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1 Introduction

Symbolic execution (8] is a program analysis technique and was proposed in
the past for several different applications, such as test case generation [5] or
taint analysis [9]. An input program is not executed with concrete input val-
ues but symbolic ones are used instead. By step-wise executing the program,
constraints on symbolic values are tracked. An important component of
most symbolic execution frameworks is the SAT modulo theory (SMT) solver.
A formula is given to the SMT solver, which can either prove its satisfiability,
give a counterexample, which violates it, or respond with unknown. Sym-
bolic execution explores a program path-wise and queries the SMT solver
with many (and ideally comparably simple) formulas along the way. There-
fore, symbolic execution typically queries the SMT solver often, but with
relatively simple formulas, in contrast to e.g. tools based on weakest pre-
condition calculi.

1.1 Problem Statement

Several symbolic execution frameworks have been proposed in the past.
EXE [5], its successor KLEE [4], Rosette [11], or Silicon [10] are just a few
examples. Although similarities exist, e.g. that they explore paths, there are



neither standard approaches nor common tools for debugging or profiling.
Therefore, finding optimization targets is challenging and requires profound
knowledge, e.g. about how the symbolic execution engine represents the
program state or how it interacts with the SMT solver.

Due to the huge number of program paths that are explored during a
symbolic execution, analyzing on which path most time was spent is already
a tricky question, especially without tool support. Having a profiler that
analyzes and visualizes the operations of a symbolic execution framework
would therefore be of great use. We see potential for a profiler for Silicon,
which facilitates the identification of performance problems in Silicon. It is
mainly targeted at maintainers of Silicon to get insights into the operations
that occur while symbolically executing a specific input program. Based on
similarities between different symbolic execution frameworks, we estimate
that some profiling concepts might also be applicable to other frameworks.

1.2 Terminology

In this project, we refer to a symbolic execution framework as the entire ver-
ification software including the SMT solver. The symbolic execution engine
is the entire framework except the SMT solver.



2 Core Goals

A profiler for the Silicon symbolic execution framework will be developed,
which helps maintainers to identify culprits causing performance problems.
Earlier work on a logging infrastructre for Silicon [3] as well as on the Z3 ax-
iom profiler |2] will be used as inspiration, because some aspects are similar,
e.g. visualization of information on program paths.

Profiler Architecture. The implementation is split into layers, starting
with profiling high-level aspects of any symbolic execution framework and
becoming more specific to the used algorithms and techniques of Silicon.
On each layer and based on sample programs, profiling recipes and analysis
techniques will be derived and implemented. The implementation should
allow easy repetition of the profiling. Furthermore, it should allow wvisual-
ization and analysis of the collected data. This can happen either directly
following the symbolic execution of an input program or by storing the data
in a suitable format for later use. Hence, the data format represents an
important aspect of this thesis and also determines how easily the profiler
could be used by another symbolic execution framework.

Symbolic Execution Engine vs. SMT solver. Several papers [1}/4-6]
have reported that the SMT solver significantly influences the execution time
and is, despite recent advances, still the limiting factor. Therefore, several
optimizations proposed in literature try to speed up queries to the SMT solver
by e.g. caching or shrinking them [4,5]. Hence, the top most layer focuses on
the interaction between the symbolic execution engine and the SMT solver.
Not only the total path execution time of the SMT solver, but also the number
of queries and the execution time distribution of queries are of interest.
Profiling recipes will be developed and implemented in this layer so that the
profiler will be able to answer these questions.

Analysis of Sample Programs. After implementing the first layer, an
analysis of sample programs is performed. The analysis determines whether
the symbolic execution engine or the SMT solver should be the focus of the
second layer. Furthermore, the sample programs will be grouped according
to the analysis results.

Time Distribution among Algorithms. In the second layer, the dif-
ferent algorithms used in either the engine or the SMT solver will be profiled.



For the engine, algorithms for branching, state modification, or state merg-
ing are potential candidates. Similarly for the SMT solver, the algorithms
used to handle quantifiers, non-linear arithmetic, or lemma learning might
be interesting. The profiler will be extended to collect and analyze data in
order to decide which part looks most promising for further investigation.

In-Depth Analysis. The runtime of the specific operations of an algo-
rithm will be profiled in the lowest layer. At this point, it is not clear yet
whether it will be a specific algorithm, e.g. state merging, or if the analysis
will be concerned with specific SMT encoding.

The developed recipes of the first two layers might be generic enough to
be of use for other symbolic execution frameworks as well (see section .
However, this layer will most likely be specific to Silicon and its implemen-
tation.

To illustrate above goals, figure[l|shows two execution
paths, namely ¢; and ¢o. Each path consists of several entry
blocks, a, c;, and d;, that represent executions of specific
algorithms, e.g. for state consolidation. A block in turn
comprises several queries to the SMT solver, that were
issued during the execution of the represented algorithm.
The profiler will not only return the total execution
time of an entire path g1, but also answer questions about
individual blocks on a path. G
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Figure 1



3 Extension Goals

e The profiler could be extended to give insights into these additional
properties:

Similarities between Queries. While symbolically executing a
certain path, Silicon not only extends the path constraint, but also
modifies the heap representation of the executed program. We esti-
mate that queries along a path might expose similarities, because only
a small part of the symbolic execution state changes in every step.
Hence, an analysis or graphical representation of the similarities and
differences of queries could be helpful. For example, if two subsequent
queries are almost identical but have a significantly different execu-
tion time, looking at the differing parts of the query could help to
understand the execution times.

Incurred SMT Solver Work. Building up on the redundancy be-
tween SMT solver queries, the profiler could also analyze the statistics
of the SMT solver (e.g. Microsoft Research’s Z3 [7]) over time on a
path, as an attempt to better understand the work that is going on
in the solver itself. As an example, if the SMT solver has a metric for
work using non-linear arithmetic, an increase of this metric would indi-
cate that the queries contain non-linear constraints or at least require
solving non-linear arithmetic operations.

e As mentioned, the profiler might not be restricted to the operations
of Silicon but some aspects might be applicable to other symbolic ex-
ecution frameworks as well. Therefore, an extension goal could be to
extend a second framework to produce and store data about its sym-
bolic execution in the same data format as expected by the developed
profiler. This would allow the profiler to visualize the execution of the
other framework.
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