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Abstract
Re-borrowing functions in the context of Rust return aliases (in
the form of references) of reference-typed arguments. Prusti is a
verifier for Rust programs; it supports a subset of the language,
including re-borrowing functions that return a single reference.
Specifications of these functions must capture the effects of the
aliasing – concretely, modifications through the returned reference
are eventually observable in the aliased data. This work extends
the existing support for re-borrowing functions to instances where
multiple references are returned. An evaluation demonstrates the
practicality of the solution. The problem can be generalized fur-
ther by allowing structures that contain references. We explore
some of the significant challenges introduced by this and describe
approaches that future work could develop further in order to add
support to Prusti.
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1. Introduction

Proving the correctness of programs is hard. This is especially true for languages like
C++, where pointers (and, to some extent, references) allow the programmer to mutate
memory almost at will. A correctness proof must account for this power of pointers
and provide arguments that the modification of memory behind one pointer does not
unexpectedly invalidate what is known about the memory behind another pointer. With
the release of Rust in 2010, a much more restricted approach to memory and pointers
became mainstream. Rust’s novel type system allows the compiler to accurately reason
about the references (pointers, effectively) that are involved in a program and enforce
strong guarantees. One of these guarantees is that at any point of the execution, there is
at most one way to access any given memory region mutably. This makes the verification
of the following function possible without any further information:

fn f1(x : &mut u32, y : &mut u32) {
let n = ∗x;
∗y = 0;
assert!(∗x = n);

}

Only because the compiler guarantees that ∗x and ∗y don’t describe the same memory
region (we say they don’t alias) is the final assertion warranted. The equivalent program
in C++, which does not guarantee the non-aliasing, would not be valid.

To maintain these guarantees, Rust blocks access to variables while they have an alias
that is still in use. The following program is rejected by the compiler, because any access
of x is forbidden while its alias rx is still used:

let mut x = 0;
let rx = &mut x;
x = x + 1;
∗rx = ∗rx + 1;

But if x is accessed after the final usage of rx, the compiler accepts the program and we
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can observe the modification:

let mut x = 0;
let rx = &mut x;
∗rx = ∗rx + 1;
assert!(x = 1);

Re-borrowing functions, ie, functions that take mutable references as arguments and
return mutable references in turn, enable another variation of this behavior. Consider
the re-borrowing function

fn f2(rx : &mut u32)→ &mut u32 {
&mut ∗rx

}

and a program that calls f2:

let mut x = 0;
let rx = f2(&mut x);
∗rx = ∗rx + 1;
assert!(x = 1);

Because the rx returned by the call is an alias for x, we can observe the effects of the
increment in x. The Rust compiler knows this and therefore blocks access to x while its
alias rx is still used. The following program is rejected for this reason:

let mut x = 0;
let rx = f2(&mut x);
x = x + 1;
∗rx = ∗rx + 1;

Prusti is a tool to verify the correctness of Rust programs. By default, it checks a
program for the absence of panics and arithmetic under- and overflows. Specifications in
the form of pre- and postconditions as well as assertions can contain deeper statements
about the program’s behavior, and Prusti verifies that these claims are valid. Prusti
encodes Rust programs to Viper, a programming language with built-in support for
specifications. The encoding is done in such a way that if the encoded program is
accepted by Viper, the original Rust program is reported to be valid. If Viper rejects
the encoded program, the reason for the rejection is translated to some part of the Rust
program that is faulty. Viper implements a variation of implicit dynamic frames, which
enables reasoning about a program’s use of references and access to memory in general.
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Under this paradigm, a piece of code holds some set of permissions and can only access
memory it has permissions for. Prusti uses this feature of Viper to model the memory
of the Rust programs that it verifies. Essentially, the encoded program holds, at any
program location, permissions for all memory that is accessible in the corresponding
program location of the original Rust program.

One part of the encoding carried out by Prusti that requires special attention concerns
re-borrowing functions. First, their use of references requires advanced Viper features to
maintain the property that the encoded program always holds permissions for accessible
memory in the original Rust program. Second, useful descriptions of their behavior
require the introduction of new specification syntax. Concretely, specifications must be
able to state that modifications of the memory behind returned references is eventually
reflected in data referenced by the argument references. For the function f2 from before,
this is written as follows:

#[after_expiry(∗rx = before_expiry(∗result))]
fn f2(rx : &mut u32)→ &mut u32 {

&mut ∗rx
}

The specification (which is the part within the #[. . . ]) states that after the returned
reference (called result in the specification) expires (which just means it is not used
again), the value of the integer referenced by the rx argument – ie, ∗rx – equals the value
of the integer referenced by the returned reference immediately before its expiration –
ie, before_expiry(∗result). This specification allows a caller of f2 to understand the
relationship between the argument reference and return reference.

Today, Prusti supports re-borrowing functions with exactly one returned reference. How-
ever, Rust allows re-borrowing functions that are far more complex. The main contri-
bution of this thesis and sole topic of Chapter 3 is the generalization of Prusti’s current
encoding approach to re-borrowing functions that return arbitrarily many references.
We will see in Section 3.1 that the rules determining which input references are blocked
after a call to a re-borrowing function get more complex, and the behavior we can observe
as a result gets richer. The specification syntax, discussed in Section 3.2, must adapt to
be able to describe the newly possible behavior. The more technical Sections 3.3 to 3.5
describe how the Viper encoding manages permissions and handles specifications. To
this end, we introduce expiration tools, which are Viper resources that allow callers of re-
borrowing functions to synchronize the accessible memory in Rust with the permissions
they hold in the encoding. This thesis does not only describe a method for supporting
re-borrowing functions with many returned references, it also implements the method
in Prusti. The most important parts of the implementation are described in Section 3.6
and put in relation with Sections 3.1 to 3.5.

