levels as described in
Sec. 2.1.

2.3 Gobra

To further increase confidence in the aforementioned ADEM implementation, in
particular the verification component, the implementation’s core components are
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1 requires acc(x) && acc(y)
2 ensures acc(x) && acc(y)
3 ensures val == *x + *y
4 func Sum(x *int , y *int) (val int) {
5 return *x + *y
6 }

Figure 2.1: Gobra code to verify a function Sum that returns the sum of the two values pointed to by
x and y.

formally verified. To that end, we make use of Gobra [7], a modular, deductive
program verifier for Go.

Gobra uses separation logic style field permissions [8]. In separation logic, field
permissions specify the heap locations that a statement or an expression may
access, enabling local reasoning about their effects on the heap. To that end,
separation logic introduces an assertion language, encoded in Gobra as acces-
sibility predicates. For example, acc(p) denotes permission to access a pointer
p. Gobra encodes annotated Go programs into the intermediate verification lan-
guage Viper. [9] Viper provides two verification backends, one based on symbolic
execution and one based on verification condition generation. By default, Go-
bra uses the former. Either way, both backends ultimately use the SMT solver
Z3 [10] to discharge proof obligations. Gobra supports many of Go’s language
features, including interfaces, structs, packages, and concurrent primitives such
as goroutines and channels.

In Gobra, we annotate functions with pre- and postconditions. If the function is
called in a state in which the precondition is satisfied, the postcondition must hold
after it returns. This is proven modularly by only once verifying that the function
body guarantees this. Consider the code in Fig. 2.1 for a simple example.

Gobra allows the verification of memory safety by verifying that there are sufficient
permissions for all heap accesses. This also implies crash safety and the absence
of data races. Afterward, user-provided specifications can be specified to verify
the functionality of the program. All of the previous points will be considered in the
verification of the ADEM codebase.

Next, we will briefly present how we can express permissions and invariants for
relevant language features such as channels, waitgroups, and locks.

2.3.1 Locks

The Go standard library enables locking with sync.Mutes. It provides the standard
operations associated with a mutex: Lock, TryLock, and Unlock. In Gobra, a mutex
must initialized with an invariant which is returned upon successfully acquiring
the lock. This allows us to, for example, model the memory access permissions
required for synchronized access to shared data.



2.3. Gobra 7

Consider the invariant in Fig. 2.2. It shows a simplified version of the lock in-
variant used to provide memory permission to shared data structures in the
keyManager. It is attached to a globally accessible lock upon initialization as
km.lock.SetInv(LockInv!<&km!>) and is inhaled after a km.lock.Lock() state-
ment.

1 pred LockInv(km *keyManager) {
2 acc(&km.keys) &&
3 acc(km.keys) &&
4 (forall k string :: k in km.keys ==> KeyMem(km.keys[k], k)) &&
5 acc(&km.listeners) &&
6 acc(km.listeners)
7 }

Figure 2.2: A simplified version of the invariant for the lock used to control shared access to the
keyManager. It encodes memory permissions to the two globally accessible maps km.keys and
km.listeners, and their elements.

2.3.2 Channels

The Go language provides another synchronization mechanism with channels,
which allow the sending and receiving of values between threads. Channels can
be buffered or unbuffered, and a channel can have multiple senders or receivers.

In Gobra, a channel is initialized with two invariants. First, a predicate of type
pred(T), where T is the type of the value sent on the channel. If a sender wishes to
send a value v, an instance of pred(t) is exhaled at the sending site. An identical
instance is inhaled at the receiver site. Second, a complementary predicate with
arity zero. It is exhaled at the receiving site and inhaled at the sending site.

The channel initialization of a channel c returns permissions c.SendChannel()

and c.ReceiveChannel(), read fractions of which must be held in order to send
to or receive from c, respectively. To close a channel, full write permission to
c.SendChannel() must be exhaled.

The predicate in Fig. 2.3 shows the send invariant used in the NewPromise function,
which returns a new instance of type Promise. The Init statement in line 3
initializes the channel p.ch correspondingly, with PredTrue as the receive invariant.

2.3.3 Waitgroups

sync.WaitGroup, also included in the Go standard library, provides a mechanism
to wait for a collection of goroutines to finish. For a waitgroup wg, the size of
the collection is specified by calling wg.Add(n) for some integer n. wg.Done()

decrements the counter by one, and wg.Wait() blocks until the counter reaches
zero.
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1 func NewPromise () Promise {
2 p := promise{ch: make(chan jwk.Key , 1)}
3 p.ch.Init(SendInv!<_!>, PredTrue !<!>)
4 ...
5 return &p
6 }

7 pred SendInv(val jwk.Key) {
8 acc(val.Mem(), _)
9 }

Figure 2.3: The predicate SendInv is specified as the send invariant of the channel underlying
the Promise interface. It encodes a read fraction of the memory permission of a value of type
jwk.Key.

In Gobra, a waitgroup, similar to locks and channels, must be initialized. An
initialization statement wg.Init() returns a permission wg.WaitGroupP(), which
is required to perform any Wait or Add operations. An add statement wg.Add(n)
returns n instances of a wg.UnitDebt(PredTrue!<!>) predicate, one instance of
which is consumed in the precondition of wg.Done().

Furthermore, Gobra allows for more complex definitions of UnitDebt(P) predicates
(Fig. 2.4). In rough terms, a goroutine must first pay its debt by providing an
instance of P along with UnitDebt(P). The two predicates are consumed in the
precondition of wg.PayDebt(). In return, an instance of UnitDebt(PredTrue!<!>)
is produced, allowing for the goroutine to call wg.Done(). Along with the more
complex debt predicate, a token predicate Token(P) may be generated. These
are exchanged for instances of P in the postcondition of wg.Wait().

1 km.init.Init()
2 km.init.Add(numThreads , 1/2, PredTrue !<!>)
3 invariant 0 <= i && i <= numThreads
4 invariant acc(km.init.WaitGroupP (), 1/2) && !km.init.WaitMode ()
5 invariant acc(km.init.UnitDebt(PredTrue!<!>), numThreads - i)
6 invariant acc(km.init.UnitDebt(WaitInv!<!>), perm(i))
7 && acc(km.init.Token(WaitInv!<!>), perm(i))
8 for i := 0; i < numThreads; i++ {
9 km.init.GenerateTokenAndDebt(WaitInv!<!>)

10 }
11 km.init.Start (1/2, WaitInv!<!>)
12 km.init.SetWaitMode (1/2, 1/2)

Figure 2.4: The km.init waitgroup is used to ensure that all signature verification threads
(Sec. 2.2) have obtained a jwk.Key promise before VerifyTokens begins to collect results. It is
initialized to a counter of numThreads. For each thread, we generate an instance of UnitDebt(P)
and Token(P), where P is set to the WaitInv predicate.

2.4 Tamarin

The ADEM protocol has been modeled using the protocol verifier Tamarin [2].
Tamarin is a protocol verification tool used to automatically prove (or disprove)
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trace-based security properties for a given model. A Tamarin model is represented
as a multiset rewriting system (MRS) consisting of rules and an equational theory.
The rules typically represent the steps taken by a protocol participant or the
attacker, and the equational theory encodes message semantics.

Protocol messages are modeled as ground instances of terms from a term algebra
T = TΣ(N ∪ V). T is built over a signature Σ of function symbols, a set of fresh
and public names N , and a set of variables V . That is, cryptographic messages
M are elements of T without any variables. Terms are given semantic meaning
with an equational theory E, where we denote equality modulo E by =E.

Facts are atomic predicates applied to message terms, modeling partial state.
They are constructed over a fact signature Σ f acts = Σlin ⊎ Σper, partitioned into
linear, single-use facts, and persistent facts.

A MRS R consists of rewriting rules l a−→ r which act on the global protocol state
S , that is, on multisets of ground facts. A rule is applicable if l ⊆m S , where ⊆m

expresses the subset relation on multisets, and updates the protocol’s state by
removing any linear facts in l from S and adding any facts in r. Facts in a are
called actions and constitute the modeled protocol’s state, labeling a sequence of
transitions.

A MRS R together with an equational theory E constitutes a labeled transition
system (LTS) acting on the global protocol state S , starting from the empty state
[]. maybe add an example? Should I

also introduce In, Out and Fr facts, or
maybe just more notation in general?





Chapter 3

Safety Verification

The goal of this thesis is to build confidence in the ADEM codebase by formally
verifying its verification component. As is standard, we first establish memory
safety before proving functional properties.

In this chapter, we start by explaining what safety verification entails and its rel-
evance to the implementation of security protocols. We’ve given a high-level
overview of the ADEM codebase and highlighted some of its complexities in
Sec. 2.2. Here, we delve deeper and provide in-depth descriptions of techni-
cal details and challenges of the performed safety verification.

Proving a program’s memory safety shows that memory accesses are valid thus
preventing issues such as buffer overflows, race conditions, and other memory-
related bugs. It is distinct from functional verification which reasons about a
program’s correctness in the context of a user-provided specification. Note, how-
ever, that functional properties may often be necessary to prove memory safety,
for example, to show that array accesses are within bounds.

