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Abstract

Gobra is a verification tool for Go programs and it utilizes permission reason-
ing to control the usage of heap-allocated values. Nevertheless, this approach
may lead to an annotation overhead and prove to be time-consuming. A
linear type system can efficiently improve program reliability and resource
management by enforcing strict rules on resource usage.
In this thesis, we design a linear type system for Gobra to simplify memory
reasoning. We introduce some new features to extend the current type system
and integrate linearity into Gobra. By separating memory reasoning from
the program’s verification, the verification time is reduced. At the same time,
by analyzing some examples, the annotation workload of the programmers
also decrease significantly, demonstrating the practical usefulness of the
linear type system.
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Chapter 1

Introduction

Go is a modern open-source programming language designed for efficiency,
simplicity, and scalability. Go was developed to address the challenges of
contemporary software development, providing a balance between expressive
syntax and high performance. Go boasts features such as strong typing,
garbage collection, and concurrency support through its goroutines and
channels, making it particularly suitable for building concurrent and dis-
tributed systems. Go’s widespread adoption in various domains, including
web development, system programming, and cloud computing, underscores
its versatility and relevance in the modern programming landscape. Mean-
while, Go provides an extensive suite of testing tools that aid developers
in finding issues in their programs. However, these testing tools cannot
guarantee the absence of bugs. To address this limitation, Gobra [1], a
program verifier for Go, was developed.

Gobra is a verifier for Go programs. Gobra takes Go programs annotated
with specifications and proof annotations, and checks whether the program
satisfies the given specification. If it does not, Gobra provides additional
information that may be useful for debugging purposes. To specify and
verify programs that deal with heap-allocated data structures, Gobra uses
the ideas from Separation Logic [2], where every memory location on the
heap is associated with a permission. If a method wants to access a memory
location, it is required to hold the related permission [1]. However, permission
reasoning is expensive. In particular, permission reasoning introduces an
annotation overhead and increases the verification time. As detailed in the
work by Wolf et al. [1], if more memory locations that are tracked with
permissions are used, then Gobra’s verification time will increase because
the verifier has more information to consider. In the worst case, verification
may be unsuccessful due to the non-termination of the verification process.
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CHAPTER 1. INTRODUCTION

A linear type system is a type system that introduces a new type modality
called linear type to help manage the usage and deallocation of locations [3].
In a traditional type system, values can be used multiple times, whereas
a linear type system enforces that linear values can only be used once to
guarantee memory safety. Linear type systems have been widely studied and
used in programming languages, especially in areas that require fine-grained
control of resource management.

As previously mentioned, using permission reasoning in Gobra not only
increases the burden on programmers for annotating but also increases the
overhead of verification. The efficiency of linear type systems in simplifying
memory reasoning has been illustrated by Rust verifiers, such as Creusot
[4] and Prusti [5]. Additionally, Linear Dafny [6] also demonstrates that
incorporating linear types can simplify the proof obligations ultimately passed
to the backend, and achieve better verification performance. According to
Linear Dafny [6], the linearized VeriBetrKV has 28% fewer lines of proofs,
and 30% shorter verification time overall. Thus, inspired by these papers,
our intention is to design a linear type system for Gobra to reduce the
annotation overhead and verification time when verifying the memory safety
of programs with linear access to memory.

1.1 Challenges

Designing a linear type system for the Gobra presents several challenges
due to the language’s characteristics and design philosophy. Due to varying
design requirements, there exist different variants of linear type systems. For
instance, some linear type systems do not permit linear values to be shared,
while others allow for the safe sharing of linear values. Rust [7] achieves
safe sharing by introducing the concept of borrowing, which will be will be
described in detail in Section 3.1. In this type of system, it is crucial to
ensure the safety of all references to a specific location. We have a large
design space within which we need to make careful trade-offs. Finding the
design that best suits the Go programming language is the first challenge.

The second challenge comes from the desire to support as many language
features as possible. Go has a rich set of features and diverse data structures,
in which case the complexity of designing a linear type system for Gobra
significantly increases. It is a great challenge to come up with a unified
design that can accommodate different data structures including the built-in
types of Go like arrays, slices, and maps.

The third challenge pertains to maintaining compatibility with the existing
Gobra system. Ideally, the introduction of a linear type system in Gobra
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1.2. OUTLINE

should not invalidate any existing Gobra codebases. While the incorporation
of a linear type system may lead to increased efficiency and simplicity, it is
important to carefully consider compatibility, performance, and the system’s
overall impact on Gobra’s existing ecosystem.

In summary, the complexity inherent in designing a linear type system stems
from the need to harmonize with the nature of the Go language, cover a wide
range of features and data structures, and maintain compatibility with the
pre-existing Gobra codebases. All these challenges highlight the complexity
and multifaceted nature of designing a linear type system.

1.2 Outline

In this paper, we develop a linear type system to complement permission
reasoning for managing heap-allocated values in Gobra.

Chapter 2 offers a detailed analysis of the Gobra system, providing the
essential background knowledge to understand the subsequent parts of the
thesis. In particular, this chapter provides an in-depth introduction to the
permission reasoning mechanism in Gobra, which is crucial to comprehend
our novel design of the linear type system.

Chapter 3 provides some background information related to linear type
systems, which is the foundation for explaining our design in the following
chapters.

Chapter 4 presents our design of the linear type system for Gobra, starting
from an overview of the design and subsequently breaking down the design
into modular components.

Chapter 5 presents a series of use cases for analysis, demonstrating the
features supported by our linear type system.

Chapter 6 concludes the thesis, and outlines potential avenues for future
improvements and research directions.
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Chapter 2

Gobra

This chapter details the main features of Gobra related to our work which
are necessary to understand this thesis. In Section 2.1, we briefly introduce
the annotation mechanism in Gobra. Section 2.2 delves into an in-depth
explanation of how Gobra manages the permissions of heap-allocated values.
More insights into Gobra and its functionalities are available in the publica-
tion by Wolf et al. [1]. Furthermore, a comprehensive tutorial on Gobra is
available on Github [8].

2.1 Annotations

As previously mentioned, Gobra takes Go programs annotated with formal
specifications as input and outputs whether the given Go project satisfies
all specified requirements. Programmers are required to annotate the Go
programs to constrain the desired behavior. Within the Gobra system, the
supported annotations include assertions, preconditions, postconditions, and
loop invariants.

An assertion is the most basic annotation supported in Gobra, which is
used to check a specific logical statement’s validity at a given program point.
Figure 2.1 is an example using assertion. In line 1, we define x as an integer
variable and assign 1 to x. In line 2, x remains unchanged and equals to 1,
resulting in the successful verification of the assertion assert x == 1. In an
assertion, Gobra supports to use of Go’s side-effect-free and deterministic
boolean expressions (e.g., x == y), implications (==>), conditionals (cond
? e1 : e2), conjunctions (&&), universal quantifiers (e.g., forall i int ::

i < 10 ==> i < 5), and existential quantifiers (e.g., exists x int :: x >

42).
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CHAPTER 2. GOBRA

1 x := 1
2 assert x == 1

Figure 2.1: Example code of using assertions in Gobra

Preconditions and postconditions are used to constrain the behavior of
functions in programs. Preconditions are mainly used to guarantee the spec-
ifications hold when the function is invoked. Thus, the caller is responsible
for ensuring that these preconditions are met. Preconditions are usually the
constraints on the parameters of the function. In contrast, postconditions
outline requirements that the final state needs to satisfy. In general, if a
method accesses a memory location, it is required to hold the associated
permission. Permissions are transferred between methods upon preconditions
and postconditions, and permission reasoning will be described in detail in
the next section. Figure 2.2 shows an example using function specifications
for the function add5, which adds 5 to the argument passed in. Line 1 is
a precondition, and this line requires the parameter n to be non-negative.
Line 2 is a postcondition that constrains the result of this function to be 5

more than the argument.

1 requires 0 <= n // precondition
2 ensures res == n + 5 // postcondition
3 func add5(n int) (res int) {
4 res := n + 5
5 return res
6 }

Figure 2.2: Example code of using function specifications in Gobra

Loop invariants are used to describe invariant properties in a loop procedure.
Loop invariants have to hold before and at the end of each loop iteration [8].
Figure 2.3 is an example using loop invariants. Line 2 and line 3 are invariants
used to verify the loop, which guarantee that before and after each iteration
of the loop, i ranges from 0 to 10 and sum equals to i * (i-1)/2.

1 assert sum == 0
2 invariant 0 <= i && i <= 10
3 invariant sum == i * (i-1)/2
4 for i := 0; i <= 10; i++ {
5 sum += i
6 }
7 assert sum == 45

Figure 2.3: Example code of using loop invariants in Gobra
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2.2. ALIAS AND PERMISSION REASONING

2.2 Alias and Permission Reasoning

This section presents the permission reasoning mechanism in Gobra and
a brief overview of the existing type system in Gobra, which is helpful for
understanding the linear type system we designed. Section 2.2.1 introduces
the reason why we need permission reasoning in Gobra. Section 2.2.2
illustrates how Gobra manages permissions to memory locations. Lastly,
Section 2.2.3 details two types of memory locations in Gobra’s type system.

2.2.1 Reference and Alias

References and aliases allow multiple variables to interact with the value
in the same memory location. A reference points to a location, allowing
variables to indirectly access and modify the value stored in the location.
This indirection enables variables to share data and synchronize changes. A
memory location is aliased if two or more variables hold references to this
location. In object-oriented programming, the use of references is intended
to offer efficiency and data-sharing benefits. However, improper handling of
references can lead to issues.

Figure 2.4 is an example illustrating the problem of aliasing caused by
destructive updates. In this Go example, we define a Student struct and
create an instance, studentA. Then, we create two references studentB and
studentC that point to the same memory location of studentA. Modifications
to studentC change the underlying value of studentA and also inadvertently
affect the print result of studentB, leading to unexpected changes. This
highlights the potential pitfalls of using references without proper care.

1 type Student struct {
2 name string
3 age int
4 }

5 func main() {
6 studentA := Student{"Alice", 20}

7 studentB := &studentA
8 studentC := &studentA

9 fmt.Println(studentB.name) // Output: "Alice"
10 fmt.Println(studentB.age) // Output: 20

11 studentC.name = "Bob"
12 studentC.age = 22

13 fmt.Println(studentB.name) // Output: "Bob", the output changed
14 fmt.Println(studentB.age) // Output: 22, the output changed
15 }

Figure 2.4: Example code of aliasing
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CHAPTER 2. GOBRA

Therefore, managing references and aliases is crucial for maintaining code
clarity, avoiding bugs, and ensuring proper memory management. In Go-
bra, the management of references is facilitated by permission reasoning
mechanisms.

2.2.2 Permission Reasoning in Gobra

In Gobra, reasoning about heap-allocated values is based on a variant of
Separation Logic [2], Implicit Dynamic Frames. A permission is associated
with a heap location. Permissions are acquired by method executions and
are exchanged between methods using preconditions and postconditions.
The permission to modify a location v is denoted in Gobra by acc(&v).

Due to the non-destructive nature of read permission, references for reading
data from the same memory location can coexist. However, references for
writing data cannot coexist with any other references. In Gobra, we use
fractional permission to guarantee this, which stipulates that each reference
possesses a certain amount of permission (greater than 0 and less than or
equal to 1). Additionally, the sum of the permission amounts for references
pointing to the same location cannot exceed 1. In Gobra, only the reference
with full (exclusive) permission, denoted as acc(&v) or acc(&v, 1/1), is
allowed to modify the related location. And acc(&v, i) (0<i<1) means
read-only permission to location v. We can also use to represent a non-zero
permission amount, denoted as acc(&v, ).

Figure 2.5 is an example of permission reasoning. The function addTwoSlice

adds the corresponding elements of two slices, s1 and s2, with equal lengths
and assigns the result to s1. Therefore, the function addTwoSlice needs full
permission of s1 and read permission of s2. Line 2 and line 3 obtain the
write permission of s1 and the read permission of s2, respectively. The
permissions are returned back by line 4 and line 5.