Re-borrowing functions can be generalized even further. Rust has structs, which are
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composite types. They can contain references, as the following example illustrates:

struct S〈′a〉 { rx : &′a mut u32 }

This defines a struct called S with a single field rx of type &′a mut u32. The ′a in
the type is a lifetime which, loosely speaking, tells the Rust compiler when the data
referenced by the reference is destroyed. Note that this lifetime is a generic parameter
of S, which means we can create instances of S for arbitrary lifetimes. Now let’s use S
to define another re-borrowing function:

fn f3〈′a〉(s1 : &′a mut S〈′a〉, s2 : &mut S〈′a〉) {
s2.rx = &mut ∗s1.rx;

}

Note the lack of a returned reference – in its stead, the s2 argument serves as an output
parameter. A program can create aliases by calling f3, just like calling f2 created
aliases:

let mut x = 0;
let mut s1 = S {rx : &mut x};
let mut s2 = S {rx : &mut 0};
f3(&mut s1, &mut s2);
∗s2.rx = ∗s2.rx + 1;
assert!(x = 1);

Structures with references pose new challenges. For example, they make re-borrowing
functions involving a statically unbounded number of references possible. For this, just
imagine a linked list type where the values are mutable references to, e.g., integers. In
Chapter 4 we describe more examples and provide encoding ideas that future work can
explore further.
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2. Background

2.1. Rust

Rust is a new systems language aiming to achieve safety, concurrency, and speed. While
low-level languages such as C are very fast, they allow the programmer to arbitrarily
mutate the entire program memory using pointers, which can (and often does) introduce
subtle bugs. For example, buffer overflows silently overwrite unrelated memory regions
and dangling pointers access memory that has already been repurposed in the meantime.
Incorrect use of pointers is the leading cause of security vulnerabilities in software [9],
one of the most famous examples probably being OpenSSL’s Heartbleed [10].

Rust solves a wide range of commonly occurring problems arising from incorrect use
of pointers by imposing a strict memory management discipline on the programmer,
enforced at compile time through the type system. At the heart of this discipline are
the concepts of ownership [5], borrowing [6], and lifetime [4]:

Ownership. Every memory location is exclusively owned by a variable. When the vari-
able goes out of scope, the memory location is deallocated.

Borrowing. A program part can operate on memory it does not own by borrowing a
reference to it. A reference is nothing more than, using C lingo, a pointer, but
with additional compile time checks to guarantee memory safety.

Lifetime. Every reference has a lifetime, which is the time during which the reference can
be used to access the pointed-to memory location. The Rust compiler enforces two
properties about lifetimes. First, every usage of the reference must happen within
its lifetime (this imposes a minimal valid lifetime). Second, the variable owning
the pointed-to memory location does not go out of scope during the lifetime (this
imposes a maximal valid lifetime).

Besides memory safety, the second major application of these Rust concepts is to enforce
safe concurrency. Specifically, Rust programs, at least when restricted to the safe subset
of the language, cannot have data races1. A data race happens if one thread reads

1This is true as long as you discount soundness bugs in the compiler [2] that allow you to make tons of
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memory that another thread is mutating at the same time. In Rust, where memory is
accessed through references, this can only happen when two threads hold references to
the same memory simultaneously. To ensure the absence of data races, the language
distinguishes between shared and mutable references. Shared references provide read-
only access to the referred memory, while mutable references provide full read-write
access. Mutable references are also called exclusive, because the compiler checks that
there is always either exactly one mutable reference or an arbitrary number of shared
references to every variable. This enables a powerful property – modifying data behind a
mutable reference cannot change any data behind other references, shared or mutable.

To maintain these guarantees, Rust must sometimes block access to one reference while
another reference is still in use. The following example produces a compile error, because
access to x is blocked while rx is still in use:

let mut x = 0;
let rx = &mut x;
x = x + 1;
∗rx = ∗rx + 1;

If access to x were not blocked, the memory owned by x could be mutated via two
different ways – via x itself, and via rx. Flipping the last two lines resolves the error,
because the last usage of the aliasing rx happens before the first access to x after taking
the reference:2

let mut x = 0;
let rx = &mut x;
∗rx = ∗rx + 1;
x = x + 1;

Some function calls cause similar behavior in order to maintain the same guarantees.
Consider a function that receives a mutable reference to a point and returns a mutable
reference to the point’s x-coordinate:

fn f4〈′p〉(p : &′p mut Point)→ &′p mut u32 {
&mut p.x

}

Calling f4 creates aliasing references, triggering the same blocking rules. The following
example again produces a compile error, because p is blocked while the aliasing px is

money [7].
2The next section gives an alternative explanation of this behavior in terms of the (implicit) lifetimes
involved in the program.
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still used:

let mut p = Point {x : 0, y : 0};
let px = f(&mut p);
p.x = p.x + 1;
∗px = ∗px + 1;

The compiler does not check f4’s definition for the creation of aliases. Instead, the mere
possibility (as indicated by the lifetimes in the function signature) is enough.

We call the creation of references obtained via existing references re-borrowing (because
the newly created reference borrows already borrowed data). Accordingly, f4 is a re-
borrowing function, because it returns a reference obtained from the argument reference.
We call references passed into the function input references and references returned by
the function output references.

Re-borrowing functions can involve multiple input and output references, as the following
example shows:

fn f5〈′p, ′q〉(p : &′p mut Point, q : &′q mut Point)→ (&′p mut u32, &′q mut u32) {
(&mut p.x, &mut q.x)

}

This function returns two references, one of type &′p mut u32 and another one of
type &′q mut u32. At the end of the function, the first contains an alias for the data
referenced by p, while the second contains an alias for the data referenced by q. The
lifetimes in function signature – here ′p and ′q – restrict which input references a given
output reference can re-borrow. In this case, the first output reference can only re-
borrow p, while the second output reference can only re-borrow q. The rules that govern
this are explored in more detail in Section 3.1. A caller of f5 may look as follows:

let mut p = Point {x : 0, y : 0};
let mut q = Point {x : 0, y : 0};
let (px, qx) = f(&mut p, &mut q);
∗px = ∗px + 1;
assert!(p.x = 1);
∗qx = ∗qx + 1;
assert!(q.x = 1);

It is important to note that even though p is blocked while px is still used, the same
does not hold for p and qx. This means we can already use p after the last usage of px,
regardless of whether qx is used afterwards.
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Rust also has structs, which allow the construction of composite data types. They can
contain references, as the following definition of a struct S shows:

struct S〈′a〉 { rx : &′a mut u32 }

This enables another kind of re-borrowing function, where an alias for data referenced by
a reference inside the struct is returned, or where an alias is stored inside a struct that
the function receives a reference to (like an output parameter), or both. An example
of this is the following function, which creates a reference to data referenced by the
reference inside s1 and stores it in s2:

fn f6〈′a〉(s1 : &′a mut S〈′a〉, s2 : &mut S〈′a〉) {
s2.rx = &mut ∗s1.rx;

}

A caller of f6 could look like this:

let mut x = 0;
let mut s1 = S {rx : &mut x};
let mut s2 = S {rx : &mut 0};
f6(&mut s1, &mut s2);
∗s2.rx = ∗s2.rx + 1;
assert!(x = 1);

Because s2.rx is an alias of x after the call to f6, Rust restricts access to x while the
alias is still in use.

