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1 Introduction

Go is a popular programming language known for its simplicity, concurrency support, and efficient
execution. Go provides an extensive suite of testing tools that aid developers in finding issues in
their programs. However, these testing tools cannot guarantee the absence of bugs. To address
this limitation, Gobra [1], a program verifier for Go, was developed. Gobra takes Go programs
annotated with specifications and proof annotations and returns true if and only if the Go program
satisfies the given specification. If it does not, Gobra provides additional information that may be
useful for debugging purposes.

To specify and verify programs that deal with heap-allocated data structures, Gobra uses the
ideas from Separation Logic [2], where every memory location on the heap is associated with
a permission. If a method accesses a memory location, it is required to hold the associated
permission [1]. The permission to modify a location v is denoted in Gobra by acc(&v). Permissions
are held by method executions and transferred between methods upon call and return [1].

Figure 1 shows an annotated Go program with two functions using permission reasoning: foo

and add5. In function foo, we declare an int variable x which is heap-allocated. Function add5’s
parameter y is a pointer to x. The permission to modify the pointer y is obtained by the method
add5 via the precondition requires acc(y). Furthermore, the permission is transferred back to the
caller via the postcondition ensures acc(y). Because the method add5 has acquired the permission
to y through its precondition, the method is allowed to update y in its body.

However, permission reasoning is expensive. In particular, permission reasoning causes an
annotation overhead and increases the verification time. As detailed in the work by Wolf et al. [1],
if more memory locations that are tracked with permissions are used, then Gobra’s verification time
will increase because the verifier has more information to consider. In the worst case, verification may
be unsuccessful due to non-termination of the verification process. Rust verifiers (e.g., Creusot [3]
and Prusti [4]) have illustrated that linear type systems can be used to simplify heap reasoning. In
addition, Linear Dafny [5] also has shown that by using linear types, one can simplify the proof
obligations ultimately passed to the backend, which results in better verification performance.
According to Linear Dafny [5], the linearized VeriBetrKV has 28% fewer lines of proofs, and 30%

1 func foo() {
2 var x@ int = 42
3 var y *int = &x
4 add5(y)
5 }
6 requires acc(y)
7 ensures acc(y)
8 func add5(y *int) {
9 *y += 5

10 }

Figure 1: Example code for using permission reasoning in Gobra
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1 func foo() {
2 var x! int = 42
3 var p *int = &x // not allowed in strict linear type systems
4 // because of the "No duplication " property
5 x! = nil // needed because of the "No discard" property
6 }

Figure 2: No duplication and no discard

fn main() {

let s1 = String::from("hello");

let (s2, len) = length(s1);

}

fn length(s: String) -> (String, usize) {

let len = s.len();

(s, length)

}

Figure 3: Rust code without using borrowing

shorter verification time overall. Both papers demonstrate the effectiveness of combining verification
with linear types.

Inspired by these two papers, the aim of this thesis is to simplify memory reasoning by introducing
a linear type system in Gobra. To be more specific, we aim to study the viability of introducing a
linear type system to Gobra and its effectiveness in simplifying the specification and verification of
Go programs.

2 Context

The (strict) linear type has no duplication and no discard properties [6]. No duplication guarantees
that, at any moment, there is at most one reference per memory location. Because of this, there
is no aliasing. This makes reasoning about heap-allocated data structures simpler and allows the
compiler to perform more aggressive optimizations. For example, Figure 2 shows a Go program
with a linear type system. We use x! to indicate that variable x is a linear type, and in Line 3
we want to create a reference p pointing to x, which is not allowed in (strict) linear type systems
because of the no duplication property. No discard means that programmers should release memory
explicitly, as shown in Line 5 of Figure 2, which avoids the overhead of garbage collection. These
two features ensure that the linear type system can satisfy data safety.

Generally, current linear type systems have richer features, such as the introduction of borrowing
in Rust [7]. In Rust, every variable has a method that conceptually owns the variable, the owner. A
variable can be used only if it is in the scope of its owner. The ownership of a variable is transferred
between functions upon parameters and return values. For example in Figure 3, we have a string
variable s1 declared in main function, therefore the owner of s1 is function main. When main invokes
length, the ownership of variable s1 is moved to function length. If we still want to use this string
variable in main afterwards, we need to return the ownership by returning the value as an output
parameter.

Borrowing is the action of creating a reference that allows one to refer to some value without
taking ownership of it. As can be seen in Figure 4, we can use s1 without returning s1.