It’s worth mentioning that the permissions to heap-allocated values accessed
within a loop body are lost, unless they are encompassed within an invariant,
as shown in line 9 and line 10. We use old expression to refer to the old
value of expression e in the state of the precondition, indicated by old(e).
As shown in lines 6 and 7, the postcondition forall k int :: 0 <= k &&

k < len(s1) ==> s1[k] == old(s1[k]) + old(s2[k]) constrains that after
calling the function addTwoSlice, the value of s1[k] equals to the sum of
s1[k] + s2[k] when the function was invoked.

8



2.2. ALIAS AND PERMISSION REASONING

1 requires len(s1) == len(s2)
2 requires forall k int :: 0 <= k && k < len(s1) ==> acc(&s1[k])
3 requires forall k int :: 0 <= k && k < len(s2) ==> acc(&s2[k], 1/2)
4 ensures forall k int :: 0 <= k && k < len(s1) ==> acc(&s1[k])
5 ensures forall k int :: 0 <= k && k < len(s2) ==> acc(&s2[k], 1/2)
6 ensures forall k int :: 0 <= k && k < len(s1) ==> s1[k] == old(s1[k])
7 + old(s2[k])
8 func addTwoSlice(s1 []int , s2 []int) {
9 invariant 0 <= i && i <= len(s1)

10 invariant forall k int :: 0 <= k && k < len(s1) ==> acc(&s1[k])
11 invariant forall k int :: 0 <= k && k < len(s2) ==> acc(&s2[k], 1/2)
12 invariant forall k int :: i <= k && k < len(s1) ==> s1[k] == old(s1[k])
13 invariant forall k int :: 0 <= k && k < i ==> s1[k] == old(s1[k]) +
14 old(s2[k])
15 for i := 0; i < len(s1); i += 1 {
16 s1[i] = s1[i] + s2[i]
17 }
18 }

Figure 2.5: Example code of permission reasoning in Gobra

2.2.3 Shared and Exclusive Memory Locations

In Gobra, values are categorized as either shared or exclusive. Exclusive
values are only available through a single method execution and can be
treated as stack-allocated local variables, which behave like mathematical
values [1]. Thus, exclusive values will never alias. Conversely, shared
values are situated on the heap and are accessible by multiple methods and
threads [1], which means shared values may alias. Section 2.2.1 underscores
the significance of managing references. In Gobra, permission reasoning is
applied to shared locations because of the possibility of aliasing. This is
crucial to ensure the absence of data race conditions and the safe modification
of memory. Thus, Gobra requires shared values to be annotated with an
additional @ symbol at the point of declaration [1].

Figure 2.6 is a sample code having shared and exclusive variables. Line 1
declares an exclusive int variable n, and line 2 declares a shared array a of
fixed length 4. The function incr increases all elements in the given slice
(the first argument) by n (the second argument). The array a is sliced in
line 3, in which case we actually create a reference to a. Thus, in Gobra, the
programmer is required to add @ modifier when declaring a, as shown in line
2. Omitting the @ annotation will cause a type error.

1 n := 2
2 a@ := [4]int { 1, 2, 4, 8 }
3 incr(a[2:], n)

Figure 2.6: Example code of the shared and exclusive variables in Gobra
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CHAPTER 2. GOBRA

2.3 The Judgments for Gobra’s Type System

Expression judgments and statement judgments are basic components of a
type system. An expression judgment determines the type of an expression.
An expression is a combination of variables, constants, and operators that
produce a value. An expression judgment validates whether the expres-
sion adheres to the language’s type rules, ensures that the expression is
well-formed, and assigns a specific type to the resulting value. Statement
judgments are used to check the validity of statements. Statements are
commands that perform some operations but do not produce values, such as
variable declarations, assignments, and so on. Statement judgments ensure
that statements conform to the language’s syntactic and semantic rules.

To understand the typing rules in the following subsections, we list all
symbols that are used afterwards in Table 2.1. ◦ is the exclusive modifier and
@ is the shared modifier. The symbol M is the modifier of a location, which
could potentially be shared or linear. S represents the type context, which
maps variables to their types (T ) and modifiers (M). Lastly, s represents a
statement.

Symbol Meaning
◦ Exclusive Modifier
@ Shared Modifier
M Modifier, M := ◦ | @
T Type
S Type Context, S : variable 7→ T M
e Expression
x Variable
s statement

Table 2.1: Notation used in typing judgments - Gobra

2.3.1 Expression Judgment

Gobra’s expression judgment of form S ⊢ e : T M asserts that the expression
e has type T and modifier M in the given context S. The following are the
main expression judgments of Gobra’s old type system.

Variable :
S ⊢ x : T M

(2.1)

This is the most basic typing rule named Variable (2.1), and we will get
the type and modifier of the given expression e by applying this rule.

10



2.3. THE JUDGMENTS FOR GOBRA’S TYPE SYSTEM

Dereference :
S ⊢ e : ∗T ◦

S ⊢ ∗e : T@
(2.2)

This is Dereference rule (2.2). From the premise (above the line), it is
evident that e is a reference to a value of type T . Thus, if we dereference
e, we will obtain a value of type T with the modifier @. This is due to a
constraint in Gobra that the value being referenced must be shared.

Reference :
S ⊢ e : T@

S ⊢ &e : ∗T ◦ (2.3)

This is Reference rule (2.3). From the hypothesis, it is evident that e is a
shared variable of type T . If we create a reference to e, the type of &e is
∗T ◦.

Read :
S ⊢ e : T M

S ⊢ e : T ◦ (2.4)

This is the typing rule for Read (2.4). It means that if we read from an
expression e, we will obtain an exclusive value, which is straightforward
because reading from the expression e retrieves the mathematical value
stored in the location associated with e.

Write :
S ⊢ e : T M

S ⊢ e : T ◦ (2.5)

This is Write rule (2.5). It means that when we write to the expression e,
we just put the mathematical value into the related memory location.

GetField :
S ⊢ e : Struct M Struct.f : T

S ⊢ e.f : T M
(2.6)

This is GetField typing rule (2.6). It indicates that the modifiers of the
fields within a struct type are consistent with the modifier of the struct
itself.

Index :
S ⊢ e : [n]T M S ⊢ e′ : int◦

S ⊢ e.f : T M
(2.7)

This is Index typing rule (2.7). It means that the modifiers of the elements
within an array are consistent with the modifier of the array.

FunctionCall :
S ⊢ e1 : T ◦

1 ... S ⊢ en : T ◦
n f : (T1, ..., Tn) 7→ T

S ⊢ f(e1, ..., en) : T ◦ (2.8)

11
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This is FunctionCall typing rule (2.8), and it shows that all the arguments
and the return values of a function are exclusive values.

2.3.2 Statement Judgment

Below are the main statement judgments in Gobra. Since statements do not
produce values, the typing rules take the form of S ⊢ s, where s does not
possess a type.

Sequence :
S ⊢ s1 S ⊢ s2

S ⊢ s1; s2
(2.9)

This is Sequence rule (2.9). It shows that if s1 and s2 are valid in given the
context S, the sequence of s1; s2 should also be valid.

Declare :
S[x 7→ T M ] ⊢ s

S ⊢ var x M T in s
(2.10)

This is Declare rule (2.10). In the premise, it shows that given context S, s
is valid. Thus, declaring a variable x in the form of var x M T in s is also
valid.

Assignment :
S ⊢ e : T ◦ S ⊢ e′ : T ◦

S ⊢ e = e′
(2.11)

This is Assignment rule (2.11). It means it is valid to assign the expression
e′ of type T to the expression e. It’s worth mentioning that since loading
from/to the locations is required during the assignment, both e and e′ are
exclusive. Additionally, the premise of the assignment essentially consists of
two expression judgments.

If :
S ⊢ e : bool◦ S ⊢ s1 S ⊢ s2

S ⊢ if e {s1} else {s2}
(2.12)

This is If rule (2.12). It indicates that if e has the type of bool◦, and s1
and s2 are valid statements, if e {s1} else {s2} is the valid form of if-else
control flow.

Loop :
S ⊢ e : bool◦ S ⊢ s

S ⊢ while e {s}
(2.13)

This is Loop rule (2.13). It is similar to If rule (2.12) and it gives the legal
format of a loop procedure.

12



Chapter 3

Linear Type Systems

In Chapter 2, we demonstrate how to verify heap-allocated values using
permission reasoning in Gobra, ensuring the safety of data modification.
Nevertheless, permission reasoning comes with substantial costs. As eluci-
dated by Wolf et al. [1], heightened usage of memory locations tracked with
permissions may increase Gobra’s verification time due to the increased com-
putational load on the backend solver. In extreme cases, verification might
even fail due to the non-termination of the verification process. Permission
reasoning imposes an annotation overhead and contributes to the elongation
of verification time. In this chapter, we focus on the necessary background
knowledge to understand linear type systems.

In a linear type system1, the concepts of no duplication and no discard are
fundamental principles that govern how resources are managed and utilized.
These principles are aimed at enforcing strict control over how variables are
used and ensuring efficient resource utilization [3].

The principle of no duplication ensures that, at any given time, a single
reference is associated with each memory location. This eliminates the
occurrence of aliasing, ensures that the ownership of resources remains clear,
and prevents issues such as multiple pointers referring to the same mem-
ory block and causing unexpected modifications. Moreover, this principle
empowers the compiler to execute more aggressive optimizations, thereby
enhancing program performance. No discard dictates that a resource must
be used exactly once and cannot be discarded prematurely or left unused,
and this principle mandates that programmers bear the responsibility of
intentionally releasing memory. In other words, when a resource is allocated,
the program is obligated to consume it before moving forward. This prevents
unnecessary use of computational resources, like memory, and guarantees

1In this section, we refer to a strict linear type system.
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CHAPTER 3. LINEAR TYPE SYSTEMS

that all allocated resources are put to use effectively, and effectively sidesteps
the need for garbage collection [3].

Figure 3.1 shows a sample code in a linear type system. We use x! to
indicate that variable x is a linear type, and in line 3 we want to create a
reference p pointing to x, which is not allowed in linear type systems because
of the no duplication property. Line 5 is needed - the program needs to
consume variable x before the end of the function foo.

1 func foo() {
2 var x! int = 42
3 var p *int = &x // not allowed in strict linear type systems
4 // because of the "No duplication " property
5 x! = nil // needed because of the "No discard" property
6 }

Figure 3.1: No duplication and no discard

In summary, no discard ensures that resources are not wasted and are fully
utilized, while no duplication maintains the uniqueness of resources and
prevents unintended sharing or copying. These principles play a crucial role
in enhancing resource safety and program efficiency within a linear type
system.

Some aforementioned studies [4] [6] indicate that linear type systems are
a more efficient resource management approach. Unlike permission-based
approaches where programmers need to explicitly define and manage per-
missions for each location, linear type systems enforce the correct usage and
access control of memory locations through the type system itself. Thus,
using linear type systems to replace permission reasoning to simplify memory
reasoning is feasible. As research in linear type systems continues to expand,
various variants of linear type systems have emerged. In the next section,
we will introduce the borrowing mechanism used in the Rust programming
language, which is one of these variants.

3.1 Borrowing in Rust

Modern linear type systems offer more advanced capabilities. For instance,
it could be possible to create references to linear-typed values under certain
constraints. Rust’s borrowing mechanism exemplifies this idea. This section
will delve into the concept of borrowing in Rust, which has significantly
inspired the type system developed in this thesis [7].

In Rust, each location has an owner. A location can only be utilized within

14



3.1. BORROWING IN RUST

the scope of its owner. The ownership of a location is transferred between
functions by passing them as arguments and return values. For instance,
as shown in Figure 3.2, the string variable s1 is declared within the main

function, consequently endowing the function main with ownership of s1.
When main invokes the length function, the ownership of variable s1 is
transferred to the function length. If we intend to use this string variable
in main after this function call, we need to return the ownership of s1 as an
output value, which is assigned to s2.