In the context of security protocol implementations, memory safety verification is
paramount. Memory-related bugs in security protocol implementations can lead
to severe vulnerabilities, as was showcased, for instance, by the infamous Heart-
bleed vulnerability in the OpenSSL library. [11] Despite their notoriety, memory
safety vulnerabilities continue to be among the most prevalent known exploited
vulnerabilities, as illustrated by the CWE Top 10, which lists the most exploited
vulnerabilities. [12]

To illustrate how memory safety verification works in practice, consider the code
snippet in Fig. 3.1 which contains a trivial race condition.

The function foo starts 1000 goroutines, each of which increments the same
heap location by one. The goroutine’s implementation is in the function bar. The
increments of the shared variable counter are not synchronized in any way and
therefore may result in a race condition.

11



12 3. Safety Verification

1 func bar(counter *int) {
2 // Unsafe concurrent write access
3 *counter ++
4 }

5 func foo() {
6 counter := 0

7 for i := 0; i < 1000; i++ {
8 go bar(& counter)
9 }

10 }

Figure 3.1: A simple code snippet demonstrating improper synchronization: Multiple goroutines
may attempt to write to counter concurrently.

1 requires acc(counter)
2 func bar(counter *int) {
3 *counter ++
4 }

5 func foo() {
6 counter@ := 0

7 invariant acc(&counter , (1000 - i) / 1000)
8 for i := 0; i < 1000; i++ {
9 // precondition of call might not hold.

10 go bar(& counter)
11 }
12 }

Figure 3.2: Now annotated with memory access permissions, Gobra will tell us that the precondition
of bar may not hold. In this case, the permission to counter may not suffice.

We might annotate the code with permissions as shown in Fig. 3.2. We see
that bar requires write access permission to the counter variable through its
precondition. Gobra tells us that the call to bar may fail, as the permission to
counter may not suffice. While trivial, this example demonstrates how permissions
are a way of tracking ownership of heap locations, ensuring that either multiple
goroutines can concurrently read or a single one can write. This allows us to
effectively rule out data races.

3.1 Verification keys and promises

In Sec. 2.2, we describe that verification of an endorsement may block until a
preceding verification key becomes available. The codebase uses promises to
await verification of a particular key by another goroutine.

In programming, a promise is a structure that represents the eventual completion
of an asynchronous operation. Typically, a promise is in one of three states:
pending, fulfilled, or rejected. The Go standard library does not provide promises;
instead, an implementation is included in the codebase. Here, promises are
implemented on top of channels, providing the following three methods:
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• Fulfill: Fulfills the promise by sending a value of type jwk.Key and subse-
quently closing the channel.

• Reject: Rejects the promise by closing the channel without sending a value.

• Get: Awaits the completion of the promise by blocking on the underlying
channel. If the promise is fulfilled, the call receives a non-nil value v on the
channel. If the promise is rejected, it receives a nil value v. In either case,
Get unblocks and returns v.

Goroutines that are waiting to receive a particular verification key create a promise
and append it to a slice of promises in the keyManager, all of which are waiting for
that same key.

There are two complications to note in this setup. First, the same verification key
is sent to an arbitrary number of goroutines and each corresponding promise must
produce a non-zero fraction of that key’s access permission so that it may later
be used for signature verification. Second, the channel is closed after a single
send operation. Note that, as sending on a closed channel results in a panic,
closing a channel consumes full send permission to that channel. Consequently,
the Fulfill and Reject methods must require full send permission to the channel
as a precondition.

To resolve the first complication, we specify a wildcard permission, instead of a
full permission, to the sent value as a send invariant on the promise’s underlying
channel (Fig. 3.3). Access permissions to values of type jwk.Key are specified as
an abstract predicate Mem.

1 ensures res != nil && res.ProducerToken () && res.ConsumerToken ()
2 func NewPromise () (res Promise)

3 requires p.ProducerToken ()
4 requires acc(val.Mem(), _)
5 func (p *promise) Fulfill(val jwk.Key)

6 requires p.ProducerToken ()
7 func (p *promise) Reject ()

8 requires p.ConsumerToken ()
9 ensures res != nil ==> acc(res.Mem(), _)

10 func (p *promise) Get() (res jwk.Key)

Figure 3.3: Specifications for the functions to create, fulfill, reject and await (Get) a promise. We
omit the function bodies here for brevity.

We tackle the second complication by creating high-level predicates Producer-

Token and ConsumerToken that contain all necessary permissions to send and
receive on the channel, respectively. Consider the specifications in Fig. 3.3. An
instance of each predicate is created upon the instantiation of a promise. The
Fulfill and Reject methods require a ProducerToken in their precondition, while
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the Get method requires a ConsumerToken. Thereby, we ensure that no value is
ever sent on a promise’s closed channel.

Importantly, this implies that a sending goroutine requires full access to the
ProducerToken predicate. We achieve this by requiring that for any unresolved
promise in the keyManager, a corresponding ProducerToken must be available.
This is ensured by encoding corresponding permissions in the invariant associated
with the shared lock keyManager.lock. We do not need to do the same for
ConsumerToken predicates, as they are only ever held locally by threads that
created a corresponding promise.

3.2 Asynchronous token verification

An invocation of VerifyTokens starts n verification threads, one for each token in
its input. Each thread is in charge of verifying exactly one token. As mentioned in
Sec. 2.2, the verification results are communicated via the results channel, that
is, a channel with exactly n senders and a single receiver. The sent values are
structs of type VerificationResult, which has two fields: a field Token of type
*ADEMToken and a field err of type error. A non-nil err corresponds to a failed
verification. The main thread waits to receive exactly n results, after which it closes
results.

To send its verification result to the results channel, a goroutine requires a non-
zero fraction of the results.SendChannel() predicate, representing the permission
for being able to send on the channel. Having send permission to a channel
guarantees that sending on that channel does not panic. However, to close
the channel, the main thread requires full permission to that predicate and, thus,
needs to collect and combine each goroutine’s fractional predicate instance. As the
channel send operation is a verification thread’s final operation before terminating,
there is a priori no obvious way for the verification threads to transfer their send
permission fractions to the main thread.

To address this issue, one could adapt the specification of channels to allow
the transfer of the SendChannel predicate as part of its send invariant. However,
such an adaptation would be highly non-trivial and we decided to adopt another
approach.

We address this issue by introducing a waitgroup to explicitly reflect that the main
thread waits to receive a value from every goroutine before closing the channel.
By requiring that every thread sends exactly one result, and calls the waitgroup’s
Done method immediately after that send operation, that is, without any further
modifications of the shared state, we ensure that this waiting behavior is already
achieved by the channel receive operations. Therefore, the waitgroup does not
introduce any additional synchronization behavior and we can mark it as ghost.
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The waitgroup consumes a verification thread’s send permission fraction through
its UnitDebt debt predicate. Send permissions are wrapped in a high-level
predicate SendFraction, shown in Fig. 3.4. An instance of SendFraction must
be consumed by the waitgroup’s PayDebt method, producing an instance of
UnitDebt(PredTrue!<!>) before a thread can call Done (Fig. 3.5).

1 pred SendFraction(results chan *TokenVerificationResult , n int) {
2 0 < n && acc(results.SendChannel (), 1 / (2 * n))
3 }

Figure 3.4: The SendFraction predicate contains a channel send permission frac-
tion of size 1 / (2 * n), where n is the number of verification threads. A fraction
acc(results.SendChannel(), 1 / 2) is held by the main thread.

1 requires ...
2 requires SendFraction!<results , threadCount !>()
3 requires vfyWaitGroup.UnitDebt(SendFraction!<results , threadCount !>)
4 func vfyToken(
5 rawToken []byte ,
6 results chan *TokenVerificationResult ,
7 ghost vfyWaitGroup *sync.WaitGroup ,
8 ...
9 ) {

10 result@ := TokenVerificationResult {}
11 ...
12 unfold SendFraction!<results , threadCount !>()
13 results <- &result
14 fold SendFraction!<results , threadCount !>()
15 vfyWaitGroup.PayDebt(SendFraction!<results , threadCount !>)
16 vfyWaitGroup.Done()
17 }

Figure 3.5: A verification thread must provide its results send permission fraction to increment
the waitgroup’s counter.

Once the main thread has received n results, it calls vfyWaitGroup.Wait, passing
the sequence of all expected send fractions as an argument. Afterward, it will have
full send permission to the results channel and can therefore safely call close.

3.3 Global parsing constraints

In ADEM, a token, that is, an emblem or endorsement, is encoded as a JWS or,
in case the signature is omitted, as an unsigned JWT. [1][6] A payload consists
of registered and unregistered, that is, custom, claims. ADEM tokens are parsed
via the external lestrrat-go/jwx library, which is used throughout the project
to handle JWT-related functionality such as parsing and signature verification.
Custom JWT claim definitions are registered by calling the RegisterCustomField

function. Such a registration specifies that a claim name will be decoded as a
particular type. If a claim name cannot be decoded to its specified type, parsing
fails, thereby providing custom parsing behavior and type guarantees. Importantly,
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this has a global effect.

The tokens package, as part of its initialization logic, registers multiple custom
claim names. Therefore, thanks to the guarantees provided by the parsing, given
a parsed JWT token t and a custom claim name key, any later call to t.Get(key)

returns values of a particular type. Thus, we want to leverage this information for
verification, which requires us to keep track of which custom field maps to which
type and suitable specification stating that we obtain permissions for the value
returned by Get (Fig. 3.6).