2.2. Polonius

The Rust compiler checks the access rules for references described in Section 2.1 at
compile time. The responsible module is called the borrow checker, implemented by
an inference algorithm called Polonius [1]. This algorithm analyzes the borrows and
lifetimes involved in a method and computes information that allows the compiler to
verify the validity of reference usages. Prusti uses Polonius to implement various parts
of its reference model. We will use this section to explore the core concepts of Polonius.

Polonius introduces the notion of loans, which indicate that some data is not only ac-
cessible through the owning variable, but also through an aliasing reference. They are
created by borrow expressions, for example:

let y : &u32 = &x.
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The expression &x creates a loan (call it L1), which is subsequently stored in the y
variable. After a loan is created at one program point, it is alive alive for some time
until it becomes dead at another program point. The process of transitioning from the
former to the latter state is called expiration. A loan is alive while it could be accessed
later in the execution and dead otherwise. In the example, L1 is live while y could be
dereferenced later.

Polonius tracks the liveness of loans via regions, which are an alternative interpretation
of Rust’s lifetimes. First, every reference type and borrow expression appearing in a
function is assigned a unique region. The example would thus be changed to

let y : &′r1 u32 = &′r2 x,

where the type of y is assigned the region r1 and the borrow expression is assigned the
region r2. A region is interpreted as the set of loans that need to be alive to dereference
the corresponding reference. For a borrow expression, this is straightforward – the
assigned region contains the loan created by the borrow expression. The region r2 from
the example therefore contains the loan L1. Now take the assignment of the created
reference to y of type &′r1 u32. Dereferencing y requires at least the loans from r2 to
be alive. Instead of listing all loans in r1 explicitly, we just record the subset constraint
r2 ⊆ r1. In Rust, this would be pronounced as r2 outlives r1. Branches can create
multiple subset constraints for one region:

let y : &′r1 u32 = if c { &′r2 x1 } else { &′r3 x2 }

creates the constraints r2 ⊆ r1 and r3 ⊆ r1. Borrow expressions can also create subset
constraints, if creating the borrow requires dereferencing other references. For exam-
ple:

let y : &′r1 u32 = &′r2 x;
let z : &′r3 u32 = &′r4 ∗y;

The two assignments create the constraints r2 ⊆ r1 and r4 ⊆ r3. The borrow expression
&′r4 ∗y creates another constraint r1 ⊆ r4, because creating the borrow with region r4
requires dereferencing a reference with region r1.

After collecting all subset constraints, Polonius can infer the concrete set values for all
regions. With this information, the question whether a loan L is alive at a program
point P is reduced to the question whether a region R that contains L is alive at P .
How can we decide whether R is alive at P? Simply inspect all statements that could
be executed after P and check whether a reference with region R is dereferenced. If this
is the case, R is alive at P .

We can now explain the blocking behavior from Section 2.1 using regions and loans,
instead of manually figuring out possible aliasing relationships. Recall that the following
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program fails to compile, because x is blocked while the alias rx is still used. The types
and regions have been made explicit:

let x = 0;
let rx : &′r1 mut u32 = &′r2 mut x;
x = x + 1;
∗rx = ∗rx + 1;

This creates one loan L1, through &′r2 mut x. For the lifetime of this loan, access to x is
blocked. The reasoning is that the loan represents an alias for x, and as long as the loan
is alive the alias may still be used. We collect all subset constraints and subsequently
figure out that r2 = {L1} and r1 = {L1}. The loan is alive until the very end of the
program, which follows from two facts. First, rx, which has the type &′r1 mut u32,
is dereferenced in the last line. Second, the region r1 contains L1. It follows that r1,
and L1 by implication, are alive until after the last line. The compiler reports an error
because x is read and written while L1 is alive.

We fixed the error by flipping the last two lines:

let x = 0;
let rx : &′r1 mut u32 = &′r2 mut x;
∗rx = ∗rx + 1;
x = x + 1;

Everything is still the same, except that L1 now expires before x is accessed. Because
the loan is dead in the final line, x is not blocked anymore and accessing it does not
produce an error.

Besides borrow expressions like &x and &mut x, certain other operations create loans
as well. Moving or copying a reference from one place to another creates a loan.3 For
example, assuming y is a reference-typed variable, the statement

let z : &u32 = y

creates a new loan. The statement could be equivalently rewritten as

let z : &u32 = &(∗y),

which explains the created loan by making the borrow expression explicit. Function calls
create loans for reference-typed argument and return places. For example, consider a
function

fn f7(y : &u32)→ &u32
3This is not how vanilla Polonius actually works. However, Prusti modifies Polonius to create loans
also for moves and copies of references – this does not affect the correctness of Polonius’ inference
and simplifies the implementation of Prusti.
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1| fn f8〈′p, ′q〉(
2| p : &′p mut Point,
3| q : &′q mut Point
4| )→ (&′p mut u32, &′q mut u32) {. . . }

6| fn f9() {
7| let mut p = Point {x : 0, y : 0};
8| let mut q = Point {x : 0, y : 0};
9| let rp1 = &mut p; (L0)

10| let rq1 = &mut q; (L1)
11| let rp2 = rp1; (L2)
12| let (rp3, rq2) = f8(rp2, rq1); (L3, L4, L5, L6)
13| let rq3 = &mut ∗ rq2; (L7)
14| }

Figure 2.1.: An example program to illustrate the information computed by Polonius.
The loans created by each statement are written in parentheses on the right
side.

and a call to this function:
let z : &u32 = f7(y).

This creates one loan for the argument y (again explained by writing the argument
as &(∗y), making the borrow expression explicit) and another loan for the returned
reference that is saved in z. This second loan is justified because even though we don’t
see it from the outside, the function must create the returned reference at some point
with a borrow expression.

We now summarize the information that Polonius provides. First, we can obtain a list
of all live loans at a program location P . Second, we can compute a list of all loans
expiring immediately before the program location P , by taking the loans that were alive
at a predecessor location but are not alive at P anymore. Third, we can ask for a list of
loans kept alive by a reference-typed place at a program location P .

To better understand these queries, consider the example program from Fig. 2.1, which
creates loans L0–L7. The loans L0, L1, and L7 are created by borrow expressions. The
loan L2 is created by the move of a reference. The loans L3–L6 are created by the
function call. The references rp2 and rq1 are moved into the call, creating loans L5 and
L6, respectively. The call returns two references, which can borrow from the arguments.
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Consequently, the loans L3 and L4 are created.