1 fn main() {
2 let s1 = String ::from("hello");
3 let (s2, length) = length(s1);
4 }

5 fn length(s1: String) -> (String , usize) {
6 let length = s1.len();
7 (s1 , length)
8 }

Figure 3.2: Rust code without using borrowing

1 fn main() {
2 let s1 = String ::from("hello");
3 let length = length (&s1);
4 }

5 fn length(s: &String) -> usize {
6 s.len()
7 }

Figure 3.3: Rust code using borrowing

Borrowing allows programmers to create references to the same memory
location, thereby granting the reference the ability to read or modify the
location within a specific scope without transferring ownership. When
the borrowing scope is exceeded, which is determined by Rust’s compiler
automatically, the borrowing will become unusable. Unlike ownership,
borrowing supports concurrent access by multiple parts of the program while
maintaining strict rules to prevent data races and ensure data integrity.
This mechanism strikes a balance between safety and flexibility, allowing for
efficient resource utilization and manipulation without sacrificing the strong
guarantees provided by Rust’s ownership system. Figure 3.3 implements
the same functionality as in Figure 3.2. In line 3, however, we create a
borrowing of s1 and pass this borrowing into the length function. Notably
different from before, in line 5, the length function returns only the length
of the given string, excluding the string itself. This is a consequence of
borrowing, which ensures that the length function can only temporarily
utilize s1 without taking the ownership of it. The scope of this borrowing
is within the body of the length function. When the function ends, this
borrowing &s1 becomes unavailable.

Section 2.2.2 presents that each reference possesses either read-only permis-
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sion or full permission. Multiple references with read-only permissions can
coexist, but references with full permission cannot coexist with any other
reference. This idea closely aligns with Rust’s borrowing mechanism, where
there are mutable borrowings and immutable borrowings, reflecting a similar
concept.

In Rust, both mutable and immutable borrowings are references that allow
a code snippet to temporarily access and interact with the related locations.
These borrowings ensure safe and controlled concurrent access to memory
locations. Immutable borrowings allow multiple parts of the program to read
data concurrently without the risk of modification, denoted as &. This is
particularly useful when the programmers want to share data for reading
purposes while preventing accidental changes. Mutable borrowings, on the
other hand, enable exclusive access to a location for modification. It ensures
that only one thread can modify the location at a time, identified as &mut.
This prevents data races and concurrent modifications that could lead to
unexpected behavior.

1 fn main() {
2 let vec = vec![1, 2, 3];
3 let iborrow = &vec; // Immutable borrowing
4 println !("iborrow [0]", iborrow [0]); // Reading data

5 let mborrow = &mut vec; // Mutable borrowing
6 mborrow.push (4); // Modifying data
7 }

Figure 3.4: Two kinds of borrowing

In Figure 3.4, line 3 creates an immutable borrowing iborrow of vec, which
has only read access to vec. Line 5 creates a mutable borrowing mborrow of
vec, which has write access to vec and can update vec in line 6.

It is worth mentioning that even though a linear type system is efficient
in resource and memory management, it also has some limitations. For
instance, it is hard and even impossible to express cyclical data structures in
safe Rust due to the language’s strict ownership and borrowing rules. Rust’s
borrowing system prohibits multiple mutable references to the same location,
which is required for creating cyclic data structures.
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Chapter 4

Design

This chapter demonstrates our design of the linear type system for Gobra.
Section 4.1 presents the overview of the type system, where we introduce
the key concepts of our type system. Section 4.2 introduces the newly added
type modifiers and two kinds of new references in the system, inspired by
Rust. Section 4.3 presents the typing of expressions in our linear type system.
Section 4.4 details the well-definedness of statements in our type system.
Section 4.5 discusses the new borrowing context, used in the type checking
process. Section 4.6 demonstrates how shared variables interact with the
new type system. Section 4.7, 4.8, and 4.9 show how calls, interfaces, and
recursive structs are type-checked. Lastly, Section 4.10 summarizes the
syntax of the new type system.

4.1 Overview

To introduce linearity to Gobra, we add two type modifiers to the system
besides shared and exclusive in Gobra’s type system, that is linear write
and linear read, denoted as ! and ?, respectively. We refer to types with
linear read or linear write modifiers as linear types and similarly refer to
values and locations with a linear type as linear values and linear locations,
respectively. Linear values are similar to shared values because the linear
values are also addressable, yet they also possess distinct characteristics. As
mentioned in Section 2.2.2, all accesses to shared variables must be proven
safe through permission-based reasoning. Conversely, in the case of a linear
variable, the type system takes the burden of justifying that a location is
accessible. We refer to the type system augmented with the linear modifiers
as the linear type system for Gobra.
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Similar to Rust, creating a reference imparts access to the associated location.
Therefore references pointing to linear locations possess either read-only
access or write access. Whenever we access or create a reference, our type
system must guarantee the safety of the operation.

As previously discussed, the linear type system is responsible for manag-
ing the accesses of linear locations and ensuring memory safety. Hence,
it becomes necessary to record information about all references to linear
variables. In the linear type system, we introduce a novel context known as
the borrowing context. This context captures and maintains all references
associated with linear variables, and is used by the linear system to determine
whether an operation is allowed or not.

Figure 4.1 is a code snippet in Gobra without linearity and permission
reasoning is needed for memory locations. In the function foo, we declare a
shared variable x that resides on the heap. In line 3, we create a reference y

that points to x and pass y as an argument to the function add5. To safely
update y within the function add5, we transfer the write permission of y

to the function add5 using the precondition, denoted as requires acc(y).
Then the permission is returned back to the caller through the postcondition,
denoted as ensures acc(y).

Figure 4.2 shows how we can eliminate permission reasoning through the
application of the linear type system. In line 2, we declare a linear write
variable x. Line 3 creates a reference y to x and indicates that y has write
access to x with &w. The syntax used here will be detailed in Section 4.2.
In line 4, we pass y to the function add5 without the need for permission
reasoning. Since y has write access to the associated memory, the linear
type system determines that the function add5 can update y safely.

1 func foo() {
2 var x@ int = 42
3 var y *int = &x
4 add5(y)
5 }
6 requires acc(y)
7 ensures acc(y)
8 func add5(y *int) {
9 *y += 5

10 }

Figure 4.1: Example code of using
permission reasoning

1 func foo() {
2 var x! int = 42
3 var y *int = &w x
4 add5(y)
5 }
6 requires y != nil
7 func add5(y *w int) {
8 *y += 5
9 // safely update

10 }

Figure 4.2: Example code of using a
linear type system
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4.2 Type Modifiers and References

We introduce two type modifiers, linear write and linear read, to Gobra.
As their names imply, linear write locations have the ability to modify the
related memory, whereas linear read locations can only read values stored in
the associated memory. Since the type system has several possible modifiers
with different accesses to a memory location, we need to know which kind
of access the programmers want when referencing a location. Therefore, in
our linear type system, references to linear locations are also categorized
into two types: read references and write references, represented as *r T

and *w T separately (T is the type of the value that the reference points to).
Read references are used to read from the location they point to. However,
they cannot be used to write to these locations. Write references are used
both for reading and writing. Similar to immutable borrowings and mutable
borrowings in Rust, in our linear type system, for a linear location, we can
also have multiple read references pointing to it at the same time or we can
have one write reference. If a write reference exists to a memory location,
no read references can co-exist at that point in time.

It is also worth noting that we can create both read and write references to
linear write locations, whereas only read references can be created for linear
read locations. The access held by a reference cannot exceed the access
owned by the linear location itself. We use &r to create read references and
use &w to create write references.

Figure 4.3 shows an example demonstrating how to create these two kinds
of references to linear variables. Line 1 declares a linear write variable x.
Line 2 creates a read reference to x, and line 3 creates a write reference to
x, which are allowed in our type system. In line 4, we declare a linear read
variable y. Line 5 creates a read reference to y, which is also valid. However,
if we want to create a write reference to y or modify y, the type system will
report errors because the accesses required for these two operations exceed
what y possesses.

1 var x! int = 10 // linear write variable
2 var rp *r int = &r x // read reference
3 var wp *w int = &w x // write reference

4 var y? int = 40 // linear read variable
5 var rq *r int = &r y // read reference
6 var wq *w int = &w y // not allowed !!!
7 y = 50 // not allowed !!!

Figure 4.3: Example code of new features
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4.3 Expression Judgment

We have introduced two type modifiers into Gobra, and also split the
references to linear locations as read references and write references. To
track the linearity and reference information, we introduce the borrowing
context into the linear type system. Therefore, it is necessary to modify the
typing judgments accordingly. Table 4.1 introduces the notation used in the
judgments shown in the upcoming sections.

Symbol Meaning
◦ Exclusive Modifier
@ Shared Modifier
? Linear Read Modifier
! Linear Write Modifier
M Modifier, M := ◦ | @ | ! | ?
Lin Lin := ! | ?

NoLin NoLin := ◦ | @
T Type
S Type Context, S : variable 7→ T M
X Borrowing Context
C Combined Context
e Expression
x Variable
t target of reading expression judgment, can be
s statement

Table 4.1: Notation used in typing judgements - Linear Gobra

Same as before, ◦ and @ are exclusive and shared modifiers. The annotations
? and ! denote the linear read and linear write modifiers, respectively. The
symbol M is the modifier of a location, which could potentially be any of
the four modifiers. The symbol Lin denotes a linear modifier, while the
symbol NoLin denotes that a location is not linear. S represents the type
context, which maps variables to their types (T ) and modifiers (M). We use
X to represent the borrowing context. Lastly, C represents the combined
context of S and X.

Expression judgments are split into reading expression judgments and writing
expression judgments. We respectively abbreviate them as reading judgments
and writing judgments. These two judgments are necessary since the type
systems demand different accesses, namely read and write accesses, depending
on whether the typed expression is the target of an assignment or not.

Writing judgments are utilized for assignments’ left-hand side while reading
judgments are applicable to all other scenarios. The read judgment addi-
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tionally adds a new element, target t, which is the target of the assignment
in case the typed expression is on the right-hand side of an assignment. If
the typed expression is not read on the right-hand side of an assignment,
there is no target, denoted as . Writing judgments do not have targets.
Syntactically, we distinguish between writing and reading judgments based
on whether the judgment has a target or not.

4.3.1 Pre-Context and Post-Context

Because the borrowing context records the information of references to all
linear locations, certain operations like creating and dereferencing a reference
can potentially modify the borrowing context. To address this, we introduce
the concepts of pre-contexts and post-contexts. As the names imply, the
pre-context refers to the borrowing context before evaluating an expression,
while the post-context is the context after an expression has been evaluated.

For example, below is the reading judgment of ReadLinearDereference. We
note that since the expression e potentially involves creating a read or write
reference to a linear location, the pre-context X becomes the post-context
X ′ after evaluation.

X;S; t ⊢ e : ∗(T Lin)◦ | X ′ read activate(X ′, e) = X ′′

X;S; t ⊢ ∗e : T Lin | X ′′

4.3.2 Read Expression Judgment

In this section, we outline the main reading judgments, as shown below. We
will provide explanations for the crucial typing rules.

ReadLinearDereference :X;S;t⊢e: ∗(T Lin)◦ | X′ read activate(X′, e)=X′′

X;S;t⊢∗e: T Lin | X′′ (4.1)

The ReadLinearDereference typing rule (4.1) was shown in the previous
section. It is known from the premise that e is a read or write reference,
denoted by ∗(T Lin)◦. The type system needs to ensure that the dereference
operation is safe, which is guaranteed by a side condition that the expression
e can be activated in the borrowing context X ′. Activating a reference means
to obtain the related access possessed by the reference. read activate is
the operation to activate the read access of a given reference. More detailed
explanations about operations on the borrowing context will be provided in
section 4.5. Thus, the borrowing context changes to X ′′ after we dereference
e.
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ReadShared :
X;S; t ⊢ e : T @ | X ′

X;S; t ⊢ e : T ◦ | X ′ (4.2)

This is the ReadShared rule (4.2). It indicates reading from a memory
location that stores a shared value of type T results in an exclusive result of
type T since reading from this location yields a mathematical value.

ReadLinear :
X;S; t ⊢ e : T Lin | X ′ read activate(X ′, &e) = X ′′

X;S; t ⊢ e : T ◦ | X ′′ (4.3)

This is the rule for ReadLinear (4.3). Reading from a memory that stores
a linear value of type T (either linear read or linear write) will yield an
exclusive result of type T . Similar to the LinearDereference rule (4.1), the
type system needs to justify that the read is safe with the side condition
read activate(X ′, &e) = X ′′.

SharedReference :
X;S; t ⊢ e : T @ | X ′

X;S; t ⊢ &e : ∗(T@) ◦ | X ′ (4.4)

This is the SharedReference typing rule (4.4), which creates a reference to
a shared location. This rule indicates that creating a reference to a shared
location will get a reference of type ∗(T@) ◦.