1 jwt.RegisterCustomField("key", EmbeddedKey {})
2 ...
3 token , err := jwt.Parse(someBytes)
4 if err != nil {
5 return
6 }

7 if k, ok := token.Get("key"); ok {
8 key := k.( EmbeddedKey ).Key
9 }

Figure 3.6: An example usage of custom claims. ”key” is registered as a custom claim name with
type EmbeddedKey. Therefore, thanks to the guarantees provided by the successful parsing of the
bytestring someBytes, the type assertion k.(EmbeddedKey) will not trigger a panic.

In other words, throughout the program, we must propagate a correspondence
between claim names and types, and we must be able to correctly determine the
memory permissions to those claims. Note that it is possible to call t.Get(key)
multiple times for the same t and the same key. In addition, in some cases, the
ADEM implementation may require write permission to a value returned by Get and
distribute that value to multiple goroutines, thereby only retaining a fractional read
permission, but continue to use the underlying token, for example, in later Get
calls. Inspecting the library’s implementation reveals that multiple such calls even
return references to the same heap location. [13] This complicates permission
reasoning significantly. For example, a solution that simply provides a wildcard
read permission acc(v.Mem(), ) to a value v after a call to Get would not suffice.
We conclude that we must be able to represent the internal memory of a token.

We solved this problem by introducing a global map Custom as part of the library
stub. It maps a field name to an interface of type JwtClaim, enabling the expres-
sion of more complex memory permissions for concrete type implementations of
JwtClaim. The interface JwtClaim is empty except for a member pred Mem(), rep-
resenting the memory permission to a returned value. The map Custom is initially
empty and is modified by calls to the library’s RegisterCustomField function. The
function ensures a mapping from a field name to a type is stored as expected. We
propagate the constraints introduced during initialization as a pure ghost function
CustomFields (Fig. 3.7). Any later call to Get requires read permission to Custom

to ensure that the returned value has the same type as the value stored in Custom
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if the key is present in both the token and the map.

1 ghost
2 requires acc(f, _)
3 pure func CustomFields(f jwt.Fields) bool {
4 return (
5 domain(f) == set[string] {
6 "log", "key", "ass", "emb", "ver"
7 } &&
8 typeOf(f["log"]) == type [[]* LogConfig] &&
9 typeOf(f["key"]) == type[EmbeddedKey] &&

10 typeOf(f["ass"]) == type [[]* ident.AI] &&
11 typeOf(f["emb"]) == type[EmblemConstraints] &&
12 typeOf(f["ver"]) == type[string ])
13 }

Figure 3.7: The package initialization of tokens populates the jwx library’s Custom map.
We keep track of these mappings throughout the program by using the ghost pure function
CustomFields.

1 pred FieldMem(ghost fields dict[string]JwtClaim) {
2 forall k string :: { fields[k] } k in domain(fields)
3 ==> fields[k].Mem()
4 }

5 // JwtToken represents a generic JWT token.
6 type JwtToken interface {
7 pred Mem()

8 ghost
9 requires acc(Mem(), _)

10 decreases _
11 pure Values () (ghost r dict[string]JwtClaim)
12 ...
13 }

Figure 3.8: For a token t of type JwtToken token, we summarize its fields’ memory permissions
in a predicate instance FieldMem(t.Values()).

Due to the possibility of multiple, subsequent Get calls, we decided to omit any
memory permissions to the returned field value from the postcondition of Get.
Instead, we opted to keep these separate in a FieldMem predicate, allowing more
fine-grained and transparent memory permission specification. We couple the
FieldMem predicate to a token by introducing another ghost pure function Values(),
which returns a mathematical map of the fields stored in the token, as shown in
the code snippet in Fig. 3.8. An instance of a FieldMem predicate is returned when
a token is first instantiated by jwt.Parse.

3.4 Set iteration

The VerifyTokens function accepts a set of trusted keys of type jwk.Set as its
second input argument. jwk.Set is, as the name implies, a set-like datastruc-
ture that stores values of type jwk.Key. jwk.Set offers standard insertion and
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lookup functionality in addition to a method Keys, which returns an iterator of type
arrayiter.Iterator over the set’s elements.

At this point, it is important to note two things. First, both the lookup operation and
the set iteration return references to the stored keys. The permission to access
the heap location referenced by a value of type jwk.Key is represented by an
abstract, high-level predicate Mem(). Second, the described operations can be
arbitrarily interleaved. In particular, it is possible to create multiple set iterators at
a time. Therefore, we need to be able to reason about access permissions of a
set’s elements in the presence of such interleavings where multiple references to
the same heap location may exist simultaneously.

Similar to the problem presented in Sec. 3.3, this leaves us with a situation in
which a naive solution, such as providing a wildcard read permission to each
iterated key, would not suffice.

To that end, we introduced two proof utilities to the Iterator interface: A pure
method GetIterSeq, which returns a mathematical list representing the sequence
of elements that are iterated, and a pure method Index, which returns an index
into the sequence returned by GetIterSeq. In addition, we add a pure ghost
function Elems() to the jwk.Set interface, which returns a mathematical sequence
representing the contents of the set. This allows us to constrain the elements of
an iterator created by a call to s.Keys(), for s of type jwk.Set, to be equal to the
elements in s.

In addition, we wrap access permissions to the keys in a set s in a predicate
KeySeq(s.Elems()). That is, the memory permissions to the set’s keys are con-
tained in KeySeq, while the methods of jwk.Set and arrayiter.Iterator only
return information that a key is contained in the sequences returned by Elems()

resp. GetIterSeq() (Fig. 3.9).

3.5 Validation constraints

After all signatures have been verified and the tokens collected, VerifyTokens
splits the tokens into endorsements and emblems, and discards any that do not fit
in either category. Before determining an emblem’s security levels, each token is
validated against a set of constraints, differing depending on whether the token is
an endorsement or an emblem. This ensures that a token’s payload constitutes
a valid ADEM token. For example, an emblem’s payload is required to include
the ”ass” claim, which lists the asset identifiers that are marked as protected.
Any tokens that fail the validation check are discarded. Naturally, any knowledge
acquired as a result of a successful token validation is later propagated through
the proof.

Similarly to the FetchKeys method described in Sec. 3.1, the constraint val-
idation is handled by implementing the jwt.Validator interface, once as an
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1 // Set represents JWKS object , a collection of jwk.Key objects.
2 type Set interface {
3 pred Mem()

4 ghost
5 requires acc(Mem(), _)
6 pure Elems() (r seq[Key])

7 requires acc(Mem(), _)
8 ensures res != nil && res.IterMem () &&
9 res.GetIterSeq () == Elems() && res.Index() == 0

10 Keys(context.Context , ghost p perm) (res KeyIterator)

11 ...
12 }

13 pred KeySeq(ghost keys seq[Key]) {
14 forall i int :: { keys[i].Mem() } 0 <= i && i < len(keys)
15 ==> keys[i].Mem()
16 }

Figure 3.9: We keep the keys’ memory permissions separate from set and iterator methods to
facilitate reasoning in the presence of arbitrary interleavings. They are wrapped in a predicate
KeySeq(s.Elems()), where s is a set of type jwk.Set.

EmblemValidator and once as an EndorsementValidator, and passing a corre-
sponding instance as a validation option, in this case to the jwt.Validate function.

We extend the Validator interface by a predicate Constraints(jwt.Token). A
successful execution of jwt.Validate returns an instance of the predicate for the
validated token (Fig. 3.10). Unfolding the predicate provides us with the necessary
constraints to verify the safety of the code snippet in Fig. 3.11.

1 pred (EmblemValidator) Constraints(t jwt.Token) {
2 ...
3 t.Contains("ver") &&
4 t.Values ()["ver"] == string(consts.V1)a &&
5 t.Contains("ass")
6 }

Figure 3.10: The implementation of the Constraints predicate for the EmblemValidator.
jwt.Validate returns an instance of this predicate as a postcondition if the validation of an
emblem succeeds.

1 if err := jwt.Validate(
2 emblem.Token , jwt.WithValidator(EmblemValidator)
3 ); err != nil {
4 return ResultInvalid ()
5 }
6 ass , _ := emblem.Token.Get("ass")
7 protected = ass .([]*AI)

Figure 3.11: After validating a token, we provably know that the custom key ”ass” is contained in the
token’s payload and that it is of type AI. Therefore, the call Get("ass") is guaranteed to succeed
and return a value of type AI.
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3.6 Summary

To summarize, we proved memory safety for the verification component of the
ADEM codebase. That is, we showed memory safety (e.g. that there are no
null-pointer dereferences), crash safety (e.g. no division by zero), and data race
freedom of the implementation.

Besides the soundness of the program verifier, our proofs rely on the correctness
of the dependencies’ specifications as we do not verify the dependencies. We
mitigate this assumption by inspecting the dependencies’ implementation.

In addition, we do not guarantee that the implementation terminates as we proved
partial correctness. That is, if the program terminates, it will satisfy the post-
condition. The reason we do not show termination is, among other reasons, a
consequence of the frequent use of channels: Gobra currently does not support
verifying that a channel send or receive operation terminates.