Consider liveness of loans first. The loan L0 is created in line 9 and is alive until after
line 12. Even though rp1 is not used again after line 11, the move into rp2 keeps the
loan alive while rp2 is still alive. The loan L1 is created in line 10 and is alive until after
line 13. Again, even though rq1 is last used in line 12, the reference rq2 could borrow
from rq1, extending the lifetime of L1. As for the other loans, L2, L3, and L5 are alive
until after line 12, and L4, L6, and L7 are alive until after line 13.

Information about the expiration of loans can be derived from the information about
the liveness of loans. The loans L0, L2, L3, L5 expire after line 12, and the loans L1,
L4, L6, L7 expire after line 13.

Finally, Polonius computes the loans a place is keeping alive at a given program location.
For example, take the place rp3 in line 12, which keeps the loans L0, L2, L3, L5 alive
– meaning these loans cannot expire while rp3 is still used. The loan L3 is kept alive
by rp3 because the corresponding reference is stored in this place. But L3 can borrow
data from the first function argument, which is assigned the loan L5 – this means L5 is
transitively kept alive by rp3. The same reasoning applies to L2 and L0 (L5 can borrow
data from L2, and L2 can borrow data from L0).

2.3. Viper

Viper [11] is an intermediate verification language that includes tools for permission-
based reasoning about heap state based on implicit dynamic frames [12]. Informally,
permissions describe regions of the heap that they grant access to. Methods in Viper
maintain a context, which contains the currently available permissions (or, more gener-
ally, resources, as we will see later). This context is updated as the execution proceeds.
Two statements that modify the context are inhale and exhale. The following example
illustrates their use:

var x : Ref
x.f := 1 // error: missing permissions for x.f

inhale acc(x.f)
x.f := 1
exhale acc(x.f)
x.f := 1 // error: missing permissions for x.f

We begin with a variable x, which is a reference. Viper’s references can store data via
fields, of which f is an example. Accessing the field f via the reference x is only allowed
when also holding permissions for this field – we say the access is framed in this case. The
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first assignment is lacking these permissions, which is why it fails. After adding them to
the context with the inhale statement – acc(x.f) denotes the permission to access f via
x – the second assignment succeeds. We can remove, or exhale, the permissions from
the context again. Afterwards, the context does not contain the permission acc(x.f)
anymore and the final assignment fails again.

Predicates bundle multiple permissions together. For example, the following predicate
P contains two permissions, acc(x.f) and acc(x.g), for some reference x:

P (x : Ref) = acc(x.f) ∧ acc(x.g)

The ∧ symbol in this context is not a logical conjunction, but rather means that the
permissions acc(x.f) and acc(x.g) contained in the predicate give access to separate
memory regions. The context can not only contain permissions for fields, but also
predicate instances (collectively known as resources). Having a predicate instance P (x)
in the context does not grant access to x.f and x.g. The unfold statement instructs
Viper to replace a predicate instance in the context with the permissions it contains.
This means that after unfolding P (x), accessing x.f and x.g is allowed. The inverse
operation, which is called fold, replaces the permissions contained in a predicate instance
with the predicate instance itself. The following example illustrates this:

var x : Ref
inhale P (x)
x.f := 1 // error: missing permissions for x.f

unfold P (x)
x.f := 1
fold P (x)
x.f := 1 // error: missing permissions for x.f

We begin with a variable x and add the predicate instance P (x) to the context via
the inhale statement. The predicate instance itself does not directly provide access to
x.f , even though it contains the necessary permissions. After unfolding P (x), the next
assignment is possible. Once we fold P (x), accessing x.f is once more forbidden.

Viper has old-expressions, which allow the evaluation of expressions in past program
states. Consider the following example:

var x : Ref
inhale acc(x.f)
x.f := 1
label a

x.f := 2
assert x.f = 2
assert old[a](x.f) = 1
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This program defines a reference x and assigns the value 1 to x.f . It then gives the
name a to the program state immediately after the assignment, by means of a label.
It continues to overwrite x.f with the value 2. The following assertion checks that
x.f is equal to 2, which is true because of the assignment immediately before it. The
next assertion uses an old-expression to evaluate x.f in an earlier program state, the
one identified by the label a. Because the value of x.f was 1 at this point, the assertion
succeeds. An old-expression can omit the label, which evaluates the argument expression
in the initial state of the containing method.

Viper supports methods that encapsulate code. An example:

method f10(x : Ref) returns (y : Ref)
requires P (x)
ensures acc(y.f)

{
unfold P (x)
y := x

}

This defines a method f10 that takes a parameter x and returns the variable y, both
references. The method has a precondition, specified using requires, which contains the
resources that the caller is handing over to f10, in this case P (x). These resources make
up the initial context of the method. The method also has a postcondition, specified
using ensures, which contains the resources that f10 is handing over to the caller after
the call, acc(y.f) in this case. These resources must be contained in the final context
of the method. The method body unfolds P (x), which removes P (x) from the context
and adds acc(x.f) and acc(x.g) instead. After setting y and x equal, the postcondition
is satisfied.

Imagine a caller of f10:

var x : Ref
var y : Ref
inhale acc(x.f)
inhale acc(x.g)
fold P (x)
y := f10(x)
y.f := 1

It creates references x and y, inhales permissions for x.f and x.g, folds the predicate
instance P (x), and assigns the result of calling f10(x) to y. Calling f10 removes the
predicate instance P (x) from the context and adds permissions for y.f to the context –
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this follows from f10’s pre- and postcondition. Notice that accessing y.g is not possible
after the call, because permissions for y.g are not included in the postcondition of f10.
These permissions are lost.

The last feature of Viper that is important for this thesis are magic wands. We continue
with the previous example and look closer at the predicate instance that is given to
f10 due to its precondition. It is impossible to also include P (x) in the postcondition,
because the method body must unfold the predicate instance to obtain the permissions
for y.f required by the postcondition. However, the next best thing f10 can do is to make
a promise in the postcondition: “If you give me the permissions for y.f that you obtained
from my postcondition, I will be able to reassemble the original predicate instance P (x)
that you handed over to me due to my precondition.” Viper encodes such promises as
magic wands, which are another kind of resource. The magic wand for this example is
written as

acc(y.f) −∗ P (x),

which means that the permission acc(y.f) can be given up in exchange for P (x). Before
we discuss how f10 constructs this magic wand, we look at how a caller would use
it. Assume the same setup as before (two variables x and y, the context contains
P (x)) and consider the following call to f10, which now includes the magic wand in its
postcondition:

1| y := f10(x)
2| y.f := 1
3| apply acc(y.f) −∗ P (x)
4| unfold P (x)
5| x.f := 2
6| x.g := 3

After the call, the context contains acc(y.f) and the magic wand acc(y.f) −∗ P (x) that
we assumed to be included in the postcondition of f10. Thus in line 2 we can access y.f ,
but not x.f or x.g. After line 2 we don’t need to access y.f anymore, but we’d like to
access x.f and x.g again. Thus we apply the magic wand, which removes the left-hand
side – acc(y.f) – from the context and adds the right-hand side – P (x). Consequently,
we cannot access y.f after line 3, but we can unfold P (x) in line 4. This gives access to
x.f and x.g, as lines 5 and 6 demonstrate.