LinearReadReference :X;S;t⊢e: T Lin | X′ push read ref(X′, &r e, t)=X′′

X;S;t⊢&r e: ∗(T?) ◦ | X′′ (4.5)

This is the LinearReadReference rule (4.5), which creates a read reference
to a linear location. We use ∗(T?) ◦ to represent a read reference to a linear
location of type T . The linear type system justifies that the operation(&r e)
is safe with the condition push read ref(X ′, &r e, t) = X ′′. The op-
eration push read ref creates a read reference to e within the borrowing
context. Thus, the borrowing context changes from X ′ to X ′′ due to the
operation(&r e).

LinearWriteReference :X;S;t⊢e: T ! | X′ push write ref(X′, &e, t)=X′′

X;S;t⊢&w e: ∗(T !) ◦ | X′′ (4.6)

This is the LinearWriteReference typing rule (4.6). It is similar to the
LinearRead- Reference typing rule (4.5). The distinction lies in the fact
that we can only create write references to linear write variables. We use
∗(T !) ◦ to represent a write reference to a linear write location of type T .
Similarly, we use the operation push write ref to create a write reference to
e within the borrowing context, which changes the borrowing context from
X ′ to X ′′.
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The following three judgments are similar to Gobra’s old expression judg-
ments. It is important to note that every expression e has the potential to
modify the borrowing context.

ReadVariable :
X;S; t ⊢ x : T M | X

(4.7)

ReadGetField :
X;S; t ⊢ e : Struct M | X ′ Struct.f : T

X;S; t ⊢ e.f : T M | X ′ (4.8)

ReadIndex :
X;S; t ⊢ e : [n]T M | X ′ X ′;S;⊢ e

′ : int ◦ | X ′′

X;S; t ⊢ e[e′] : T M | X ′′ (4.9)

4.3.3 Writing Expression Judgment

In this section, we outline the main writing judgments and provide explana-
tions for the crucial ones.

WriteLinearDereference :X;S; ⊢e: ∗(T !)◦ | X′ write activate(X′, e)=X′′

X;S⊢∗e: T ! | X′′ (4.10)

This rule is similar to the ReadLinearDereference rule (4.1) in the reading
judgments, but it dereferences a write reference e. The target in the premise
changes to . This is because, in the hypothesis, we still need to read
from the reference e to get the address it points to. The expression e is
read without being assigned to a target, so the target changes to . In the
conclusion, we dereference e and the result ∗e is on the left-hand side of an
assignment. Thus, the target in the conclusion is eliminated. Additionally,
we use the write activate operation to activate the write access possessed
by e, changing the borrowing context from X ′ to X ′′.

WriteShared :
X;S ⊢ e : T @ | X ′

X;S ⊢ e : T ◦ | X ′ (4.11)

This is the rule for WriteShared (4.11), which is similar to ReadShared rule
(4.2) in the previous section and requires no further elaboration at this point.

WriteLinear :
X;S ⊢ e : T ! | X ′ write activate(X ′, &e) = X ′′

X;S ⊢ e : T ◦ | X ′′ (4.12)
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This is the WriteLinear rule (4.12). It means that we can only write to
linear write locations and we use the operation write activate to ensure
that writing to the linear write location e is safe.

The three following judgments are similar to those in the previous section,
except that the writing judgment does not have a target.

WriteVariable :
X;S ⊢ x : T M | X

(4.13)

WriteGetField :
X;S ⊢ e : Struct M | X ′ Struct.f : T

X;S ⊢ e.f : T M | X ′ (4.14)

WriteIndex :
X;S ⊢ e : [n]T M | X ′ X ′;S; ⊢ e′ : int ◦ | X ′′

X;S ⊢ e[e′] : T M | X ′′ (4.15)

4.4 Statement Judgment

The meanings of most of the symbols used in this section can be found
in Table 4.1, and we use s to represent a statement. Below are the new
statement judgments in the type system.

Sequence :
X;S ⊢ s1 | X ′ X ′;S ⊢ s2 | X ′′

X;S ⊢ s1; s2 | X ′′ (4.16)

This is the Sequence rule (4.16), which is similar to the old Sequence rule
(2.9). The only difference is that s1 and s2 might modify the borrowing
context.

NonLinearDeclare :
X;S[x 7→ T NoLin] ⊢ s | X ′

X;S ⊢ var x NoLin T in s | X ′ (4.17)

This is the rule for NonLinearDeclare (4.17), which creates a non-linear
variable x. This rule is quite similar to the Declare rule (2.10). The creation
of a non-linear variable will not change the borrowing context, whereas the
statement s has the potential to change the borrowing context, resulting in
a change from X to X ′.

LinearReadDeclare :
create(X, &x) = X ′ X ′;S[x 7→ T?] ⊢ s | X ′′

X;S ⊢ var x? T in s | X ′′ (4.18)
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This is the LinearReadDeclare rule (4.18). This rule declares a linear read
variable x of type T , which means x has only read access to the memory
location and cannot be modified afterwards. We use create operation to
add linear information about x to the borrowing context, which changes
from X to X ′. Afterwards, the statement s assigns a value to x, changing
the borrowing context to X ′′.

LinearWriteDeclare :
create(X, &x) = X ′ X ′;S[x 7→ T !] ⊢ s | X ′′

X;S ⊢ var x! T in s | X ′′ (4.19)

This is the LinearWriteDeclare rule (4.19). This rule declares a linear write
variable x of type T , which indicates x has write access to the memory
location. We then use the statement s to assign a value to x. Similar to
LinearReadDeclare rule (4.18), the borrowing context is X ′′ finally.

Assignment :
X;S ⊢ e : T ◦ | X ′ X ′;S; e ⊢ e′ : T ◦ | X ′′

X;S ⊢ e = e′ | X ′′ (4.20)

This is the rule for Assignment (4.20) in the linear type system. In the
premise of the rule, we have a writing expression judgment for the expression
e (without target) and a reading expression judgment for the expression e′.
We will assign the value of e′ to e, thereby the target of e′ is e.

If :X;S; ⊢e: bool◦| X′ X′;S⊢s1| X′′ X ′́;S⊢s2 | X′′′ merge contexts(X′′, X′′′)=Xm

X;S⊢if e {s1} else {s2} | Xm (4.21)

This is the judgment rule for the If (4.21) control flow. In the premise of
this rule, we have a reading expression judgment for the expression e, which
serves as the condition of the control flow, and two statement judgments for
if and else branches, respectively. If the program enters the if branch, the
borrowing context changes to X ′′. Otherwise, the borrowing context changes
to X ′′′. We need to merge the borrowing contexts of these two branches,
and the merged context is Xm. The operation used for merging different
borrowing contexts is called merge context, and it will be discussed in detail
in Section 4.5.

Loop :
W ;S; ⊢ e : bool◦ | W W ;S ⊢ s | W X → W

X;S ⊢ while e {s} | W
(4.22)

This is the judgment rule (4.22) for Loop and it is different from the previous
judgments. We use W to represent the borrowing context and W denotes
the weakest context that can keep pre-contexts and post-contexts unchanged
after justifying W ;S; ⊢ e : bool◦ | W and W ;S ⊢ s | W . Additionally,
X in the conclusion implies W , meaning that W is weaker than X. The
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meaning of weak is that all reference relationships and linear information
present in W will definitely appear exactly in X, but X may contain more
information beyond W . The meaning of this judgment is that if there exists
a W such that the premise holds, then the loop procedure while e {s} with
the pre-context X is valid.

4.5 The Borrowing Context

We introduce the borrowing context to the linear type system to track the
linearity information, denoted as X. In Section 4.5.1, we will detail the
data structure of the borrowing context. Section 4.5.2 introduces the main
operations on the context. Section 4.5.3 will demonstrate how the judgments
impact the borrowing context through a small example.

4.5.1 Tracking References with Stacks

As shown in Figure 4.4, We store information about all references using a
map that maps memory locations to stacks. Each stack corresponds to a
linear location known as the borrowing stack. The domain of these linear
locations represents disjoint locations. The locations in a borrowing stack
represent potential pointers to the linear location and cannot be nil. In
other words, all write and read references in the borrowing context cannot
be nil. A pointer p is in the borrowing stack of a linear location l if access
to l is necessary to justify accessing p.

Each borrowing stack consists of a sequence of frames. A frame is the
fundamental building block of the borrowing stack, where references are
placed. We distinguish between two kinds of accesses, namely read and write
accesses. Thus, the frames can also be categorized into two types based on
access type: read frames and write frames. A read frame is a collection of
locations with read access, while a write frame has only one location with
write access. Only the top frame is active, the other frames are inactive.
Being inactive does not necessarily prohibit access to the references within
the frame. An inactive frame needs to be activated before accessing the
references within it.
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Figure 4.4: Schematic diagram of the borrowing context

4.5.2 Operations on the Borrowing Context

As discussed in Section 4.3 and Section 4.4, we have the following operations
on the borrowing context:

create: Create a borrowing stack for a linear location and add a map from
the linear location to the borrowing stack. If the location is linear write,
the new borrowing stack will contain a write frame of the given location.
Conversely, if the location is linear read, the new borrowing stack will contain
a read frame that encompasses the given location. For example, if we declare
a linear write variable x, we will create a borrowing stack for x. The changes
in the borrowing context are shown in Figure 4.5.

Figure 4.5: The schematic diagram of create operation

push write ref: Push a write reference pointing to a linear location into
the borrowing context. Return None if this operation is not possible. This
operation pushes a write frame containing the write reference to the related
stacks. For example, if we create a write reference p to x, the changes in the
borrowing context due to the operation push write ref are shown in Figure
4.6.

push read ref: Push a read reference pointing to a linear location into the
borrowing context. Return None if this operation is not possible. For a
certain borrowing stack, if the current top frame is a read frame, we just add
the given new read reference as an element to the read frame. For example,
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Figure 4.6: The schematic diagram of push write ref operation

the upper half of Figure 4.7 displays how the borrowing context changes
if we push a read reference t into it. If the current top frame is a write
frame, the situation becomes more complex. For example, when the current
frame on top is a write frame having a write reference p, we need to push a
read frame containing the given read reference q onto the borrowing stack.
Additionally, we also need to add p into the read frame, as shown in the
bottom half of Figure 4.7. The reason for doing so is intuitive. As mentioned
earlier, a write reference possesses both write access and read access to a
memory location. By performing this operation, we essentially separate the
read access from the write reference. This ensures that if there is a need to
read from the write reference p, we only need to activate the read access in
the top read frame.

Figure 4.7: The schematic diagram of push read ref operation

read activate: Pop frames to activate the read frames containing the given
read reference in the borrowing context such that the read access of the
given read reference is active. Return None if this operation is not possible.
The changes in the borrowing context due to the read activate operation
to activate the read reference q are shown in Figure 4.8.

Figure 4.8: The schematic diagram of read activate operation

write activate: Pop frames to activate the write frames containing the
given write reference in the borrowing context such that the write access
of the given write reference to a linear location is active. Return None if
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this operation is not possible. For example, if we want to activate the write
reference p, the changes in the borrowing context due to the write activate

operation are shown in Figure 4.9.

Figure 4.9: The schematic diagram of write activate operation

merge context: Merge different borrowing contexts. Utilizing different
merge strategies can produce varying outcomes.

The code snippet below requires merging borrowing contexts from different
branches due to the if-else control flow from line 5 to line 11. If the if

branch is taken, the borrowing context should be as shown in Figure 4.10.
Otherwise, Figure 4.11 shows what the borrowing context should look like if
the else branch is taken.