Chapter 4

Functional Verification

In this chapter, we build on the memory safety verification presented in chapter 3
to verify functional properties about ADEM’s verification component. We begin by
briefly explaining what functional verification is, and how it relates to the verification
of security properties in protocols and ADEM in particular. Then, we provide more
details on Tamigloo [4] and describe in depth how we applied it to ADEM. We
then proceed to highlight some of the main challenges we encountered, and
how we solved them. Finally, we summarize what we proved, and under which
assumptions.

Functional verification, complementary to memory safety verification, reasons
about a program’s properties, which are typically expressed as a user-provided
specification. That is, it is the verification of the program’s intended functionality.
In the context of security protocols, this means verifying that an implementation is
faithful to the underlying protocol and provides the desired security properties.

Arquint et al. [14] present a trace-based approach by modeling a global trace of
the protocol execution. Security properties are expressed as invariants on the
global trace. This methodology allows the verification of security properties directly
at the level of the implementation. However, we deemed this approach impractical
in our case, as an abstract model and its desired security properties already exist.

Alternatively, Arquint et al. [4] present a methodology to bridge the gap between
an abstract security model and its implementation. The methodology is commonly
dubbed Tamigloo. For convenience, we use that name here.

Tamigloo extracts a specification of I/O operations from a given Tamarin model.
Proving that an implementation satisfies this specification guarantees that the
implementation performs only the I/O operations specified by the Tamarin model.
An implementation that satisfies the I/O specification is a refinement of the Tamarin
model in terms of trace inclusion and, therefore, inherits any trace property shown
to hold for the model. [4] In particular, it inherits security properties such as
authenticity and accountability.

21
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The latter approach comes with several advantages over the former. First, it
requires the expression of strong enough invariants that it is possible to verify
security properties. Finding such invariants is non-trivial. Tools like Tamarin
do not require such invariants, as they explore all possible traces. Second, the
ADEM protocol and its security properties have been modeled in Tamarin. Finally,
Tamigloo gives us clear proof obligations under which the properties proven in
Tamarin carry over to the implementation.

Therefore, we adopt the methodology presented in [4] to prove that the ADEM

implementation is a refinement of the Tamarin model.

4.1 Tamigloo

Here, we present the required background on I/O specifications as presented by
Penninckx et al. [15], the transformation steps performed by Tamigloo to obtain an
I/O specification, and the verification of the adherence to an I/O specification.

4.1.1 I/O specifications

Penninckx et al. [15] present the idea of an I/O specification. Each I/O operation
is associated with an I/O permission which it consumes as its precondition. Nec-
essary I/O permissions are granted by an I/O specification which is inhaled as the
precondition of a program’s main function.

More concretely, an I/O operation io requires an abstract predicate io(p1, v̄, w̄, p2),
expressing the permission to execute io with outputs v̄ and inputs w̄. The operation
io is said to move a token from a place p1 to another place p2, encoded as the
consumption of the abstract predicate token(p1) and production of token(p2).
The movement of the token induces an ordering of I/O permissions and therefore
of permitted I/O operations.

In addition to I/O permissions, it is possible to include permissions for internal
operations, that is, operations that do not have an observable I/O effect but change
the internal state of a protocol participant. This can be used to enforce particular
internal operations between I/O operations.

An I/O specification is encoded as the separating conjunction of I/O and internal
permissions with the same source place, thereby allowing for a non-deterministic
choice between permissions. Each permission co-recursively produces an up-
dated version of the I/O specification, thereby allowing non-terminating sequences
of I/O operations.

4.1.2 Model constraints

Tamigloo generates a set of I/O specifications, one for each protocol role, from a
Tamarin protocol model by successively applying multiple transformation steps.
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First, the model’s multiset rewriting system (MRS) is decomposed into several
component models, one for each role and one for the environment, thereby
moving from a global view of the protocol to a local view of each role. Next,
each component model is transformed into an I/O specification, expressing the
permitted I/O and internal operations for this particular component, and encoded
according to the syntax of a particular program verifier.

To enable these transformation steps, Tamigloo makes multiple formatting assump-
tions on the Tamarin model. We highlight those relevant to our purposes here and
refer to the original publication for details. [4]

First, for an n-role protocol, the model’s fact signature must consist of mutually
disjoint sets of action facts, environment facts, and each role i’s state facts.

Σ f acts = Σact ⊎ Σenv ⊎ (
⊎

1≤i≤n

Σi
state)

where Σenv contains two disjoint subsets Σin and Σout of input and output fact
symbols, and Σin contains an initialization fact symbol Setupi for each role i.

Next, the MRS R must consist of pairwise disjoint rule sets of environment and
protocol rules:

R = Renv ⊎ (
⊎

1≤i≤n

Ri)

For all rules l a−→ r ∈ Renv, agents’ internal states may not be directly used,
that is, f acts(l ∪ r) ⊆ Σenv. Furthermore, protocol rules must use input and
output facts to communicate with the environment. That is, for all l a−→ r ∈ Ri,
f acts(l) ⊆ Σi

state ∪ Σin and f acts(r) ⊆ Σi
state ∪ Σout. In addition, at least one

state fact must appear in r, and the first ki ≥ 1 arguments of all state facts must
be the same, representing the parameters of the run of the protocol role. In our
case, the latter restriction is limited to the inclusion of a fresh thread identifier rid
as the first argument of all state facts.

A Tamarin model adhering to these constraints is transformed and decomposed to
obtain MRS Re

env for the environment and Ri
role for each protocol role i. We refer

the reader to the original publication for the details of the transformation steps.

For each protocol role i, an I/O specification ψi is extracted from Ri
role:

ψi(rid) = ∃p.token(p) ⋆ Pi(p, rid, [])

where rid is the run identifier, denoting the identifier of a particular role’s instance,
p is some starting place, and the model state is initialized to the empty multiset.
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For each rewrite rule R ∈ Ri
role, an application of R to the model state S is encoded

as a formula φR. It provides the permission R(p, . . . , p′), which a program must
hold to execute the internal or I/O operation R. Pi is defined as the separating
conjunction over all φR for R ∈ Ri

role:

Pi(p, rid, S) = ⋆R∈Ri
role

φR(p, rid, S)

φR co-recursively provides Pi(p′, rid, S′) with target place p′ and updated state
S′.

An I/O specification ψi can be encoded into any program verifier that supports sep-
aration logic and abstract predicates. We provide a sample of an I/O specification
for Gobra in App. A.1.

4.1.3 Term-level representation

Tamarin (Sec. 2.4) and an I/O specification ψi operate on message terms m ∈
M, which are ground instances of terms, while the code operates on concrete
messages from bytestring algebras B. Tamigloo bridges this gap through the
use of a surjective homomorphism γ : M → B. Importantly, note that γ is not
injective. This makes reasoning that a particular term m ∈ M matches a pattern
t ∈ T more challenging.

For example, through successive internal parsing operations, we may find that
a concrete value γ(m) equals a concrete instance of the pattern γ(tσ). As γ is
not injective, this does not imply that m = tσ. Therefore, we cannot immediately
conclude that a rewriting rule operating on t is applicable.

The pattern requirement for a pattern t ∈ T expresses that instances of top-level
protocol messages we receive and parse have unique term representations, that
is, no two terms concretize to the same byte-level representations:

γ(tσ) = γ(m) ⇒ ∃σ′. m =E tσ′

Arquint et al. [4] show that image disjointness and pattern injectivity for a pattern t
imply its pattern requirement.

4.2 Tamarin model

The ADEM paper [1] formalizes the ADEM protocol in the Tamarin protocol verifier.
We provide a brief overview here of the original model.

The author models the protocol participants as certificate authorities (CAs), CT logs,
authorities, and PPs. The protocol consists of two phases. The aforementioned
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protocol participants run the first phase of the protocol: domain and subdomain
names are non-deterministically assigned to parties with corresponding Transport
Layer Security (TLS) keys and certificates, and ADEM parties request any necessary
Web PKI certificates to commit to their root keys. In a second phase, a verifier,
corresponding to the component we analyze in this work, receives an emblem
and a set of endorsements, and verifies them as described in Sec. 2.1. The
endorsements are received in a non-deterministic loop, corresponding to an
arbitrary number of iterations, thereby letting Tamarin exhaustively inspect all
possible sets of endorsements.

The model includes lemmas to prove the executability of the model, and authentica-
tion and accountability security properties as defined in the ADEM paper. To enable
the automation of the proofs of the specified properties, the model employs several
abstractions. Importantly, the model neither includes internal endorsements —
instead assuming that the organizational root endorsement directly endorses the
emblem — nor endorsement constraints.

4.2.1 Changes to the model

To prove that the verifier implementation is a refinement of the Tamarin model
using Tamigloo, we modified the Tamarin model in multiple ways. We report
next on the particular modifications and the reasons why these modifications are
necessary.

Output operations

To be able to apply Tamigloo in a meaningful way, we require that the output
operations performed by the implementation, that is, the output of achieved security
levels to the console, are reflected in the Tamarin model. To that end, we modify
the model such that its rewriting rules produce Out facts for all achieved security
levels (Fig. 4.1).