In order for a caller to be able to use the magic wand, f10 must include it in its post-
condition. This is only possible with a prior proof that acc(y.f) really is the missing
permission that makes it possible to reassemble P (x). This proof is written in Viper
as a package statement, shown in Fig. 2.2. The package statement contains statements
that explain how to obtain the resources on the right-hand side of the magic wand under
the assumption that the resources on the left-hand side are provided by the code that
is applying the magic wand. It removes the resources that are required to obtain the
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1| method f10(x : Ref) returns (y : Ref)
2| requires P (x)
3| ensures acc(y.f)
4| ensures acc(y.f) −∗ P (x)
5| {
6| unfold P (x)
7| y := x

8| package acc(y.f) −∗ P (x) {
9| fold P (x)

10| }
11| }

Figure 2.2.: A version of f10 that has the magic wand acc(y.f) −∗ P (x) in the post-
condition. Viper requires a proof that the magic wand is justified, which is
provided in the form of a package statement, lines 8–10.

right-hand side, unless they are included in the left-hand side. In this example, fold-
ing P (x) requires acc(x.f) and acc(x.g). The package statement thus removes acc(x.g)
from the context, but not acc(x.f). The latter is not removed because x = y and the
left-hand side includes acc(y.f). Besides removing acc(x.g), the package statement adds
acc(y.f) −∗ P (x) to the context. It follows that the final context contains acc(y.f) as
well as the magic wand acc(y.f) −∗ P (x), which are exactly the resources required by
the postcondition.

Besides resources, magic wands can also include assertions about the memory these
resources give access to. In the case of f10, we notice that because the argument x points
to the same memory as the returned y (recall that line 7 set them equal), modifying y.f
also modifies x.f . We can illustrate this further with another example:

y := f10(x)
y.f := 1
apply acc(y.f) −∗ P (x)
unfold P (x)
assert x.f = 1

Viper would reject this program, because it does not know about the relation between
x and y. However, we are aware of it and know the final assertion is warranted. To
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1| method f10(x : Ref) returns (y : Ref)
2| requires P (x)
3| ensures acc(y.f)
4| ensures acc(y.f) −∗ P (x) ∧ old[lhs](y.f) = x.f

5| {
6| unfold P (x)
7| y := x

8| package acc(y.f) −∗ P (x) ∧ old[lhs](y.f) = x.f {
9| fold P (x)

10| }
11| }

Figure 2.3.: The final version of f10 that extends the magic wand to include the relation
between x.f and y.f .

communicate this to Viper, we include the fact in the magic wand:4

acc(y.f) −∗ P (x) ∧ old[lhs](y.f) = x.f

The old-expression uses the lhs label, which is reserved for magic wands and identifies
the program state immediately before applying the magic wand. Thus old[lhs](y.f)
evaluates to the value of y.f immediately before the application and the right-hand side
further claims that this value is equal to x.f . Modifying the magic wand in this way
makes Viper accept the assertion x.f = 1. The final version of f10 with this modification
is shown in Fig. 2.3.

2.4. Prusti

Rust’s type system goes a long way towards verifying various memory safety proper-
ties about a program. But to statically check complex functional properties, further
instruments are necessary. Prusti [8] is a tool that extends Rust with a way to provide
functional specifications of functions, ie, descriptions of what a function does phrased in
a formal logic, and also verify their validity. It works by encoding Rust programs and
their specifications to Viper [11], an intermediate verification language, which ultimately
proves their validity. Prusti already supports some of the most essential features of Rust,
including certain aspects of the references and borrowing system.

4We omit the easily inferred unfolding of P (x) normally required by Viper to aid readability.
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2.4.1. Type Encoding

Prusti encodes Rust types as Viper predicates over references. Primitive types are en-
coded as permissions for a single field of Viper’s corresponding primitive type. Rust’s
u32 type, for example, is encoded as permissions for a single field vu32 of type Int:

u32(x : Ref) = acc(x.vu32).

A struct with n elements is encoded as permissions for n fields fi, . . . , fn of type Ref, each
corresponding to one struct field. The i-th field comes with permissions Pi corresponding
to its encoded Rust type:

structn(x : Ref) =
n∧

i=1
acc(x.fi) ∧ Pi(x.fi).

The encoding of tuple types matches the encoding of struct types.

An enum E with n variants E1, . . . , En is encoded as permissions for n + 1 fields. One
field, d, is of type Int and can assume values between 1 and n. The other fields, v1, . . . , vn,
are of type Ref. Depending on the discriminant, one of these fields comes with additional
permissions. If x.d has the value i, then x.vi comes with permissions Pi corresponding
to the type of Ei interpreted as a struct:

enumn(x : Ref) = acc(x.d) ∧ acc(x.v1) ∧ · · · ∧ acc(x.vn) ∧(
n∧

i=1
x.d = i→ Pi(x.vi)

)
.

Finally, a mutable reference to a type T is encoded as permissions for a single field p of
type Ref that comes with permissions corresponding to the encoding of T :

refmutT (x : Ref) = acc(x.p) ∧ PT (x.p).

A variable x of type T in Rust is translated to a variable x′ of type Ref in Viper. At
some program points, all memory implied by the type T is accessible through x. In this
case, we own the predicate instance PT (x′) in Viper. However, alive loans can restrict
access to parts of x at other program points, which means the full predicate instance
PT (x′) is not available in Viper (because parts of PT (x′) were used for the borrow that
created the loan).

Every memory access in Rust is translated to a corresponding series of field accesses
in Viper. The encoding must ensure that sufficient permission for these accesses are
available at any point.
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2.4.2. Functions and Function Calls

Prusti encodes every Rust function as one Viper function. For pre- and postconditions,
it does not use the equivalent feature of Viper, but instead inhales preconditions at
the beginning of the method and exhales postconditions at the end of the method.
Consequently, a function call in Rust is not encoded as the corresponding function call
in Viper, but instead as an exhale of the precondition followed by an inhale of the
postcondition.