1 var x! int = 5
2 var y! int = 6
3 var p *w int
4 var q *r int

5 if some_condition_known_at_runtime {
6 p = &w x
7 q = &r (*p);
8 } else {
9 p = &w y

10 q = &r (*p);
11 }
12 print!("{}",q);
13 *p=4;
14 print!("{}",p);
15 print!("{}",q);

Figure 4.10: The borrowing context
after executing if branch

Figure 4.11: The borrowing context
after executing else branch

We have two available merge strategies to merge the contexts, and we will
demonstrate the difference between the two options. Option 1 entails that,
for the corresponding borrowing stacks in the two contexts, if the common
tail of the borrowing stacks matches one of the stacks, the merged result will
adopt the larger stack. Otherwise, it will adopt the common tail. Option
2 adopts the common tail of all borrowing stacks present in the borrowing
context. The common tail refers to the common frames from the bottom of
two borrowing stacks. For instance, from Figure 4.10 and Figure 4.11, it is
evident that the common tail of the borrowing stacks of &x is the bottom
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write frame containing &x. Similarly, the common tail of the borrowing
stacks of &y is also the bottom write frame containing &y. For option 1, the
common tail of &x matches the borrowing stack of &x in Figure 4.11, so the
merged result of &x is the borrowing stack in Figure 4.10 (the larger stack).
The rest merge operations are quite similar, and we will not elaborate further
on them here.

The merging outcomes of the two options are illustrated in Figure 4.12. If
we opt for option 1, the references p and q are present in multiple borrowing
stacks. Removing reference p from one borrowing stack necessitates its
removal from all the stacks in which reference p is present. Activating
reference p also requires activating p in all borrowing stacks. For example,
line 13 needs to write activate reference p, so the top read frames of stack
&x and &y will both be removed.

However, if we select option 2, references p and q will no longer be accessible
after line 11. In this case, the linear type system will report an error in line
12 since reference q is inaccessible.

Thus, we need to make a trade-off between the complexity of the linear type
system and its expressiveness. Consequently, we opt for option 1.

Figure 4.12: Two options for merging contexts

Finally, it is worth noting that in the subsequent code demonstrations,
we will use &a 7→ [{Read Ref Set} # Write Ref # ...] to represent a
borrowing stack of location &a and use {&a 7→ [ ], &b 7→ [ ], ...} to denote
the borrowing context.

4.5.3 Illustrating the Application of Judgments

As shown in Figure 4.13, x is a linear write variable, wp is a write reference
to x, m is an exclusive int variable. Thus, the S context should be S = {x 7→
int!,m 7→ int◦, n 7→ int◦, wp 7→ ∗(int!)◦, rp 7→ ∗(int?)◦}.
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1 var x! int in x = 5;
2 var wp (*w int) in wp = &w x;
3 var m int in m = *wp;
4 *wp = m;

Figure 4.13: Example code for type checking

Line 1 declares a linear write variable x. Rules LinearWriteDeclare (4.19)
and Assignment (4.20) are applied for typing. The WriteLinear rule is
applied for expression judgment, at meanwhile the borrowing context changes
from {} to {&x 7→ [&x]}, as shown below.

x = 5; WriteLinear : X;S⊢x:int! | X′

X;S⊢x:int◦ | X′ X == X ′

Assignment :X;S⊢x:int◦ | X′ X′;S;x⊢5:int◦ | X′′

X;S⊢x=5 | X′′

X == X ′ == X ′′

var x! int in x = 5; LinearWriteDeclare : create(X, &x)=X′ X′;S⊢x=5 | X′′

X;S⊢var x! T in x=5 | X′′

X == {}, X ′ == {&x 7→ [&x]}, X ′′ == {&x 7→ [&x]}

Then in line 2, we create a write reference to x. For this line, we use
NonLinearDeclare (4.17) and Assignment (4.20) rules for statement typing,
and apply LinearWriteReference rule (4.6) when creating wp. For the sake of
brevity, we do not show the use of NonLinearDeclare and Assignment rules.
The use of expression judgment LinearWriteReference is shown below, and
the borrowing context changes from {&x 7→ [&x]} to {&x 7→ [wp # &x]}.

&w x LinearWriteReference :
X;S;wp⊢x:int! | X′ write reference(X′, &w x, wp)=X′′

X;S;t⊢&w x: ∗(int!)◦ | X′′

We utilize *wp for both reading and writing in lines 3 and 4. Rules
ReadLinearDereference (4.1) and WriteLinearDereference (4.10) will be
applied, respectively. The use of typing rules is similar to the previous ones
and will not be shown here.

4.6 Conversion

In certain scenarios, we might want to convert a linear write location to a
shared location. In such cases, we can use the &toS operation for this kind of
conversion. It is worth noting that after the conversion, we need to remove
the borrowing stack of the linear write variable from the borrowing context
using the remove operation. The result of this conversion is an exclusive
value of type T , which is used for assigning to a shared variable (the target
t, which is required to be shared).
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ConvertToShared :
X;S; t ⊢ e : T ! | X ′ remove(X ′, &e) = X ′′

X;S; t ⊢ &toS e : T ◦ | X ′′ (4.23)

Similarly, if we want to convert a full-permission shared location to a
linear write location, we can use &toL to perform this conversion. The
full permission of the shared location will be transferred to the converted
result (the target t, which is required to be linear write). Additionally,
the borrowing stack of the converted result will be added to the borrowing
context with the help of the create operation.

ConvertToLinear :
X;S; t ⊢ e : T@ | X ′ create(X ′, t) = X ′′

X;S; t ⊢ &toL e : T ◦ | X ′′ (4.24)

Below is an example showing how to perform conversions between linear
write and shared values. The function ConvertToShared converts a linear
write variable x to a shared variable y. The borrowing context changes from
{&x 7→ [&x]} to {} accordingly. And the assertion assert acc(&y) holds in
line 6. The function ConvertToLinear receives a reference x and obtains the
full permission of x by the precondition requires acc(x). In line 10, x is
converted to a linear write variable y. The borrowing stack of y will be added
to the borrowing context. Thus, the borrowing context is {&y 7→ [&y]}. The
permission owned by x cannot be transferred back through postcondition.

1 func ConvertToShared (){
2 var x! int = 10
3 // {&x -> [&x]}
4 var y@ int = &toS(x)
5 // {}
6 assert acc(&y)
7 }

8 requires acc(x)
9 func ConvertToLinear(x *int){

10 var y! int = &toL(x)
11 // {&y -> [&y]}
12 }

4.7 Function Call

Due to the introduction of the borrowing context and the support for the
conversion mechanism between shared values and linear values, the typing
rule for function calls becomes considerably intricate.

Figure 4.14 is an example of why the previous FunctionCall (2.8) judgment
is difficult to extend to the linear type system. Line 1 declares 3 linear write
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variables x, y, and z. Line 2 illustrates the borrowing context at that point:
{&x 7→ [&x],&y 7→ [&y],&z 7→ [&z]}. Then in line 3, we call the function f

and pass the write references of x and y into f. We separate the checking of
the linear type system from verification, so it is challenging to determine
the borrowing context after the function call only based on the signature of
the function f, which is shown in line 4.

If c is a reference pointing to variables declared inside the function f, we
need to add the borrowing stack of p to the borrowing context after the call
since the return value c is assigned to p. However, if c is the reborrowing of
references a or b, we cannot add the borrowing stack of p to the borrowing
context. This is because the locations in the borrowing context should be
disjoint. In a more challenging scenario, the accesses passed in the function
may not be transferred back due to internal uncertainty. For example, if we
convert a and b to shared values, x and y should become inaccessible after
the function call and we need to remove the borrowing stacks of x and y

from the borrowing context. The analysis shows that the borrowing context
is uncertain after a function call.

1 x! := 5; y! := 6; z! := 7
2 // X: {&x -> [&x], &y -> [&y], &z -> [&z]}

3 p := f(&w x, &w y)
4 // the signature of function f: f(a, b *w int) (c *r int)

Figure 4.14: Example code of function call

Thus, we introduce a new keyword inout to address this problem. The inout
keyword annotates read or write references of a function’s parameters or
receivers, and it represents that the read or write references passed into
the function should remain active after the function’s execution. The inout
keyword ensures that the accesses possessed by read or write references
will definitely be transferred back, which helps to determine the borrowing
context after function calls.

Figure 4.15 shows an example of using inout keyword. Lines 1 to 11 are
the same codes illustrated in Section 4.5.2. Then we create a linear write
variable z and a write reference r. Thus, the borrowing context at line 13
is {&x 7→ [{p, q} # p # &x],&y 7→ [{p, q} # p # &y],&z 7→ [r # &z]}, as
shown in Figure 4.15.

Then in line 14, we invoke function f(p, r). The signature of the function
f is shown in line 15. Since the parameter a is not annotated with inout,
the access possessed by reference p will not be transferred back. Thus,
the borrowing stacks containing p, the borrowing stack of x and y, are
removed from the borrowing context. Since b is annotated with inout, the
borrowing stacks containing the write reference r stay unchanged. Because
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Figure 4.15: Example code of using inout

the return value of function f is a read reference and is assigned to s, we
add a borrowing stack of s. Finally, the borrowing context changes to
{&z 7→ [r # &z], s 7→ [{s}]}, as shown in Figure 4.15.

4.8 Interface

As mentioned in the previous section, the inout keyword can also be used to
annotate receivers of methods. Figure 4.16 shows how to annotate receivers
with inout keyword. In line 8, we can see the receiver of the method inc

is a write reference to a linear location, and the receiver is annotated with
inout keyword. Line 9 shows that the receiver of the method value is a read
reference, which is also annotated with inout. The inout keyword can ensure
that after invoking the method inc, the caller is still active.

For interfaces, there are not many changes required. We also track the
linearity information of interfaces. The casts between subtypes and interfaces
are always treated like function calls, and the subtypes and interfaces are
required to have the same accesses.

For example, in Figure 4.16, we declare an interface Counter from line 1 to
line 4. Lines 5 to 7 declare a subtype of Counter, namely Cell. From line
8 to line 13, the type Cell implements the two methods of the interface
Counter. The method inc is used to increase cell.f by 1, and the method
value returns cell.f directly.

Then we have a client function. We declare a read reference x pointing
to a linear Cell in line 15. The borrowing context is {x 7→ [x]}. Then
x is cast to y, the interface Counter, in line 17. We treat this cast as a
function call, which receives a subtype instance (without inout keyword)
and returns an interface instance (e.g., the toInterface(x) function). Thus,
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1 type Counter interface {
2 inc()
3 value() int
4 }

5 type Cell struct {
6 f int
7 }

8 func (cell inout *w Cell) inc() {
9 cell.f += 1

10 }

11 func (cell inout *r Cell) value() int {
12 return cell.f
13 }

14 func client () {
15 x := &w Cell {0}
16 // {x -> [x]}
17 var y Counter <w> = toInterface(x)
18 // {y -> [y]}
19 y.inc()
20 var z *w Cell = y.(*w Cell)
21 // {z -> [z]}
22 z.inc()
23 // {z -> [z]}
24 println(z.value ()) // 2

25 y.inc() // fails
26 }

Figure 4.16: Example code of interface

we remove the borrowing stack of x from the borrowing context and add
the borrowing stack of y into the borrowing context. Because the access of
y is the same with x (indicated by Counter<w>), the borrowing stack of y is
y 7→ [y]. Finally, the borrowing context changes to {y 7→ [y]}, as shown in
line 18.

The casts from interfaces to subtypes are analogous to the casts in the reverse
direction. In Figure 4.16, since y has write access to the related memory, it
is allowed to cast y to a write reference z in line 20. The borrowing context
changes to {z 7→ [z]}, as shown in line 21. Invoking z.inc() in line 22 is
permitted since z possesses write access. However, y.inc() is prohibited
because y lacks the access required by the method inc.

4.9 Recursive Struct

Inspired by Rust [7], to support linear recursive structures in the linear type
system, we have introduced a concept similar to Box pointer, denoted as
*box reference. Similarly, the size of a *box reference is fixed (equal to the
size of a pointer, 8 bytes). However, we have added some other properties
based on the uniqueness of our linear system. Firstly, a *box reference also
embodies the concept of Option in Rust, which means that a *box reference
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could be nil. Secondly, a *box reference can only point to linear variables.
Thirdly, when we create a struct instance with a *box reference pointing to
a linear location, the ownership 1 of the linear location will be accumulated
into the struct instance, and the stack of the linear location will be directly
removed.

Currently, the *box reference is only used within the definition of a recursive
struct, and we treat the *box reference as an array whose size can either be
0 (when the *box reference is nil) or 1 (when the *box reference is not nil).
We can pass either a write reference with write access or a read reference
with read access into a *box reference, and the ownership of the linear value
associated with the reference will be accumulated into the struct that owns
the *box reference.