Syntax constraints

We ensured that the model is compatible with the syntactic constraints presented
in Sec. 4.1.2. This involved the introduction of state facts and corresponding setup
rules. As we limit our analysis to the verifier component of the implementation,
we did not introduce roles for parties involved in the first phase of the protocol,
that is, CAs, CT logs, authorities, and PPs. Instead, we consider the corresponding
rewriting rules to be part of the environment.

Concurrent token verification

Recall from Sec. 4.1.1 that the I/O permissions’ place arguments induce an
ordering of permitted I/O operations. While the original paper by Penninckx et al.
also introduces split and join operators to enable concurrent operations, it is not
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clear how one would extract an I/O specification with concurrency from a Tamarin
model. Thus, Tamigloo emits a sequential I/O specification.

As described in Sec. 3.2, the implementation performs the tokens’ signature
verification in parallel. Importantly, each thread may need to perform multiple
network requests to verify root key commitments. In Tamarin, these network
requests are modeled as multiple In facts, consumed by a single rewriting rule.

A sequential I/O specification can be used for a concurrent program if it is shared
among the threads, for example, via a concurrency primitive, or if we assume that
I/O operations happen atomically via a shared region. Both require however that an
invariant can be specified about the I/O specification and its corresponding model
state. As previously described, a thread may perform multiple I/O operations before
re-establishing a model state. In other words, before being able to reestablish
any invariant on the model state, a thread must go through multiple transitions.
Therefore, to maintain an invariant on the model state, the threads’ sequences of
network operations must conceptually be modeled as critical sections.

To model this requirement, a synchronization primitive must be introduced. There
are two options. First, one could introduce a lock, thereby modifying the code’s
runtime behavior. Alternatively, one could introduce a ghost lock. However, this
requires that we prove that its erasure does not influence the code’s execution,
that is, the ghost lock’s critical section is performed atomically. In this case, we
could conclude that the ghost lock does not remove possible thread interleavings
that could occur at runtime.

Regarding the latter option, it is not trivial to show that the introduction of such a
primitive would preserve the program’s behavior, as the threads perform network
I/O in parallel.

Instead, we modify the Tamarin model to reflect this parallelism directly in the
model. We introduced two protocol roles TokenVerifier and Verifier, which
model the asynchronous token signature verification and security level validation,
respectively. The Verifier role sends a token t to the TokenVerifier role by
producing a PermitTokenVerification(t) fact. We associate multiple rules with
the TokenVerifier role, one for each valid token pattern, explained in more detail
in Sec. 4.5. A rule consumes a PermitTokenVerification(t) and produces a
ValidTokenOut(t) fact. The validity of the token’s signature, and its public key
commitment in the case of a root endorsement, are enforced via action labels and
corresponding restrictions.

The communication between the two roles is modeled as a secure channel provid-
ing authenticity and confidentiality. That is, we assume that the memory in which
the byte slice passed as the first argument to vfyToken and the values sent to the
results channel are stored provides confidentiality and authenticity.
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Unbounded loops

While the previously described model accepts one valid emblem, one valid orga-
nizational root endorsement, and an arbitrary number of valid authority endorse-
ments as inputs, the implementation’s VerifyTokens function is called with an
arbitrary number of byte slices, each representing an input token, as described in
Sec. 2.2. Passing an input byte slice t as an argument to the vfyToken function
requires a corresponding I/O permission PermitTokenVerification(t), as this
corresponds to communication between the two protocol roles TokenVerifier and
Verifier. Such a permission can only be obtained by first applying a correspond-
ing rewriting rule. That is, to ensure the implementation adheres to the model, we
included the reception of an arbitrary number of byte slices in the MRS described
by Verifier (Sec. 4.1) as an unbounded, non-deterministic loop.

Similarly, the aforementioned abstraction of internal endorsements needed to
be dropped to relate the model to the implementation. Consider the rule in
Fig. 4.1, which produces an output fact for each of the security levels SIGNED and
ORGANIZATIONAL. Note that the ValidTokenIn(root) and ValidTokenIn(emblem)

facts are symbolically related by intKey and oi, representing the fact that root is
an organizational endorsement of the emblem. We cannot relate the term-level
representations of the root and emblem tokens in the implementation’s specifica-
tion, as the implementation must account for an internal endorsement chain of
arbitrary length. That is, the root and emblem tokens’ term-level representations
are related by a chain of ValidTokenIn facts of arbitrary length. To address this
issue, we included this internal endorsement chain in the model as an unbounded,
non-deterministic loop.

1 rule OrganizationalEmblem:
2 let emblem = <intKey , ai, oi>
3 root = <orgKey , intKey , oi> in
4 [ ValidTokenIn(root), ValidTokenIn(emblem) ]
5 -->
6 [ Out(<’SIGNED ’, ai >), Out(<’ORGANIZATIONAL ’, ai, oi >) ]

Figure 4.1: The rule OrganizationalEmblem consumes two ValidTokenIn facts: one for
an emblem, signed with an internal organizational key intKey, and one for a corresponding
organizational root endorsement of the intKey. We display a simplified version of the rule here.
For example, we omit any action labels or state facts.

4.3 I/O permissions

Typically, I/O operations in Tamigloo are understood to be network operations.
However, in our case, the implementation does not perform network requests
beyond those needed to verify root key commitments. It receives its input directly
as its command line argument and outputs the verification results as its return
value. To enable the application of Tamigloo to our case, we assume that parts
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of the program’s command line input, that is, the list of byte-encoded tokens,
are provided by the adversary and thus correspond to inputs from the untrusted
network. We reason that this is a valid assumption, as a user of the verifier
implementation typically obtains its set of input tokens via the network.

Together with the communication between the TokenVerifier and Verifier roles,
we must therefore provide specifications for command line send and receive
operations, and for the I/O operations between the VerifyTokens and the vfyToken

function.

Recall that vfyToken goroutines are started in a loop, iterating over the input byte
slices. Consider the rewriting rule in Fig. 4.2. To encode that a byte slice supplied
as an argument to vfyToken must first be received from the command line, we
require a corresponding PermitTokenVerification permission. We apply the rule
ReceiveToken in the loop body, thereby obtaining the required output facts. Note
that without a PermitTokenVerification fact, none of the rewriting rules of the
TokenVerifier are applicable.

1 rule ReceiveToken:
2 [ St_Verifier_1(rid), In(t) ]
3 -->
4 [ St_Verifier_1(rid), PermitTokenVerification(t) ]

Figure 4.2: The ReceiveToken rule describes the reception of a byte-encoded token from the
environment. The output fact PermitTokenVerificationOut(t) is consumed as an input fact
by the TokenVerifier rule. The rule produces an identical state fact, allowing for the reception
of an arbitrary number of tokens.

To simulate the writing of a result to the command line, we provide trusted specifica-
tions of output functions for security levels SIGNED, ORGANIZATIONAL, and ENDORSED.
Consider the specification in Fig. 4.3. The function requires an I/O permission and
verifies that the arguments protected and iss correspond to permitted outputs ai

and oi. If the call is successful, it moves the token from p to p0. All three provided
specifications follow the same pattern.

The VerifyTokens function returns the achieved security levels as a slice and
therefore does not impose an ordering on any executed I/O operations. As an
I/O permission as required by the precondition of OrgOut is already bound to
a place p, VerifyTokens cannot produce them directly. Instead, it returns the
I/O specification P Verifier(p, rid, S) such that S contains an output fact for
each achieved security level. The I/O specification provides nested predicates to
exchange the output fact for a corresponding I/O permission, bound to a place p.

Finally, sending or receiving a value to or from the results channel similarly
requires a corresponding I/O permission. To send a value, an e ValidTokenOut

permission must be held. We encode this requirement by wrapping the channel
send operation in a trusted function, consuming the permission in its precondition
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1 requires token(p) &&
2 e_OutFact(p, rid , (ORGANIZATIONAL, ai, oi)) &&
3 gamma(ai) == AbsAI(protected) && gamma(oi) == stringB(iss)
4 ensures err == nil ==> token(p0) &&
5 p0 == get_e_OutFact_placeDst(p, rid , (ORGANIZATIONAL, ai, oi))
6 func OrgOut(
7 protected []*AI, iss string , p Place , rid , ai, oi Term
8 ) (err error , p0 Place)

Figure 4.3: Trusted specification of output function OrgOut. AbsAI and stringB abstract a slice
of AI structs and a string to an element of B, respectively. The function consumes an I/O permission
and moves the token from p to p0.

(Fig. 4.4). We specify the channel receive operation in a complementary fashion,
consuming a ValidTokenIn permission in its precondition.

1 requires result.err == nil ==> e_ValidTokenOut(rid , p, t)
2 ...
3 func resultsSend(
4 results chan *TokenVerificationResult ,
5 result *TokenVerificationResult ,
6 ...,
7 ghost rid Term , p Place , t Term
8 ) {
9 results <- result

10 }

Figure 4.4: Specification of the channel send operation. Sending a (successful) verification result
from a vfyToken thread, implementing the TokenVerifier role, to the VerifyTokens thread,
implementing the Verifier role, requires an e ValidTokenOut permission.

4.4 Internal permissions

In this section, we present our work on the acquisition of permission for performing
internal operations in the ADEM implementation.