Permissions for the arguments and return values are handled likewise. A method starts
with inhaling for every argument the predicate implied by its type and ends with exhaling
the predicate implied by the return type. A function call exhales the predicate instances
for the arguments and inhales the predicate instance for the return value.

In general, a function

#[requires(pre)]
#[ensures(post)]
fn f11(x1 : T1, . . . , xn : Tn)→ Tr {. . . }

is thus encoded as

method f11 (x1 : Ref, . . . , xn : Ref) returns (r : Ref) {
inhale

∧
i

PTi(xi)

inhale pre
. . .

exhale post
exhale PTr (r)

}

and a call r = f11(x1, . . . , xn) to this function is encoded as

exhale pre
exhale

∧
i

PTi(xi)

inhale PTr (r)
inhale post
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2.4.3. Re-Borrowing Functions

Two aspects of the re-borrowing functions introduced in Section 2.1 require special atten-
tion in Prusti. First there are specifications – mutations through the returned reference
are also reflected in the aliased variable. These relationships must be formulated in the
specification of the function, and we see soon that classic pre- and postconditions are
not sufficient for this. Second there is the permission management. The unblocking of
variables referenced by function arguments upon the expiry of the reference returned by
the function requires special steps in the encoding that justify the transfer of permissions
from the expiring reference to the unblocked value.

Take specifications first and consider a caller of the re-borrowing function f4 from be-
fore:

1| let mut p = Point {x : 0, y : 0};
2| let rp = &mut p;
3| let rx = f4(rp);
4| . . .

5| ∗rx = 1;
6| assert!(p.x = 1);

Recall that f4 returns a reference to the x-coordinate of the point referenced by the
argument, thus we expect to observe the effect of the assignment in line 5 also via p.x in
line 6. We cannot write this as an ordinary postcondition of f4, for two reasons. First,
the eventual value of p.x is not known after the call returns. It is only determined when
rx is assigned for the last time. Second, the encoding does not include permissions for p
immediately after the call to f4, which an assertion specifying the value of p would need
to be framed.

Prusti solves this with another kind of postcondition, called a pledge, which describes
what happens when the returned reference expires. In this example, the pledge would
state that upon expiry of the output reference, the x-coordinate of the value referenced
by the input reference has the same value as the final value of the output reference:

#[after_expiry(p.x = before_expiry(∗result)]
fn f4〈′a〉(p : &′a mut Point)→ &′a mut u32 {

&mut p.x

}

In general, pledges contain facts that become available after the expiration of the re-
turned reference. They may use the before_expiry(. . . ) environment to access the final
value of the returned reference immediately before its expiration.
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refmutPoint(rp)

Point(p)

u32(p.x) u32(p.y)

refmutu32(rx)

Figure 2.4.: The predicate instances after the function call. The solid arrows leaving
one instance indicate the nested instances required to fold it. The instances
for rx and p require the same u32-instance, explaining why they cannot be
folded at the same time. Rust acknowledges this by blocking p while rx
is still used. The faint arrow indicates the permissions the magic wand is
converting between.

Now consider permission management. We saw in Section 2.1 how calls to re-borrowing
functions can block places referenced by the input reference while the output reference
is still alive. This blocking and unblocking of places in Rust is reflected in the Viper
encoding by permission transfers. Section 2.4.2 explained how calling a (re-borrowing)
function consumes permissions for the input reference and produces permissions for the
re-borrowed output reference. Upon expiry of the output reference, permissions for it
are given up in exchange for the original permissions consumed by the function call.
The permission trade requires dedicated actions in the Viper encoding. We illustrate
this with the call to the re-borrowing function f4 from before. After line 1, we hold
the predicate instance Point(p). After taking the mutable reference to p in line 2, this
predicate instance is moved into the predicate instance refmutPoint(rp), which encodes
the mutable reference. Note that Rust blocks access to p while rp is alive, while Viper
explains this necessity by the impossibility of owning the predicate instances Point(p)
and refmutPoint(rp) simultaneously. Then f4 is called in line 3. Recall from f4’s signature
that this requires us to give up permissions for the argument, ie, refmutPoint(rp). The call
returns permissions for its return value, the refmutu32(rx) predicate instance specifically.
Note that this returned instance contains some of the permissions that we passed into
the call. Specifically, the u32 predicate instance for the x-coordinate of the point is
extracted and moved into the permissions for the mutable reference that is returned.
Figure 2.4 visualizes the predicate instances and their relations after the call. Due
to aliasing places (observable as multiple incoming edges in the visualization), not all
instances can be folded.

At some point – after line 5 in the example – rx expires and Rust allows access to p
again. The Viper encoding must mirror this change by restoring the Point(p) instance
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and removing the refmutu32(rx) instance. This is a trade Viper does not readily accept –
the veil of the function call hides the relation between refmutu32(rx) and Point(p) that is
apparent in Fig. 2.4 and would provide a justification. The object that can make Viper
understand this relationship is a magic wand:

u32(rx.p) −∗ Point(p)

provides the possibility of the permission transfer that should happen when rx expires
in the Rust program. It is applied after line 5, which results in permissions that make
the execution of line 6 possible.

The actual magic wand returned by the call is slightly different. First, it phrases the
right-hand side in terms of rp, the reference moved into the call. Second, it uses labelled
old-expressions to identify the exact references passed into or returned from the call. If
the label before the call is pre and the label after the call is post, the magic wand is
written as

u32(old[post](rx.p)) −∗ Point(old[pre](rp.p)).

Viper does not allow clients to apply the magic wand without a prior proof that it is
justified. This proof is found at the end of f4, where a package statement explains in
detail how it is possible to fold the Point(old[pre](rp.p)) predicate instance given the
returned u32(old[post](rx.p)) predicate instance.

Pledges are embedded in the magic wands that already handle the permission transfer.
For example, the pledge

#[after_expiry(p.x = before_expiry(∗result)]

is embedded in the magic wand like this:

u32(old[post](rx.p)) −∗ Point(old[pre](rp.p))
∧ old[pre](rp.p).x.vu32 = old[lhs](old[post](rx.p).vu32).