Figure 4.17 is a small example of a recursive struct, we first declare a
recursive struct named node, and line 5 creates a linear struct instance n 1,
so we have a stack for n 1 in the borrowing context, and the next field of
n 1 is nil, which is allowed due to the definition of *box. The borrowing
context is {&n 1 7→ [&n 1]}. Then in line 7, we create another node n 2,
and we specify that its next node is n 1, and the stack of n 1 is removed
from the borrowing context due to n 2 obtaining full access to n 1, and the
borrowing context changes to {&n 2 7→ [&n 2]}. Alternatively, we can view
node{2, &w n 1} as a constructor function call, where the second argument
is specified without the inout keyword.

1 type node struct {
2 value int
3 next *box node // box = option + write access + function call
4 }

5 n_1! := node{1,nil}; //ok , the box pointer can be nil
6 // {&n_1 ->[& n_1 ]}
7 n_2! := node{2,&w n_1}; // ok
8 // {&n_2 ->[& n_2]}, delete the stack of n_1 from X

Figure 4.17: Example code of using *box

4.10 Summary of the Extended Syntax

1Concept from Rust.
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Syntax Meaning
? Linear read modifier
! Linear write modifier
&r Create a read reference to linear variables
&w Create a write reference to linear variables
T Type

∗r T Type of a read reference
∗w T Type of a write reference

&toS T Convert a linear write variable to a shared variable
&toL T Convert a shared variable to a linear write variable
∗box T Used in recursive structs, the type of a recursive field

Interface < r > Type of an interface instance, having read access
Interface < w > Type of an interface instance, having write access

Table 4.2: Syntax of the linear type system
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Case Study

This chapter presents some common use cases of our linear type system.
For each use case, we propose a relevant Go example, and then verify the
example using Gobra with and without our linear type system and compare
the differences. Since we do not have a complete implementation of the
designed linear type system, the linear Gobra examples show how we envision
an implementation of linear Gobra to work.

5.1 Simple Example

We begin this section with a straightforward Gobra code snippet, demon-
strating how to annotate programs in linear Gobra and how the borrowing
context changes during the procedure. The following example shows a code
snippet in Gobra without the linear type system. Line 8 declares a shared
variable a and then passes the pointer to a as an argument of the function
incr. Within function incr, a is increased by n. To modify a, the function
incr is required to obtain the write permission to a, so we have the precon-
dition requires acc(a). After function incr’s execution, the permission of
location a is returned by the postcondition.

1 requires acc(a)
2 ensures acc(a)
3 ensures *a == old(*a) + n
4 func incr(a *int , n int) () {
5 *a += n
6 }

7 func client () () {
8 a@ := 2
9 n := 2

10 incr(&a, n)

11 assert a == 4
12 }
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With the introduction of the linear type system, there is no longer a need to
use permission reasoning for this code fragment, as shown below. In line 6,
we merely need to declare a as a linear write variable. To grant function incr

the access to modify a, we pass in a write reference to a into the function
incr. Because the first parameter of the function incr is annotated with
inout, the stack of a stays unchanged in the borrowing context after the
function call.

The incr function does not have preconditions and postconditions related to
permission reasoning, reducing the burden of annotations. While this thesis
omits support for the linear system at the encoding level, it is clear that we
no longer require permission reasoning in Viper files, which can also reduce
the verification overhead.

1 ensures *a == old(*a) + n
2 func incr(a inout *w int , n int) () {
3 *a += n
4 }

5 func client () () {
6 a! := 2
7 // {&a -> [&a]}
8 n := 2
9 incr(&w a, n)

10 // {&a -> [&a]}

11 assert a == 4
12 }

5.2 Array and Slice

Since a slice can be viewed as a reference to an array, we address slices
and arrays together in this section. To aid comprehension, we start with
another simple example. We provide the entire annotated example in Gobra
without the linear type system in Appendix A, which is from the evaluation
examples of Gobra [9]. This example closely resembles the previous code in
Section 5.1, with the only difference being that we change the parameter of
the function incr from an integer reference to a slice.

From the perspective of the linear type system, there are no significant
alterations. We simply declare a as a linear write array and create a slice
that has write access to the location a[2:] and pass the slice into the function
incr. Subsequently, the function incr increases each element within the
given slice by n. The modifications to other postconditions and invariants
are in fact unrelated to the characteristics of the linear type system.

It is worth noting that when we first enter the function incr, the borrowing
context is {s 7→ [s]}, as shown in line 3. In line 8, we attempt to mod-
ify s[i], and rules ReadLinearDereference (4.1), WriteLinearDereference
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(4.10), ReadIndex (4.9), and WriteIndex (4.15) are applied. First, the
WriteLinearDereference rule (4.10) is applied to obtain a linear write array
referenced by s. Subsequently, the WriteIndex rule (4.15) is applied to get
write access to the element in the array. Therefore, we have the required
write access to modify s[i]. Also, after each loop iteration, the borrowing
context is {s 7→ [s]}, shown in line 9. Therefore, the borrowing context is
still {s 7→ [s]} after the whole loop procedure, shown in line 11.

1 ensures forall k int :: 0 <= k && k < len(s) ==> s[k] == old(s[k]) + n
2 func incr (s inout w[]int , n int) {
3 // {s -> [s]}
4 invariant 0 <= i && i <= len(s)
5 invariant forall k int :: i <= k && k < len(s) ==> s[k] == old(s[k])
6 invariant forall k int :: 0 <= k && k < i ==> s[k] == old(s[k]) + n
7 for i := 0; i < len(s); i += 1 {
8 s[i] = s[i] + n // allowed , because s has write access
9 // {s -> [s]}

10 }
11 // {s -> [s]}
12 }

13 func client () {
14 a! := [4]int { 1, 2, 4, 8 }
15 // {&a -> [&a]}
16 incr(w a[2:], 2)
17 // {&a -> [&a]}

18 assert a[0] == 1 && a[1] == 2
19 assert a[2:][0] == a[2] && a[2:][1] == a[3]
20 assert a == [4] int { 1, 2, 6, 10 }
21 }

In Appendix A, Gobra utilizes quantified permissions in lines 4 and 5, which
enable users to specify the permissions for each slice location. This is suitable
for modeling heap structures that can be traversed in multiple directions,
random-access data structures like arrays, and unordered data structures like
graphs, for permission reasoning [8]. However, in linear Gobra, we do not
need to reason permissions in such a way. From rules ReadGetField (4.8),
ReadIndex (4.9), WriteGetField (4.14), and WriteIndex (4.15), we know that
the access possessed by a struct or array propagates to all the fields of the
struct or elements of the array.

Next, we examine a more complex example. Below is a piece of code that
implements heap sort in linear Gobra. For the sake of clarity and readability,
we have removed specifications unrelated to the linear type system and
retained only the core code that implements the heap sort algorithm. Simi-
larly, due to space constraints, for some excessively lengthy specifications, we
will use pseudo-comments in natural language or delete them. For readers
interested in the complete code and its detailed annotations, please refer
to Gobra [9]-heapsort.gobra for the full version. This code may involve
many Gobra features unrelated to this thesis, and readers can go to [8] for
reference.

The function parent calculates and returns the index of the parent node
of the heap element at the given index i. The function leftChild and the

41



CHAPTER 5. CASE STUDY

function rightChild calculate and return the index of the left child node
and right child node of the heap element at the given index i, respectively.
The function swap swaps the given two elements in the slice. The function
heapsort is the main heapsort function. It starts by converting the input
slice s into a max heap using the heapify function. Afterwards, the code
repeatedly swaps the maximum element (at the root) with the last element
in the heap to reduce the size of the unsorted heap. This process continues
until the entire slice is sorted.

In line 13, the function swap receives a slice s and then modifies the slice,
which is allowed because the slice has write access to the related memory,
indicated by w[]int. The borrowing context remains unchanged during the
execution of the function swap. Within function heapsort, we first pass s

into the function heapify to construct a max heap, and according to the
signature of the function heapify, in which s is annotated with inout, the
borrowing context is still {s 7→ [s]} after the function call. Lastly, the
function heapsort iteratively calls function swap to swap the root element
of the heap and the last element of the slice and then calls siftDown to
maintain the max heap. In these two callee functions, since the slices to be
sorted are annotated with inout, we do not change the borrowing context
after invoking these functions. And within function siftDown, there is a
if-else branch, and because the borrowing contexts of the two branches
are the same, namely {s 7→ [s]}, the borrowing context after the merge is
still {s 7→ [s]}, as shown in line 64.

It is important to clarify that our linear type system does not perform
boundary checks on arrays or slices. Therefore, while the code verification
process does not need to inspect permissions, it is still imperative for the
verification process to guarantee that all accesses remain within the bounds
of the data structures.

1 pure func parent (i int) int {
2 return (i - 1) / 2
3 }
4 pure func leftChild (i int) int {
5 return 2 * i + 1
6 }
7 pure func rightChild (i int) int {
8 return 2 * i + 2
9 }

10 ensures old(s[i]) == s[j]
11 ensures old(s[j]) == s[i]
12 func swap(s inout w[]int , i, j int) {
13 // {s -> [s]}
14 tmp := s[i]
15 s[i] = s[j] // allowed , because s has write access
16 s[j] = tmp
17 // {s -> [s]}
18 }

19 ensures forall a, b int :: 0 <= a && a <= b && b < len(s) ==> s[a]<=s[b]
20 func heapsort (s inout w[]int) {
21 // {s -> [s]}
22 heapify(s)
23 // after function call: {s -> [s]}
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24 end := len(s) - 1

25 for 0 < end {
26 swap(s, 0, end)
27 // after function call: {s -> [s]}
28 end = end - 1
29 siftDown(s, 0, end)
30 // after function call: {s -> [s]}
31 }
32 // {s -> [s]}
33 }

34 ensures forall n int::0<= parent(n)&&n<len(s)==>s[n]<=s[parent(n)]
35 func heapify (s inout w[]int) {
36 // {s -> [s]}
37 start := parent(len(s) - 1)
38 for 0 <= start {
39 siftDown(s, start , len(s)-1)
40 // after function call: {s -> [s]}
41 start = start - 1
42 // {s -> [s]}
43 }
44 // {s -> [s]}
45 }

46 ensures forall i int::0<=i&&i<=end&&end+1<len(s)==>s[i]<=s[end+1]
47 func siftDown (s inout w[]int , start int , end int) {
48 // {s -> [s]}
49 root := start
50 stop := false

51 for !stop && leftChild(root) <= end {
52 child := leftChild(root)
53 if (child + 1 <= end && s[child] < s[child + 1]) {
54 child = child + 1
55 }
56 if (s[root] < s[child]) {
57 swap(s, root , child)
58 // after function call: {s -> [s]}
59 root = child
60 } else {
61 stop = true
62 // {s -> [s]}
63 }
64 // after merge: {s -> [s]}
65 }
66 // {s -> [s]}
67 }

68 func client1 () {
69 arr! := [6]int{12, 11, 13, 5, 6, 7}
70 fmt.Println("Unsorted␣array:", arr)
71 // before the function call: {& arr -> [& arr ]}
72 heapsort(w arr [:])
73 // after the function call: {& arr -> [& arr ]}
74 fmt.Println("Sorted␣array:", arr)
75 }

76 func client2 () {
77 s := w[]int{12, 11, 13, 5, 6, 7}
78 fmt.Println("Unsorted␣slice:", s)
79 // before the function call: {s -> [s]}
80 heapsort(s)
81 // after the function slice: {s -> [s]}
82 fmt.Println("Sorted␣array:", s)
83 }

We have two client functions. In the client1 function, a linear write array
arr is declared in line 69. In line 72, arr is sliced using [:], and write access
is granted to the slice using w. Subsequently, the anonymous slice is passed
into the function heapsort. The borrowing context before and after the
function call is described in lines 71 and 73, respectively. In the client2

function, we declare a slice s and indicate that s has write access to the
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memory with w[]int. Consequently, we can pass s as an argument of the
function heapsort.

5.3 Struct

Due to the introduction of the linear type system, there are certain distinc-
tions when dealing with structs with recursive references, as we introduced
the *box reference. Consequently, we divide this chapter into two parts,
Structs without recursive references and Structs with recursive references,
to demonstrate the use of the linear type system in different scenarios.