4.4.1 Arbitrary numbers of input facts

The function VerifyTokens receives n tokens, initially encoded as byte slices, as
its input. As described in Sec. 2.2, these n tokens are handled in multiple loops.
Importantly, after verifying the token signatures and validating the emblem resp.
endorsement constraints, the emblem’s security levels are determined across two
separate loops: the former to find the organizational root endorsement if it exists,
and the latter to find any authority endorsements.

If an organizational root endorsement with a valid root key commitment is found,
the implementation outputs security levels SIGNED and ORGANIZATIONAL. From
Sec. 4.3 we know that corresponding I/O permissions must be obtained. They can
be obtained from the IsOrganizationalEmblem, CollectInternalEndorsements
and CollectAuthorityEndorsements transitions in the I/O specification. Similarly,
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in order to output security level ENDORSED, corresponding I/O permissions must be
obtained by applying the IsEndorsedEmblem rule. Each of these rules requires a
ValidTokenIn(t) fact in order to be applicable, where t symbolically represents
an ADEM token, subject to specific pattern constraints.

The abstract term representation of each token along with, as discussed in
Sec. 4.3, a corresponding ValidTokenIn fact is produced by the receive oper-
ation on the results channel (Fig. 4.5).

1 unfold P_Verifier(p, rid , S)
2 unfold phiRF_Verifier_ValidTokenIn(p, rid , S)
3 assert e_ValidTokenIn(p, rid)
4 res , p, t := resultsRecv(results , p, rid)
5 S = S union mset[Fact] { ValidTokenIn_Verifier(rid , t) }
6 if result.err == nil {
7 assert Abs(res.token) == gamma(t)
8 tokens = append(tokens , result.token)
9 terms = terms ++ seq[Term] { t }

10 ...
11 }

Figure 4.5: A simplified version of the receive operation on the results channel in Verify-
Tokens. The operation is preceded by unfold statements to obtain the input fact required to
perform the receive operation. An abstract term is received in addition to a result, which is specified
to be an abstraction of the enclosed ADEM token if the signature verification was successful. As a
result of the resultsRecv operation, the ValidTokenIn Verifier fact is added to the state
multiset.

The terms are collected in a sequence terms such that terms[i] is the term-level
representation of the i-th received token. To apply the aforementioned rewriting
rules, we need to maintain an invariant on S such that a required I/O permission
ValidTokenIn is available. At this point, we must note two things. First, recall from
Sec. 4.1.3 that the elements of terms are not necessarily unique: the mapping from
concrete tokens to abstract terms is not injective. [4] Therefore, an invariant such
as ValidTokenIn Verifier(rid, t) in S will not suffice: we need to constrain
the facts’ multiplicities in S. Second, a token is never removed from tokens, even
after the corresponding input fact has been consumed. Therefore, an invariant
on S must also specify which input facts have been used and, more importantly,
which ones are available. Based on these observations, we write the invariant as
shown in Fig. 4.6. By constraining the elements in used, the invariant can thus be
used to reason about the presence of particular I/O permissions.

Unfortunately, applying this invariant to the codebase proved to be challenging:
due to limitations in the current axiomatization of sequences and multisets in
Gobra, in particular, in reasoning about their multiplicities, the verifier fails to
deduce that the invariant is maintained if an input fact is consumed and the
variable used is updated accordingly. (Fig. 4.7).

We were unable to circumvent this issue within a reasonable timeframe. Therefore,
we assume ValidTokenIn Verifier(rid, t) in s wherever needed. That is, we
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1 pure func InFacts(
2 rid Term ,
3 terms , used seq[Term],
4 S mset[Fact]
5 ) bool {
6 return forall i int :: 0 <= i && i < len(terms) ==> (
7 terms[i] # terms - terms[i] # used
8 <= ValidTokenIn_Verifier(rid , terms[i]) # S
9 )

10 }

Figure 4.6: The invariant on S, propagated throughout the program to specify the multiplicity of
available I/O permissions.

1 requires InFacts(rid , tokens , used , S)
2 requires t in tokens && !(t in used)
3 func InFactsExample(rid , t Term , S mset[Fact], tokens , used seq[Term]) {
4 assert ValidTokenIn_Verifier(rid , t) in S
5 S = S setminus mset[Fact] {ValidTokenIn_Verifier(rid , t)}
6 used = used ++ seq[Term] { t }

7 // fails
8 assert InFacts(rid , tokens , used , S)
9 }

Figure 4.7: A minimal example presenting the issue with trivial usage of the InFacts invariant.
Due to limitations in the Gobra program verifier, the final assertion cannot be proved.

assume that a rule never consumes the same token t, more specifically, the
same ValidTokenIn Verifier(rid, t) fact, twice. To see the soundness of this
assumption, we make three observations.

First, each token received from the results channel uniquely corresponds to a
byte-encoded token in the input. Therefore, each received token corresponds to a
distinct ADEMToken struct. Second, in any loop in which rewriting rules are applied,
the list of tokens is simply iterated for increasing indices. Therefore, no token is
consumed twice within a single loop. Third, in order for IsOrganizationalEmblem,
CollectInternalEndorsements or CollectAuthorityEndorsements to be applica-
ble, a token’s issuer, and subject if applicable, must be equal to the emblem’s
issuer. In order for IsEndorsedEmblem to be applicable, however, the token’s issuer
must be distinct from the emblem’s issuer. Therefore, a token can’t be consumed
twice across multiple loops, either.

In summary, a token is consumed at most once. Since, a token is only ever
received from the results channel along with a corresponding input fact, that is,
for any consumed token a corresponding input fact must be present.

4.4.2 Organizational endorsement chain

As described in Sec. 4.2.1, to obtain the I/O permissions for the security levels
SIGNED and ORGANIZATIONAL, we need to model the chain of internal endorsements,
leading from a root endorsement with a valid public key commitment to the emblem.
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Fig. 4.8 shows the rewriting rule describing the iteration over internal endorsements
in a non-deterministic loop. Note that the state fact St Verifier 3 is continuously
updated with a new endorsement key. The execution enters this loop by receiving
a valid root endorsement, issued by the same organization as the emblem, and
traverses the chain of internal endorsements until the key signing the emblem is
encountered. A transition out of the loop produces I/O permissions for the security
levels SIGNED and ORGANIZATIONAL.

1 rule CollectInternalEndorsements:
2 let endorsement = <key , oi, <’end’, oi, newKey >, sig >
3 in
4 [ St_Verifier_3(rid , oi, rootKey , key)
5 , ValidTokenIn(endorsement) ]
6 -->
7 [ St_Verifier_3(rid , oi, rootKey , newKey) ]

Figure 4.8: The rule CollectInternalEndorsements describes the non-deterministic loop
modeling an arbitrary-length chain of internal endorsements. The term rootKey is required to
receive authority endorsements in later states of the Verifier role.

To apply this rewriting rule for an endorsement at the implementation level, two
things are required: the term-level representation t of the endorsement along with
a corresponding ValidTokenIn fact, and that the signing key key in t matches the
corresponding term in the state fact. The latter implies that we require that the
endorsement is endorsed by the preceding endorsement, while the former requires
us to explicitly keep track of the endorsement in order to be able to retrieve t from
terms, the list of term-level representations of received ADEM tokens. Therefore,
we must explicitly model the entire chain of internal endorsements, and loop over
its members starting from the root endorsement.

We model the chain of internal endorsements as a sequence of values of type
*ADEMToken. We maintain the invariant that every element at index i of the se-
quence endorses the element at index i + 1, and require that the first element of
the chain to be the organizational root token and the final element is the emblem.

Unfortunately, maintaining the invariant proved challenging. We were unable
to formulate a specification such that the program verifier terminated within a
reasonable timeframe.

Therefore, we limited our analysis to the case of an internal endorsement chain of
length 1. That is, the emblem’s verification key is directly endorsed by the organi-
zational root endorsement. This assumption corresponds to marking the portion
of code responsible for identifying the root endorsement as trusted. A manual
inspection of the code provides us with confidence that this trust assumption holds
up.
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4.4.3 Library interfaces

As described in Sec. 4.2.1, the TokenVerifier role is implemented by the vfyToken

function. The function parses a byte slice as a JWS structure and verifies its
signature if one is included. If the signature verification was successful, the parsed
token is stored in an ADEMToken struct, which is then sent as a pointer to the
results channel.

To obtain the necessary I/O permission for sending on this channel, one of the
rewriting rules of the TokenVerifier role in the Tamarin model must be applied.
Which rule to apply depends on the term-level representation of the underlying
ADEM token, which is resolved by parsing the token. Independent of the particular
rule in question, a PermitTokenVerificationIn permission is consumed, and a
ValidTokenOut permission is produced. Note that the latter is the permission
required to send a value to results. In addition, most rules require that the token’s
signature is valid through corresponding action labels.

Normally, the constraints required to apply a particular rule would be collected
through the successive application of library functions. For example, one would
call a function to parse the aforementioned byte slice as a JWS structure, or another
function to verify a signature. However, most of this logic is implemented directly in
the jwt.Parse function provided by an external library. [13] Therefore, we encode
the state transitions directly in the pre- and postconditions of our manually written
specification of the library function. Note that this means we assume the function
works as documented.