The old[lhs](e) sub-expression evaluates e in the left-hand side state, ie the state imme-
diately before applying the magic wand. Because the magic wand is applied when the
returned reference expires, this is the state immediately before the expiration.
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3. Re-Borrows of Simple References

Previously, we saw that re-borrowing functions pose an interesting problem for the Viper
encoding of Rust programs. The issue is twofold. First there is permission management,
implemented in ghost code in the Viper encoding, to synchronize the permissions in
the encoded program with the accessible places in the original Rust program. To this
end, the main tools are magic wands that exchange permissions for expired places with
permissions for places that are unblocked by the expiration. Second there are specifica-
tions, which must allow users to capture the behavior arising from a function’s use of
re-borrows.

This chapter will extend Prusti’s current support for re-borrowing functions, as intro-
duced in Section 2.4.3, to support many input and output references in a single function.
We begin with a formalization of Rust’s rules for the blocking and unblocking of input
references in Section 3.1. Section 3.2 introduces the necessary changes to the specifica-
tion language that allow users to formulate properties about re-borrowing functions. The
findings of the first section motivate subsequent design choices relating to the permission
management, which is explained in Section 3.3. The magic wand stays fundamental, but
significant machinery on top of it is made necessary by the problem that we tackle here.
Section 3.4 explains how specifications are integrated with permission management, sim-
ilarly to how they are embedded in magic wands in the current design. The sections
introduced so far look at the problem from the angle of the callee, ie, the re-borrowing
function itself. But clients of re-borrowing functions must also apply the permission man-
agement tools provided by the called function in a certain way as the output references
expire. This is described in Section 3.5. As part of this thesis, support for re-borrowing
functions involving multiple references has also been implemented in Prusti. Section 3.6
connects the method described in Sections 3.1 to 3.5 with the modules and functions of
the implementation. Section 3.7 follows up with an evaluation, demonstrating example
programs that can now be verified and taking a closer look at the performance of the
implementation. Finally, Section 3.8 closes the chapter with possible improvements left
for future work.
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3.1. Re-Borrow Relationships

Functions cannot create re-borrows arbitrarily. Instead, the lifetimes in the function
signature place a constraint on the input references a given output reference can be a
re-borrow of. The outlives relation connects these lifetimes with each other. It is written
as ′a : ′b to mean lifetime ′a outlives lifetime ′b – intuitively, a reference with lifetime ′a
may be reinterpreted as a reference with lifetime ′b, since ′a lives at least as long as ′b.
This relation is important for re-borrows since data from input references can only be
re-borrowed into output references that live at most as long.

We define the outlives relation for a given function signature as the reflexive and tran-
sitive closure of the core relation specified in the function signature. For example, this
signature has an empty core relation:

fn f11〈′a, ′b〉(a : &′a mut T, b : &′b mut T ) → (&′a mut T, &′b mut T )

Consequently, the outlives relation contains only the reflexive facts, ie, ′a : ′a and ′b : ′b.
This signature requires ′a : ′d, ′b : ′c, and ′c : ′d in the core relation:

fn f12〈′a : ′d, ′b : ′c, ′c : ′d, ′d〉(
a : &′a mut T,

b : &′b mut T

) → (
&′c mut T,

&′d mut T

)

The outlives relation is therefore bigger. Besides the reflexive facts and base facts, it
also requires that ′b : ′d.

With the outlives relation, it is straightforward to determine the possible re-borrow
relationships. An output reference with lifetime ′x can be a re-borrow of an input
reference with lifetime ′y only if ′y outlives ′x.

The re-borrow relationships directly give rise to the blocking behavior. After a client
calls a re-borrowing function, an input reference is blocked while there is still a possible
re-borrowing output reference alive. For a example, consider a prototypical call to f12:

let (c, d) = f12(a, b)

The lifetimes tell us that c can be a re-borrow of a or b, while d can only be a re-borrow
of a. Consequently, the input a is blocked in the caller while c or d are still alive, and the
input b is blocked while c is still alive. A graphical representation of this information,
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a b

c d

Inputs

Outputs

Figure 3.1.: The re-borrowing graph R for f12. It has one node for every input reference
at the top, and one node for every output reference at the bottom. Edges
indicate that the output reference at the bottom can borrow from the input
reference at the top.

which we call the re-borrowing graph R for the function f12, is given in Fig. 3.1. This
graph has one node for every input reference at the top, and one node for every output
reference at the bottom. Edges indicate that the output reference at the bottom can
borrow from the input reference at the top.

3.2. Pledge Syntax and Semantics

Prusti’s syntax for pledges requires extensions to formulate properties about the more
substantial re-borrowing functions. We illustrate this with an example:

fn f13〈′p, ′q〉(
p : &′p mut Point,
q : &′q mut Point,

) → (&′p mut u32, &′q mut u32) {
let y = rand();
p.y = y;
q.y = y;
(&mut p.x, &mut q.x)

}

We give the name px to the first item of the returned tuple, ie, result.0, and we give the
name qx to the second item of the returned tuple, ie, result.0. This is both shorter to
write and easier to read. Also assume that rand() returns some unknown integer.

To fully capture the behavior of this function, a specification needs to communicate three
facts to the caller. First, changes to rx are visible in p.x after p is unblocked. Specifically,
the value of ∗rx immediately before rx expires equals the value of p.x immediately after
p is unblocked. Second, the same holds for qx and q.x – the value of ∗qx immediately
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before qx expires equals the value of q.x immediately after q is unblocked. Third, p.y
and q.y are equal. This part of the specification won’t simply state that p.y is equal to
q.y after the function call. Though this is true in some sense, it would cause problems
later: recall that p and q are blocked until px and qx expire, respectively, and we cannot
talk about p.y and q.y in the encoded program while p and q are still blocked (due to
missing permissions). Instead, the specification will state that the value of p.y after p is
unblocked is equal to the value of q.y after q is unblocked. In general, this relates the
heap state at two different of the execution, as the following caller of f13 shows:

1| let (px, qx) = f13(&mut p, &mut q);
2| ∗px = 3;
3| p.y = p.y + 1;
4| ∗qx = 4;
5| assert!(p.y + 1 = q.y);
6| assert!(p.x = 3);
7| assert!(q.x = 4);

Once p is unblocked after line 2, we increment p.y. When q is unblocked after line 4, the
specification of f13 tells us that the value of p.y after p was unblocked (which is the value
of p.y immediately after line 2) is equal to the value of q.y after q was unblocked (which
is the value of q.y immediately after line 4). Since p.y was incremented in the meantime,
we should be able to prove that p.y + 1 = q.y in line 5. The other two assertions in lines
6 and 7 also follow from f13’s specification.