Figure 5 implements the same functionality as in Figure 1, and we use this code snippet to
illustrate how a linear type system that combines the above properties may conceptionally look like
in Go and how we can get rid of permission reasoning by using such a linear type system. We use
x! to indicate that variable x is a linear type, and y is the borrowing of x. Inside the body of add5,
the access to y is safe because the linear type system guarantees that no other access to y happens
simultaneously.
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fn main() {

let s1 = String::from("hello");

let len = length(&s1);

}

fn length(s: &String) -> usize {

s.len()

}

Figure 4: Rust code using borrowing

1 func foo() {
2 var x! int = 42
3 var y *int = &x
4 add5(y)
5 }

6 func add5(y! *int) {
7 *y += 5 // safely update
8 }

Figure 5: Example code for using linear type systems in Go

2.1 Design Space

For this thesis, the main goal is to design a linear type system extension for Gobra. However, there
is a large design space for such linear type systems. That includes many concepts and tradeoffs,
such as:

• Borrowing. Rust offers expressive borrowing mechanisms. Rust distinguishes between
mutable borrowing and immutable borrowing. Immutable borrowing means that a method
holds temporary read-only permission to the heap location and can not modify the location.
Mutable borrowing means that a method holds temporary write permission to a heap location,
therefore the method can update the location. We can have multiple immutable borrowings
of a variable at the same time since that immutable borrowing requires read-only permission
to linear variables [6]. Conversely, the mutable borrowing of a variable must be exclusive
because the write permission to a variable must be unique [6]. Introducing support for
mutable borrowing and immutable borrowing can enhance the expressiveness of the type
system. However, this may also result in increased complexity of the linear type system.

• Complexity and Performance. As mentioned before, Linear Dafny and Rust are both
languages with linear type systems. The type system for Rust is more sophisticated and can
handle a lot of code with concepts such as borrowing. Conversely, the type system for Linear
Dafny can handle less code but is less complicated, and thus is easier to use.

There is a tradeoff: we can get the same coverage of programs either by making the type
system more sophisticated and having less to no verification obligation or by making the type
system less sophisticated, but having more verification obligations. For example, we can use
permission reasoning to support a linear type system. Figure 6 illustrates why permission
reasoning can be useful in a linear type system. Line 3 assigns a nonlinear type x to a linear
type y, which is usually not allowed. However, the precondition requires acc(x) implies that
other methods do not have permission to read or modify the pointer x. Therefore, we know
that other methods cannot modify or read x. Furthermore, since the method foo does not
return the permission to x, other methods cannot access x after the execution. In other words,
even though there might be aliases of x, these aliases are not usable. As a consequence, the
conversion from nonlinear to linear in Line 3 is justified, if at the assignment, Gobra removes
all permissions to the converted memory location. It is not enough to just check that the
method execution holds all permissions, because other aliases may be made usable again once
the permissions are transferred back after method foo returns. In conclusion, the interaction
between linear and non-linear is an important aspect of the design space. The aforementioned
conversions are one potential approach.
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1 requires acc(x)
2 func foo(x *int) {
3 var y linear *int = x // usually does not hold
4 }

Figure 6: Conversion between the linear type system and permission reasoning

• Affinity vs. strictly linearity. Existing linear type systems make a distinction between
strictly linear type systems and affine type systems [6]. In strictly linear type systems, every
linear variable must be used exactly once and needs to be released explicitly. In affine type
systems, a linear variable can be used at most once and does not need to be discarded
manually.

From the perspective of program verification, if we choose strictly linearity, Gobra has to
enforce that all linear variables eventually be released explicitly. However, this check is not
required in an affine type system.

For this design space, we should study whether we get any benefits from the stronger
guarantees of a strictly linear type system that are worth the loss of expressiveness caused by
the additional restrictions of a strictly linear type system.

3 Core Goals

Identifying the requirements for a linear type system in Go. The aim of this goal is to
identify requirements that a linear type system extension must satisfy to be applicable to Go. For
each of the design choices outlined in Section 2.1, we will investigate to which extent the design
choices can be applied to Go. In particular, we will analyze the advantages and disadvantages of
each design choice. To achieve this goal, we will conduct a manual analysis of relevant real-world
Go code, such as Go’s Wireguard and Scion implementations. Furthermore, our analysis might
leverage Go’s existing static analysis framework, which for instance offers an automated may-alias
analysis, to cover a larger collection of Go programs.

Design a linear type system for a small subset of Go. As the second goal, we will
use the results from the first goal to design a linear type system for Gobra. For this goal, we will
target a small subset of Go without closures, interfaces, channels, arrays, slices, and maps. We will
use existing works as inspiration for our type system, such as Linear Dafny [5], Rust [7], and the
linear type system by Wadler [6].

Add support for interfaces. As the third core goal, we extend the type system to further support
Go’s interfaces.

Add support for arrays, slices, maps, and channels. As the fourth core goal, we ex-
tend the type system to further support arrays, slices, maps, and channels.

Implementation. We plan to implement a prototype of the type system in Gobra. In par-
ticular, we do not extend Gobra’s encoding into Viper as part of this goal. The purpose of the
prototype is to analyze the expressiveness and limitations of our designed type system.

Evaluation. We will evaluate the expressiveness and limitations of our linear type system
extension. In particular, we will evaluate in which cases the annotation overhead can be reduced by
adding type annotations.

4 Extension Goals

Extend our linear type system to support closures. In order to further improve the capabil-
ities of our linear type system in Gobra, we aim to extend our linear type system to support closures.
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Application to larger Go programs. For this goal, we aim to apply our linear type sys-
tem to larger Go programs, such as the VerifiedSCION [8] project. This will allow us to better
evaluate the number of annotation lines and the time required for verification saved by our approach.
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