4.5 Pattern requirements

As introduced in Sec. 4.1.3, we employ the surjective homomorphism γ : M → B
to relate terms to concrete bytestrings. It is encoded as an abstract function gamma

with the required totality and homomorphism constraints included as axioms. To
abstract in-memory objects, such as the ADEMToken structs on which our program
operates, to the bytestring algebra B, we employ a function Abs.

As described in Sec. 4.4.2, we maintain a slice of concrete ADEM tokens tokens

along with a corresponding sequence of abstract terms terms, such that Abs(tokens[i])
== gamma(term[i]) for all valid indices i.

The ADEM protocol model introduces six non-linear patterns for valid tokens,
induced by corresponding rewriting rules:

(1) unsigned emblems, which are valid emblems that are unsigned,

(2) anonymous emblems, which are signed emblems that do not specify an
organization identifier,

(3) signed emblems, which are signed emblems that do specify an organization
identifier,
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(4) organizational endorsements, which are endorsements that are issued by
the same organization as the key they endorse and do not specify a public
key commitment,

(5) root endorsements, which are endorsements that are issued by the same or-
ganization as the key they endorse, and do specify a public key commitment,
and

(6) authority endorsements, which are endorsements that endorse an organiza-
tion that is distinct from their issuer, and do specify a public key commitment.

We define Abs such that it maps a token to a corresponding pattern if one of the
above cases applies, and is left unspecified otherwise. Note that the listed cases
are mutually disjoint.

Due to prohibitive increases in verification time, we do not implement Abs as
a single pure function. Instead, we define multiple abstract functions, one for
each listed pattern. The functions’ preconditions check that a token token is
constrained correctly and provide corresponding patterns for Abs(token) in their
postconditions. Consider the function RootPattern in Fig. 4.9 for an example.

1 ghost
2 requires t.Headers.ContentType () == string(EndorsementCty) &&
3 t.Token.Contains("key") &&
4 t.Token.Issuer () != "" &&
5 t.Token.Contains("log") &&
6 t.Token.Subject () == t.Token.Issuer ()
7 ensures Abs(t) == tuple4B(
8 stringB(t.VerificationKey.KeyID ()),
9 stringB(t.Token.Issuer ()),

10 tuple3B(
11 rootEndB(),
12 stringB(t.Token.Subject ()),
13 stringB(t.Token.PureKeyID ())
14 ),
15 stringB("sig")
16 )
17 pure func RootPattern(t *ADEMToken)

Figure 4.9: The function RootPattern provides a concrete bytestring representation of an
organizational root endorsement t, assuming it matches the listed constraints. The functions
tuple4B and tuple3B return bytestring representations of tuples of length 4 and 3, respectively.
The function stringB returns the bytestring representation of the given string. Note while the
token’s signature is part of its term pattern, it is not stored in the ADEMToken structs, and therefore
we do not have access to their values, here. However, as the signature can be immediately deduced
from a verification key and the token’s body, we can safely omit it.

At this point, an application of a pattern requirement is necessary to constrain a
token’s term-level representation to match the correct term in the I/O specification.
To that end, we implemented the corresponding pattern requirements. Consider
Fig. 4.10 for an example.

Recall that ADEM tokens are represented as JavaScript object notation (JSON)
structures [16], encoded using UTF-8 [17]. Therefore, a token can unambiguously
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1 ghost
2 requires token(p) && P_Verifier(p, rid , S) && St_Verifier_2(rid) in S
3 requires gamma(t) == gamma(tuple4(
4 someRootKey ,
5 someOi ,
6 tuple3(
7 pubTerm(const_root_end_pub ()),
8 someOi ,
9 someEndorsedKey

10 ),
11 someSig ))
12 ensures token(p) && P_Verifier(p, rid , S) && St_Verifier_2(rid) in S
13 ensures t == tuple4(
14 rootkey ,
15 oi,
16 tuple3(pubTerm(const_root_end_pub ()), oi, endorsedkey),
17 sig)
18 func RootPaR(
19 t, rid , someRootKey , someOi , someEndorsedKey , someSig Term ,
20 s mset[Fact],
21 p Place
22 ) (rootkey , oi , endorsedkey , sig Term)

Figure 4.10: The pattern requirement for the organizational root endorsement pattern encodes
the implication that if a term t and ground instance of the organizational root endorsement pattern
coincide under γ (l.3), then t must also match some ground instance of the pattern (l.13).

be parsed. As the previously listed patterns are mutually exclusive, we conclude
that the mapping from a serialized ADEM token to a term representation is unam-
biguous. In combination with assumption 2 for cryptographic operations from the
Tamigloo paper, we argue that ADEM satisfies the pattern requirement.





Chapter 5

Discussion

In this section, we evaluate the effectiveness and efficiency of our analysis. We
begin by presenting verification time measurements and the overhead in terms
of lines of code introduced by the formal specification. Then, we depict our
experience using Gobra and Tamigloo, including a summary of found bugs, and
highlight some of the issues discussed in chapters 3 and 4. Finally, we discuss the
result relating to the security properties provided by the verified implementation.

5.1 Verification overhead

For each package, and for the entire codebase in total, table 5.1 lists the lines of
code (LOC), lines of specification (LOS), and functional verification and memory
verification times in seconds. The functional verification time was measured
for the entire specification as described in Ch. 4, while the memory verification
time was measured for the specification as described in Ch. 3, obtained by
removing any assertions, pre-, and postconditions that produced proof obligations
unrelated to memory safety verification. The ADEM code implementation consists
of 1326 lines of verified Go code. The verification amounted to 4329 lines of
specification, approximately 2000 of which are attributable to library stubs and the
I/O specification generated by Tamigloo.

We note a significant increase in verification time for the vfy package. While
this increase is roughly proportional to the LOC in the memory verification case,
we see that the difference becomes much more pronounced in the functional
verification case. As the majority of Tamigloo-related annotations are contained in
the vfy package, this increase is likely attributable to the usage of complex data
structures such as multisets and sequences. For example, we observed that the
introduction of proof obligations concerning the multiplicities of particular facts
in the fact multiset S used by the I/O specification led to a significant increase in
verification time. In comparison, the case studies provided by the Tamigloo paper
[4] constrained S by specifying its equality to a multiset literal.

37
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Package[s] LOC LOS Func. verification [s] Mem. verification [s]

const 42 15 9.8 12.3
util 69 57 15.4 17.6
ident 158 59 35.5 36.3
roots 229 90 39.8 38.5
tokens 272 265 27.8 29.2
vfy 545 1503 226.2 89.7
total 1326 4349 358.7 171.7

Table 5.1: LOC and LOS (incl. ghost code), and the average functional and memory verification
times, separated by package. The times were measured by computing the arithmetic mean over 10
runs on a Lenovo X1 Carbon with an Intel i7-1270P. Note that the total LOS include trusted library
function specifications and the I/O specification files generated by Tamigloo.

5.2 Found bugs

In this section, we highlight several implementation bugs that were identified as a
result of attempting to find a suitable specification for the code. Memory-related
bugs were often identified as a result of Gobra failing to verify a particular section
of code, while functionality-related bugs were identified as a result of attempting to
come up with suitable invariants: back-propagating a necessary invariant through
the implementation’s specification made it clear that it couldn’t be established in
the first place.

Improper input sanitization

The implementation suffered from two bugs relating to improper input sanitization.

First, a missing nil-check for the input set of trusted keys could lead to a runtime
error due to a nil-pointer access. Fixing the bug was trivial: if the set is nil,
initialize it to be the empty set. The bug was identified directly by Gobra.

Second, the implementation suffered from a more subtle bug related to improper
input sanitization. Namely, if the input list of byte slices was empty, this could
lead to non-termination. More specifically, the VerifyTokens function will block
indefinitely in an attempt to receive a signature verification from the results

channel.

Note that Gobra does support verifying that channel send or receive operations
terminate. Therefore, this bug needed to be identified manually. Curiously, this did
occur as a by-product of formal verification using Gobra, in that coming up with
precise loop invariants made the bug a lot easier to see.
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Incomplete public key commitment verification

In formalizing the required constraints for tokens with a valid public key commitment
(Sec. 4.5), it became clear that the validation process was incomplete.

Consider the code in Fig. 5.1. It validates the commitment of a public key to the
CT logs. If the validation is successful, the public key can be used to validate a
token’s signature. Two issues arise from this implementation.

First, note that if log maps to an empty array the validation is successful. Thus,
a party may provide a root verification key without ever publicly committing to it.
Second, no knowledge regarding the validation results is propagated other than
the presence of a signature verification key. Therefore, when determining the
achieved security levels of an emblem, the implementation can only check for the
presence of a log field in an endorsement to determine whether or not it provides
a root public key. This leads to multiple issues. For example, an endorsement with
"log": [] may lift an emblem’s security level to ORGANIZATIONAL, where it would
otherwise only be SIGNED or even INVALID.

We circumvent this issue with a simple solution: if err is non-nil, the FetchKeys

method returns an error. As a consequence, the signature verification will fail and
the token will be dropped.