5.3.1 Struct without Recursive Reference

In structs, there are typically many fields, so we often use predicates for
permission reasoning, which gives a name to a parameterized assertion. A
predicate can have any number of parameters, and its body can be any self-
framing Gobra assertion using only these parameters as variable names [8].
Predicate definitions can be recursive, allowing them to denote permission
to and properties of recursive heap structures such as linked lists and trees,
which we will see in the next subsection.

The following snippet is an example of a predicate. Lines 1 to 3 define the
structure of type DenseMatrix. The type DenseMatrix has a field named
values, which is a reference to a two-dimensional array. Lines 4 to 9 define
a predicate named denseMatrix, which is used to obtain the permissions of
the given reference m.

1 type DenseMatrix struct {
2 values *[100][100] int
3 }

4 pred denseMatrix(m *DenseMatrix) {
5 acc(&m.values) &&
6 (forall i int ::(0 <= i <len(m.values) ==> acc(&m.values[i])))&&
7 (forall i, j int :: (0 <= i < len(m.values) &&
8 0 <= j < len(m.values[i]) ==> acc(&m.values[i][j])))
9 }

10 // number of rows
11 requires acc(denseMatrix(m), _)
12 pure func (m *DenseMatrix) lenX() int {
13 // return len(m.values ): not allowed
14 return unfolding acc(denseMatrix(m), _) in len(m.values)
15 }

In Gobra, predicate instances are not equivalent to their body [8]. For
instance, we use the denseMatrix as a precondition for the method lenX, and
it is not allowed to directly access m.values, as shown in line 13. Therefore,
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Gobra has fold and unfold annotations to handle this. To make the snippet
verify, Gobra requires an additional unfold annotation, instructing Gobra to
replace a predicate instance with its body. Conversely, the fold annotation
exchanges the predicate body with the predicate instance. For instance in
line 14, we first unfold acc(denseMatrix(m), ) and then it is allowed to
access m.values.

Next, we continue to use the struct type DenseMatrix as the example. Simi-
larly, due to space limitations, some non-essential parts have been omitted.
We have defined several methods the type DenseMatrix: the method lenX

returns the number of rows in the matrix, the method lenY returns the
number of columns in the matrix, and the lookup method returns the value
at row i and column j in the matrix. These methods do not perform
any modifications to the given DenseMatrix, so their receivers are read
references to DenseMatrix. Within these functions, we need to read from
m.values. Since m.values is a short-hand for (*m).values, we need to apply
ReadLinearDereference (4.1) and ReadGetField (4.8) rules to obtain read
access to (*m).values. Thus, reading from m.values is allowed by the linear
system and we do not need fold and unfold functions to obtain access to
the field of a struct. The last function is multAlt, which multiplies every
element in the matrix by a factor of z. This operation requires write access
to the receiver matrix. Therefore, the receiver needs to be a write reference
to DenseMatrix.

Through comparison, it can be observed that by employing the linear type
system, we can avoid the need for the predicate denseMatrix and fold and
unfold annotations in some cases. From the perspective of a programmer,
this approach significantly reduces the complexity and number of annotations
required in programs. Meanwhile, the verification overhead is also reduced.

1 type DenseMatrix struct {
2 values *w[100][100] int
3 }

4 // number of rows
5 pure func (m inout *r DenseMatrix) lenX() int {
6 return len(m.values)
7 }

8 // number of columns
9 requires m.lenX() != 0

10 pure func (m inout *r DenseMatrix) lenY() int {
11 return len((m.values )[0])
12 }

13 requires 0 <= i && i < m.lenX()
14 requires 0 <= j && j < m.lenY()
15 pure func (m inout *r DenseMatrix) lookup(i, j int) (res int) {
16 return (m.values )[i][j]
17 }

18 requires m.lenX() != 0
19 ensures m.lenX() == old(m.lenX ()) && m.lenY() == old(m.lenY ())
20 ensures forall i, j int ::(0 <= i <m.lenX() && 0 <= j <m.lenY()
21 ==> m.lookup(i, j) == old(m.lookup(i, j)) * z)
22 func (m inout *w DenseMatrix) multAlt(z int) {
23 // {m -> [m]}
24 // invariants have been omitted
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25 for x := 0; x < m.lenX (); x++ {
26 // invariants have been omitted
27 for y := 0; y < m.lenY (); y++ {
28 (m.values )[x][y] = (m.values )[x][y] * z
29 // {m -> [m]}
30 }
31 }
32 // {m -> [m]}
33 }

34 func client () {
35 var matrix *w[100][100] int = &w ...
36 // {matrix -> [matrix ]}
37 call(matrix)
38 // {matrix -> [matrix ]}
39 // All entries in the matrix have been multiplied by 2
40 matrix [0][0] = 3 // can still modify matrix
41 }

42 func call (values inout *w[100][100] int) {
43 // {values -> [values ]}
44 dm := &w DenseMatrix{values}
45 // {values -> [*dm.values # values], [dm -> [dm]}
46 dm.multAlt (2)
47 // {values -> [*dm.values # values], [dm -> [dm]}
48 }

We also have a client function showing how to manipulate the type
DenseMatrix. In line 35, we declare a write reference matrix to a two-
dimensional array. The borrowing context is {matrix 7→ [matrix]}. Then
the function call is invoked in line 37. Since the parameter values of the
function call is annotated with inout, the borrowing context stays unchanged
after this call. When entering the function call, the borrowing context is
{values 7→ [values]}, as shown in line 43. Line 44 declares a write reference
dm pointing to a DenseMatrix instance, which takes values as the field. Thus,
the borrowing stack of values changes to values 7→ [∗dm.values # values],
as shown in line 45.

5.3.2 Struct with Recursive Reference

As we discussed in Section 4.9, we have introduced a new *box reference.
The following is an example of using *box references. First, we define the
structure of Tree, which contains three fields: Left, Value, and Right. Left
and Right are *box references to other Tree nodes, and Value is an integer
value. The method Contains checks if a given value v exists in the binary
tree.

The Insert method inserts a new node with value v into the binary tree.
The method decides whether to insert the new node as the left child or
right child based on whether the sum of the current node’s value and v

is even or odd. Since the write reference and read reference cannot be
nil, the precondition of the method Insert requires that self is not nil.
Because self is a write reference to Tree, the method Insert is allowed to
modify self. When entering the Insert method, the borrowing context is
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{self 7→ [self ]}, which stays the same within the entire function. Notice
that the receiver self is not annotated with inout, but we return self as
the return value. Thus, self is still accessible after the Insert method.
However, the frame information in the borrowing stack of the receiver before
invoking the Insert method will be lost.

1 type Tree struct {
2 Left *box Tree
3 Value int
4 Right *box Tree
5 }

6 requires self != nil
7 pure func (self inout *r Tree) Contains(v int) bool {
8 return self != nil && self.Value == v ||
9 (self.Left != nil && self.Left.Contains(v)) ||

10 (self.Left != nil && self.Right.Contains(v))
11 }

12 requires self != nil
13 ensures res.Contains(v)
14 func (self *w Tree) Insert(v int) (res *w Tree) {
15 // {self -> [self ]}
16 if (self.Value + v) \% 2 == 0 {
17 if self.Left == nil {
18 self.Left = &w(Tree{Value: v})
19 // {self -> [self ]}
20 }else{
21 self.Left = self.Left.Insert(v)
22 // {self -> [self ]}
23 }
24 // after merge: {self -> [self ]}
25 } else {
26 if self.Right == nil {
27 self.Right = &w(Tree{Value: v})
28 // {self -> [self ]}
29 }else{
30 self.Right = self.Right.Insert(v)
31 // {self -> [self ]}
32 }
33 // after merge: {self -> [self ]}
34 }
35 // after merge: {self -> [self ]}
36 return self
37 }

In practice, the restriction that *box references can only be used when
defining a struct has certain limitations. For example, since we constrain
that the write and read references that already exist in the borrowing context
cannot be nil and the *box reference can only be used within the definition
of a struct, the linear type system cannot support the method DeleteAll

because the DeleteAll method may produce a nil value (all nodes in the
tree are deleted).

We will explore how our system would support the method DeleteAll if
we allow to use *box references outside the definition of a struct. The
method DeleteAll removes all nodes with the value v from the binary tree.
The deleteLeftMost method is a helper function for the method DeleteAll,
which deletes the leftmost node in a tree.

1 requires self != nil
2 ensures res != nil ==> !res.Contains(v)
3 func (self *w Tree) DeleteAll(v int) (res *box <w> Tree) {
4 // {self -> [self ]}
5 var newLeft , newRight *box Tree
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6 if self.Left != nil {
7 newLeft = self.Left.DeleteAll(v)
8 }
9 if self.Right != nil {

10 newRight = self.Right.DeleteAll(v)
11 }
12 if self.Value == v {
13 if newLeft == nil {
14 // at most one subtree , thus use other one:
15 res = newRight
16 } else if newRight == nil {
17 // at most one subtree , thus use other one:
18 res = newLeft
19 } else {
20 // newRight != nil , newRight != nil
21 var leftMost int
22 self.Right , leftMost = newRight.deleteLeftMost(v)
23 // overwrite value that should be deleted:
24 self.Value = leftMost
25 self.Left = newLeft
26 res = self
27 }
28 }else {
29 self.Left = newLeft
30 self.Right = newRight
31 res = self
32 }
33 return res
34 }

35 requires self != nil
36 requires !self.Contains(v)
37 ensures res != nil ==> !res.Contains(v) && v != leftMost
38 func (self *w Tree) deleteLeftMost(ghost v int)(res *box <w> Tree ,
39 leftMost int){
40 if (self.Left != nil) {
41 self.Left , leftMost = self.Left.deleteLeftMost(v)
42 res = self
43 } else if (self.Right != nil) {
44 res , leftMost = self.Right , self.Value
45 } else {
46 res , leftMost = nil , self.Value
47 }
48 return res , leftMost
49 }

In the method DeleteAll, we recursively traverse the tree looking for nodes
with values equal to v and delete them. In line 5, we declare newLeft and
newRight as *box Tree, representing the new subtrees of self, where all
nodes are not equal to v. As shown in line 3 and line 38, the return values of
the method DeleteAll and the method deleteLeftMost are of type *box<w>

Tree, which are a *box reference with write access to a Tree. We do not go
into details of these methods.

By allowing the use of *box references outside type definitions, we can
provide appropriate signatures for the method DeleteAll and the method
deleteLeftMost. However, at certain program points, it may be difficult
to determine what the borrowing context is. For example, in lines 7 and 9, be-
cause the return values of self.Left.DeleteAll(v) and self.Right.DeleteAll(v)

are of type *box<w> tree, it is not possible to determine if newLeft and
newRight are nil or not. If newLeft and newRight are not nil, we should add
their borrowing stacks into the borrowing context. Otherwise, there is no
need to add the borrowing stacks of newLeft and newRight. Since a *box

reference can be either nil or a read/write reference, the borrowing stack of
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a *box reference is uncertain. Due to our lack of research on *box references,
we adhere to the design choice of only allowing the use of *box references
when defining structures.

5.4 Interface

The following is a simplified example from Gobra [9]-visitor pattern.gobra,
which shows how our type system works with interfaces.