1 if logs , ok := t.Get("log"); ok {
2 headerKey := sig.ProtectedHeaders ().JWK()
3 for _, r := range VerifyBindingCerts(
4 t.Issuer(), headerKey , logs .([]* LogConfig)
5 ) {
6 if !r.Ok {
7 err = ErrRootKeyUnbound
8 break
9 }

10 }

11 if err == nil {
12 km.put(headerKey)
13 }
14 }

Figure 5.1: An incomplete implementation of the public key commitment validation process. The
”log” key provides an array of JSON objects, each corresponding to a CT log commitment. The
entries are validated by the VerifyBindingCerts function. If the array does not contain any
invalid entries, the verification key can be used to verify the signatures of ADEM tokens where
possible.

Incorrect security level verification

Another interesting issue arose during the verification of the security level verifica-
tion procedures in verifySignedOrganizational and verifyEndorsed.

Namely, the case of an undefined iss claim was handled improperly. Specifically,
if an emblem’s iss claim, that is, its organization identifier (OI), was undefined,
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it could achieve security levels SIGNED and ENDORSED, but not ORGANIZATIONAL.
This situation could occur if the top-level endorsement with iss undefined was
endorsed by a valid authority endorsement. We amended the situation simply by
explicitly checking that security level ORGANIZATIONAL was achieved before calling
verifyEndorsed.

This issue was identified during the application of the Tamigloo [4] methodology.
It became obvious that the state multiset would not necessarily contain the nec-
essary state fact to apply the rewriting rules required to obtain I/O permission to
output ENDORSED security level.

5.3 ADEM security proof

In Sec. 4.2.1 we described the design decisions that were made to ensure the
implementation adheres to the model and the model fulfills Tamigloo’s syntax
constraints. In addition to the definition of two protocol roles Verifier and Token-

Verifier, we introduced two additional non-deterministic loops, one to model the
arbitrary number of input tokens, and one to model the arbitrary-length chain of
internal endorsements.

In Tamarin, when reasoning about non-deterministic loops such as the ones
described above, we often make use of facts with injective instances: if a MRS

R has no reachable state with more than one instance of a fact symbol F with
the same term as a first argument, F is said to have injective instances. As the
problem of computing the set of all such F in R is undecidable in general, Tamarin
computes an under-approximation to this set. To that end, it employs a simple
heuristic. The heuristic requires that for each occurrence of F in a rule, there is
no other occurrence with the same first term. Additionally, it requires that either
there is Fr fact of the first term as a premise, or there is exactly one fact tag with
the same first term in a premise. [18]

Here, a clash occurs with the syntax constraints imposed by Tamigloo. Recall from
Sec. 4.1.2 that for all l a−→ r ∈ Ri, the first term rid of all state facts must be the
same and of type f resh, representing the thread identifier of a run of a protocol
role. Usually, a protocol transitions through multiple states. That is, there are
multiple state facts such that the first term is the same. Therefore, the described
heuristic may fail to identify injective instances of state facts. Note that this is
a result of the under-approximation: for any occurrence of a state fact on the
right-hand side of a rule in Ri, either exactly one state fact is consumed, or Fr(rid)
occurs in the premise. Therefore, injective instances of the state facts should
exist.

As a result, we cannot make use of facts with injective instances to reason about
the three aforementioned, non-deterministic loops. Proving the desired security
properties without the use of injective instances of facts is non-trivial and out-of-
scope for this thesis.
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5.4 Summary

The introduction of Tamigloo enabled us to show the security of the implementation
without needing to explicitly model the security properties described in Sec. 2.1.
This advantage is considerable, as finding sufficiently strong invariants to prove
security properties at the implementation level can be challenging. [14]

However, Tamarin models often employ abstractions to support the automation
of the proofs of security properties. Such abstractions create a gap between a
model and its implementation. As demonstrated in Sec. 4.2, in the presence of
such abstractions, relating an implementation to its model requires modifications,
either to the model or to the implementation.

Furthermore, the syntax constraints imposed by Tamigloo conflict with the current
heuristic employed by Tamarin to identify injective instances of facts. Proving
properties for non-deterministic loops without being able to leverage the injectivity
of fact instances can be non-trivial. Note that this shortcoming is attributable
not just to the syntax constraints imposed by Tamigloo, but also to the limited
support of reasoning about fact instance injectivity in Tamarin. For example, if the
user could specify fact symbols with injective instances and explicitly construct a
soundness proof, proving properties about non-deterministic loops would again
become possible.

Finally, we note that the limited support for reasoning about element multiplicity
in multisets and sequences in Gobra led to a significant increase in verification
time, despite being subject to a considerable number of assumptions. Again, this
shortcoming is attributable not to either Gobra or Tamigloo, but to the interplay
between the two.





Chapter 6

Conclusion

In this thesis, we formally verified the memory safety of the verification component
of the ADEM codebase. We showed memory safety (e.g. that there are no null-
pointer dereferences), crash safety (e.g. no division by zero), and data race
freedom of the implementation.

Next, we used the methodology presented in [4] to show that the implementation
is a refinement of a preexisting Tamarin model. We modified the security model
where necessary and, consequently, kept changes to the implementation minimal.

We qualitatively evaluated our work and compared the verification time overhead
of memory and functional verification, respectively, observing that the functional
verification with Tamigloo significantly increased the verification time overhead.
We identified multiple bugs in the implementation and amended them accordingly.

Finally, we note that proving the desired security properties for the modified model
is out-of-scope for this thesis. Therefore, we cannot conclude that the desired
security properties, described in Sec. 2.1 and shown to hold for the preexisting
model, hold for the implementation.

6.1 Future work

Showing the security properties

As previously mentioned, we cannot conclude that the desired security properties
are provided by the implementation. In future work, it would be desirable to build on
this work and show that the implementation does so. There are multiple possible
approaches.

First, the Tamarin protocol prover could be extended to support the explicit specifi-
cation of instances of injective facts. With this tool in hand, it could be possible to
prove that the security properties hold.
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Alternatively, one could show that the properties hold directly at the implementation
level. For example, one might employ the approach outlined by Arquint et al [14]
to prove security properties through the definition and verification of trace-based
invariants.

Termination

It would be interesting to show that the implementation terminates in all cases.
Recall the bug relating to improper input sanitization introduced in Sec. 5.2: due
to missing input validation, the VerifyTokens function could stall indefinitely. To
show termination, Gobra would need to be extended to allow reasoning about the
termination of channel send or receive operations, as these operations may block
depending on the number of active goroutines and the channel’s buffer size.

Tamigloo syntax relaxation

Finally, it might be interesting to research the possibility of relaxing the syntax
constraints imposed by Tamigloo. For example, by not requiring that a protocol
role’s initial parameters appear as the first ki arguments of every state fact, it
may be possible to utilize the heuristic described above to automatically identify
injective instances of facts.



Appendix A

Code excerpts

A.1 Generated I/O specifications

The following presents an excerpt from the generated I/O specification for the
Verifier role. The predicate P Verifier encodes the separating conjunction
Pi(p, rid, S), as presented in Sec. 4.1.

The predicates phiR Verifier * encode role-specific rewriting rules, that is, those
that do not produce any I/O permissions. Their bodies represent the intuition that
if a state s contains all the facts on the left-hand side l of the rewriting rule, it is
updated by removing any linear facts contained in l and producing any facts in r.
Functions M and U implement the respective multiset operations. In addition, the
right-hand side of the implication grants emphinternal permissions to perform any
corresponding operations.

The predicates phiRG Verifier * and phiRF Verifier * grant I/O permissions
required to execute any I/O operations. Note, in particular, that the listed predicate
produces the necessary out facts for the VerifyTokens function.

1 pred P_Verifier(p Place , rid Term , ghost S mset[Fact]) {
2 phiR_Verifier_0(p, rid , S) && ...
3 phiRG_Verifier_14(p, rid , S) && ...
4 phiRF_Verifier_16(p, rid , S) && ...
5 }

6 pred phiR_Verifier_1(
7 p Place , rid Term , ghost s mset[Fact]
8 ) {
9 forall rid Term , t Term , lp mset[Fact], ap mset[Claim], rp mset[Fact] ::

10 { e_ReceiveToken(p, rid , t, lp , ap , rp) } (
11 (M(lp, s) &&
12 lp == mset[Fact] {
13 St_Verifier_1(rid),
14 InFact_Verifier(rid , t)} &&
15 ap == mset[Claim] { } &&
16 rp == mset[Fact] {
17 St_Verifier_1(rid),
18 PermitTokenVerificationOut_Verifier(rid , t)})
19 ==>
20 (e_ReceiveToken(p, rid , t, lp, ap, rp) &&
21 P_Verifier(
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22 get_e_ReceiveToken_placeDst(p, rid , t, lp, ap, rp),
23 rid ,
24 U(lp, rp, s)
25 )
26 )
27 )
28 }

29 pred phiRG_Verifier_15(p Place , rid Term , ghost s mset[Fact]) {
30 forall x Term ::
31 { e_OutFact(p, rid , x) }{ OutFact_Verifier(rid , x) } (
32 (( OutFact_Verifier(rid , x) # s) > 0) ==>
33 (e_OutFact(p, rid , x) &&
34 P_Verifier(
35 get_e_OutFact_placeDst(p, rid , x),
36 rid ,
37 s setminus mset[Fact] {
38 OutFact_Verifier(rid , x)}))
39 )
40 }

41 ...
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