1 // visitor
2 type visitor interface {
3 pure visitVar(v inout *r variable) int
4 pure visitCons(c inout *r constant) int
5 }

6 type node interface {
7 requires v != nil
8 pure accept(v visitor <r>) int
9 }

10 // variable
11 type variable struct {
12 id int
13 }
14 requires v != nil
15 pure func (self inout *r variable) accept(v visitor <r>) int {
16 // {self -> [{ self }], v -> [{v}]}
17 return v.visitVar(self)
18 }

19 // constant
20 type constant struct {
21 value int
22 }
23 requires v != nil
24 pure func (self inout *r constant) accept(v visitor <r>) int {
25 // {self -> [{ self }], v -> [{v}]}
26 return v.visitCons(self)
27 }

28 // evaluator
29 type evaluator struct {
30 f int
31 }
32 pure func (self inout *r evaluator) visitVar(v inout *r variable) int {
33 // {self -> [{ self }], v -> [{v}]}
34 return v.id
35 }
36 pure func (self inout *r evaluator) visitCons(c inout *r constant) int {
37 // {self -> [{ self }], c -> [{c}]}
38 return c.value
39 }

40 func evaluator_client () {
41 ev := &r evaluator{f:2}
42 // {ev -> [{ev }]}
43 a := &r constant {42} // type of a: *r constant
44 // {ev -> [{ev}], a -> [{a}]}
45 res := ev.visitAddition(a)
46 // {ev -> [{ev}], a -> [{a}]}

47 var b node <r> = toInterface (&r variable {0})
48 // {ev -> [{ev}], a -> [{a}], b -> [{b}]}
49 res := ev.visitAddition(b)
50 // {ev -> [{ev}], a -> [{a}], b -> [{b}]}

51 c := b.(*r variable)
52 // {ev -> [{ev}], a -> [{a}], c -> [{c}]}
53 }
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From line 2 to line 5, we declare an interface named visitor. The interface
defines two methods to visit two datatypes: variable and constant. These
two datatypes are the subtypes of interface node. Lines 14 to 18 define
the accept method for the type variable and line 16 shows the borrowing
context within the method, which is {self 7→ [{self}], v 7→ [{v}]}. The
method for type constant is analogous to the method for type variable.

Lines 20 to 22 declare the type evaluator, which is a subtype of interface
visitor. The type evaluator implements method visitVar from line 32 to
line 35. For the method, the borrowing context is {self 7→ [{self}], v 7→
[{v}]}, shown in line 33. The visitCons method is analogous.

We also have a evaluator client function, line 43 creates a read refer-
ence a to constant. The type of a is *r constant. Line 45 invokes
method ev.visitAddition(a). Because the receiver and parameter are
both annotated with inout, the borrowing context stays unchanged, which
is {ev 7→ [{ev}], a 7→ [{a}]}. Then in line 47, we create a read reference to
variable and then cast it to node. As discussed in Section 4.8, the target
of this assignment, the variable b, is expected to possess the same access
as the reference being cast. Therefore, the borrowing context changes to
{ev 7→ [{ev}], a 7→ [{a}], b 7→ [{b}]}, and stays the same after the func-
tion call in line 50. Lastly, line 51 casts b to a read reference to variable

and assigns the result to c. Thus, the borrowing stack associated with
b is eliminated from the borrowing context, and the borrowing stack of
c is added to the borrowing context. The borrowing context changes to
{ev 7→ [{ev}], a 7→ [{a}], c 7→ [{c}]}.

5.5 Map

A map is similar to a slice, which is also a reference-type data structure.
Below is an example that shows how our system supports maps.

The parameters of the function getSalary are a string e and a variable
s, which holds read access (indicated by r map[string]int) to the mem-
ory location of a map. The borrowing context is {s 7→ [{s}]} within the
function getSalary. Similarly, the function modifySalary takes three pa-
rameters: a string e, a variable s, which is a write reference (indicated by w

map[string]int) to a map, and an int salary. Since s has write access to
the memory location, updating s in the function modifySalary is allowed.
Within the function main, we declare a variable employeeSalaries, which
has write access to the memory location storing the map. The borrow-
ing context is {employeeSalaries 7→ [employeeSalaries]}. In line 26, we
declare a variable e2, which has only read access to the same memory lo-
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cation. Therefore, the borrowing context changes to {employeeSalaries 7→
[{e2, employeeSalaries} # employeeSalaries]}, as shown in line 27.

1 func getSalary(e string , s inout r map[string]int) int {
2 // {s -> [{s}]}
3 salary , exists := s[e]
4 if exists {
5 return salary
6 // {s -> [{s}]}
7 }
8 // {s -> [{s}]}
9 return 0

10 }

11 func modifySalary(e string , s inout w map[string]int , salary int) bool {
12 // {s -> [s]}
13 oldSalary , exists := s[e]
14 if exists {
15 s[e] = salary
16 return true
17 // {s -> [s]}
18 }
19 // {s -> [s]}
20 return false
21 }

22 func main() {
23 var employeeSalaries w map[string]int
24 employeeSalaries = make(map[string]int)
25 // { employeeSalaries -> [ employeeSalaries ]}

26 var e2 r map[string]int = employeeSalaries
27 // { employeeSalaries -> [{e2 , employeeSalaries } # employeeSalaries ]}
28 }

5.6 Limitations of the Linear Type System

Although with the help of the linear type system, we can save the overhead
of permissions reasoning, in some cases our system may demonstrate some
limitations. Below is such an example and we provide codes for both Gobra
with and without the linear type system respectively.

In line 1, we declare two linear write variables x and y, line 2 declares a write
reference p, and line 3 declares a read reference q. The borrowing context
is {&x 7→ [&x],&y 7→ [&y]}. After the if-else control flow, the borrowing
stack is {&x 7→ [{p, q} # p # &x],&y 7→ [{p, q} # p # &y]}. If we want to
modify the memory location that p points to, we need to write activate p

in all borrowing stacks. Afterwards, if we want to use q after write activate

p, the linear type system will report an error since q is deleted from the
borrowing context.

1 x! := 5; y! := 6
2 var p *w int
3 var q *r int
4 // {&x -> [&x], &y -> [&y]}

5 if some_condition_known_at_runtime {
6 p = &w x
7 // {&x -> [p # &x], &y -> [&y]}
8 q = &r (*p)
9 // {&x -> [{p,q} # p # &x], &y -> [&y]}

51



CHAPTER 5. CASE STUDY

10 } else {
11 p = &w y
12 // {&x -> [&x], &y -> [p # &y]}
13 q = &r (*p)
14 // {&x -> [&x], &y -> [{p,q} # p # &y]}
15 }
16 // after merge: {&x -> [{p,q} # p # &x], &y -> [{p,q} # p # &y]}
17 *p=4;
18 // {&x -> [p # &x], &y -> [p # &y]}
19 print!("{}",p) // allowed
20 print!{"{}",q} // not allowed , q is not in the borrowing context

The following shows the example in Gobra without linearity. Line 1 declares
two shared variables, x and y, and line 2 declares two references p and q.
If the if branch is taken, then reference p and q will point to x otherwise
they will point to y. With permission reasoning, all accesses after line 10
are allowed.

1 x@ := 5; y@ := 6
2 var p,q *int
3 if some_condition_known_at_runtime {
4 p = &x
5 q = &(*p)
6 } else {
7 p = &y
8 q = &(*p)
9 }

10 *p=4;
11 print!("{}",p) // allowed
12 print!{"{}",q} // allowed

The example above illustrates that our designed linear type system might be
overly restrictive, and will potentially rule out correct codes in some cases.

Another limitation is that in the designed linear type system, the accesses
associated with read references and write references cannot be altered. If
a reference is declared as a read reference, it is impossible to modify the
memory through this reference. Whereas in Gobra without linearity, we can
use fractional permission to allocate different permissions to a reference. For
example, if we have a reference x, we can assign read permission to x using
acc(x, ). Subsequently, if we want to grant x write permission, we can use
acc(x) to achieve this.

5.7 Summary

From the previous analysis, it is evident that our linear type system is suitable
for complex data types having recursive fields or hierarchical structures that
require permission reasoning. We can get rid of the annotation overhead of
memory reasoning including predicates and fold and unfold annotations.
The transfer of permissions between functions or methods is also not needed
because the linear type system takes care of the permission-related concerns.
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Due to the reference management mechanisms in the linear type system,
references may automatically become inaccessible due to the changes in
the borrowing context. If programmers do not want a reference to become
invalid, or if they want to manually manage the permissions associated with
a reference, it is more appropriate to use Gobra without linearity.
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Conclusion

To simplify the memory reasoning for heap-allocated values, we design a
linear type system for Gobra. We add two type modifiers, linear read and
linear write, to Gobra’s type system to introduce linearity into Gobra. Also,
we introduce read and write references for linear values. The basic idea of
our linear type system is that multiple read-only references may exist at the
same time, but write references cannot exist with other references. Thus, the
type system tracks references to ensure linearity and takes the responsibility
to protect memory safety. We introduce a context in our type judgments,
namely the borrowing context. This allows the type system to determine
whether a reference or variable has permission to perform operations. For
instance, if we intend to modify a memory location through a reference, the
type system mandates that the reference must have write access to that
memory location. Furthermore, we developed the type system’s support for
features like conversion, function calls, and recursive structures involving
linear references.

In Chapter 5, we demonstrate how to replace permission reasoning using the
linear type system, which shows that the annotation overhead has decreased
and our design is suitable for complex structs having recursive fields or
hierarchical structures. While the lack of an implementation prevents us
from obtaining concrete measurements, we are highly optimistic that the
overall verification time could decrease substantially if Gobra supported such
a type system. Then, we propose prospective avenues for future research.
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6.1 Future Work

Explore the possibilities and limitations of using graphs for the
borrowing context. Currently, we employ a set of stacks to implement
the borrowing context, facilitating the tracking of linearity and reference
information. Nevertheless, after conducting preliminary experiments, it
appears that Directed Acyclic Graphs (DAGs) possess a structural advantage
for serving as the foundational structure for the borrowing context. However,
without in-depth investigation, we conservatively estimate that the code
scope supported by stacks and DAGs does not exhibit significant disparities.
Moreover, opting for a DAG necessitates ensuring the absence of cyclic
structures within the entire graph, potentially introducing complexities in
node insertion, deletion, or establishing inter-node edges. Consequently, this
paper continues to utilize the stack-based structure for the borrowing context.
We have not conducted an exhaustive exploration of the possibilities and
limitations of using graphs, which should be studied intensively in the future.

Investigate the compatibility of the linear type system with concur-
rency. As mentioned before, Go is a popular programming language known
for its simplicity and concurrency support, and goroutines are a feature in
Go for implementing concurrency. Gobra already supports the creation of
goroutines using regular functions or method calls [1]. In theory, based on
our current design of the linear type system, we do not need to introduce
new features to support data structures like channels, which is similar to
map. However, channels are typically used in concurrent scenarios, and the
compatibility of our linear type system with concurrency is still unknown.
Therefore, further research is needed in this area.

Implement the type system in Gobra. We do not provide an implemen-
tation currently. A complete implementation would be helpful for analyzing
the expressiveness and efficiency of the designed type system in the future.
Additionally, in a naive implementation, certain operations on the borrowing
context can lead to the loss of linearity information. For instance, when
we convert a linear value into a non-linear value, we directly remove the
borrowing stack associated with the linear location, leading to a loss of
information about the frames present in the borrowing stack. Therefore, it
is advisable to contemplate if there are alternative and superior methods of
managing information in the borrowing context during the implementation.

Extend the linear type system to support closures. This thesis has
focused exclusively on regular function calls and method invocations, without
delving into the provision of support for closures. Consequently, the next
step involves extending the linear type system to encompass closures.
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6.1. FUTURE WORK

Evaluate the linear type system on larger Go programs. We aspire
to apply our linear type system to larger Go programs, including projects like
VerifiedSCION [10] and WireGuard [11]. This endeavor will provide us with
a more comprehensive evaluation of the linear type system’s effectiveness.
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Appendix A

Complete Code Covered in
Section 5.2

1 // Any copyright is dedicated to the Public Domain.
2 // http :// creativecommons .org/ publicdomain /zero /1.0/

3 package pkg

4 requires forall k int :: 0 <= k && k < len(s) ==> acc(&s[k])
5 ensures forall k int :: 0 <= k && k < len(s) ==> acc(&s[k])
6 ensures forall k int :: 0 <= k && k < len(s) ==> s[k] == old(s[k]) + n
7 func incr (s []int , n int) {
8 invariant 0 <= i && i <= len(s)
9 invariant forall k int :: 0 <= k && k < len(s) ==> acc(&s[k])

10 invariant forall k int :: i <= k && k < len(s) ==> s[k] == old(s[k])
11 invariant forall k int :: 0 <= k && k < i ==> s[k] == old(s[k]) + n
12 for i := 0; i < len(s); i += 1 {
13 s[i] = s[i] + n
14 }
15 }

16 func client () {
17 a@ := [4]int { 1, 2, 4, 8 }
18 incr(a[2:], 2)

19 assert a[0] == 1 && a[1] == 2
20 assert a[2:][0] == a[2] && a[2:][1] == a[3]
21 assert a == [4] int { 1, 2, 6, 10 }
22 }
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