Some parts of the specification of a re-borrowing function are written using pledges. A
pledge is a special kind of postcondition that can talk about input references that are
blocked after the call and their relation to the output references that are blocking them.
A function can have multiple pledges that talk about different subsets of the input and
output references. A single pledge has the general form of

#[pledge(body)]

where body relates some input references with each other and the state of re-borrows
immediately before their expiry.

The specification of f13 consists of three pledges, one for each property we discussed
above. We start by translating “the value of ∗px immediately before px expires equals
the value of p.x immediately after p is unblocked” to a pledge. This is essentially an
equality, we just have to figure out the left- and right-hand side. To write the left-
hand side – “the value of ∗px immediately before px expires” – we introduce a special
environment before_expiry[ro](e). This environment takes an output reference ro and
an expression e as arguments and is defined to evaluate e immediately before ro expires.
The left-hand side of the equality is then written as

before_expiry[px](∗px).
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To write the right-hand side – “the value of p.x immediately after p is unblocked” – we
introduce another special environment called after_unblocked[ri](e). This environment
takes an input reference ri and an expression e as arguments and is defined to evaluate
e immediately after ri is unblocked. The right-hand side of the equality is then written
as

after_unblocked[p](p.x).

To sum up, the first pledge looks like this:

#[pledge(before_expiry[px](∗px) = after_unblocked[p](p.x))].

The equivalent fact relating qx and q produces a very similar pledge:

#[pledge(before_expiry[qx](∗qx) = after_unblocked[q](q.x))].

Finally, one aspect of f13’s behavior is still unspecified: “the value of p.y after p is
unblocked is equal to the value of q.y after q is unblocked.” We can write both sides of
this equality using the after_unblocked environment, which produces this pledge:

#[pledge(after_unblocked[p](p.y) = after_unblocked[q](q.y))].

We require that each occurrence of an after_unblocked or before_expiry environment
contains exactly one input reference (in the first case) or output reference (in the second
case). This allows alternative forms, where the square brackets together with their
content are omitted:

after_unblocked(e1),before_expiry(e2).

3.3. Permission Management

Managing permissions at the Viper level is one central aspect of Prusti’s encoding.
We saw in Section 2.4.3 that re-borrowing functions provide a unique challenge in this
context. The present implementation uses a single magic wand to allow clients to give up
the permissions contained in the output reference and recover the permissions contained
in the input reference in return. Now that multiple input and output references are
involved, a single magic wand is no longer flexible enough. In the remainder of this
section, we develop a tool that provides clients with a way to recover permissions for
input references as the various output references expire one by one – the expiration tool.
This is a Viper resource that allows the encoding to maintain the property that we have
permissions in Viper for everything that is accessible in Rust.

We say an expiration tool for a function f covers a subset O of f ’s output references
when it can be used to expire all output references in O. We write ET′(I, O) for the

32



fn f14〈′a : ′d, ′b : ′d + ′e, ′c : ′e + ′f, ′d, ′e, ′f〉(
a : &′a mut Point,
b : &′b mut Point,
c : &′c mut Point

)→ (
&′d mut u32,

&′e mut u32,

&′f mut u32
);

Figure 3.2.: The signature of a re-borrowing function. The + on the right-hand side of
an outlives constraint means that the lifetime on the left-hand side must
outlive both lifetimes on either side of the +.

a b c

d e f

Inputs

Outputs

Figure 3.3.: The re-borrowing graph R for the function f14.

expiration tool for f that covers the output references O, where I is the set of all input
references that are still blocked by something in O. From a call to f , the caller receives an
expiration tool that covers all of f ’s output references. Note that even though ET′(I, O)
depends on the function f that it is meant for, the notation does not make this explicit.
The expiration tool ET′(I, O) is refined later to produce an optimized expiration tool
ET(I, O) – hence the seemingly unmotivated prime.

We now consider the function f14 from Fig. 3.2 and describe how an expiration tool for
this function would have to look. The function has three input references a, b, c and three
output references, which we call d, e, f . The re-borrowing graph for f14, derived from the
lifetime constraints as described in Section 3.1, is displayed in Fig. 3.3. After a call to
f14, the caller owns the expiration tool ET′({a, b, c}, {d, e, f}). This expiration tool must
allow the caller to expire the output references one by one and return permissions for
the input references as they’re unblocked by the expirations. The expiration tool cannot
make assumptions about the order in which d, e, f expire, because this is different from
caller to caller.
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We handle the unknown expiration order by simply accounting for every possibility. This
means the expiration tool is just the conjunction of three branches Bd, Be, and Bf that
allow the expiration of d, e, and f , respectively:

ET′({a, b, c}, {d, e, f}) := Bd ∧Be ∧Bf .

All three branches are very similar, so we look at just one of them, Bd, in detail. If it is
the case d is the first output reference to expire after the call, this branch should allow
us to process the expiration of d. Otherwise, it should not give us anything. To check
whether or not this is the case, we introduce a function expires_first(x, ys), where x is
an output reference and ys is a set of output references. It is defined to return true if
x expires before any reference from ys. With this definition, expires_first(d, {e, f}) is
true if d is the first output reference to expire after the call, and false otherwise. The
branch Bd is then written as the following implication:

Bd := expires_first(d, {e, f})→Wd.

The right-hand side of the implication is the Viper resource that allows us to actually
expire d. Before we look closer at the construction of this resource – the name Wd

already hints it will be a magic wand – review the expiration tool ET′({a, b, c}, {d, e, f})
now with the branches Bd, Be, Bf filled in:

(expires_first(d, {e, f})→Wd) ∧
(expires_first(e, {d, f})→We) ∧
(expires_first(f, {d, e})→Wf ).

Every branch first checks if the corresponding output reference is the first to expire, and
if this is the case, it provides us with a resource that can expire this output reference.
Note that the branches are mutually exclusive – if the condition of the first branch is true,
the other two conditions must be false. It remains to define Wd, We, and Wf . Because
they’re all constructed similarly, we just consider Wd in the following. It must allow the
caller to expire d, which amounts to exchanging permissions for the value referred to
by d for permissions for all values that are unblocked by the expiration. To determine
what is unblocked, we consult the re-borrowing graph from Fig. 3.3 and compare the
input references that were blocked before the expiration – a, b, and c, in this case – with
the input references that are still blocked after the expiration – b and c, in this case.
This means a is unblocked after the expiration. Exchanging one set of permissions for
another is achieved with a magic wand:

Wd := u32(old[post](d.p)) −∗ Point(old[pre](a.p)).

Let’s take this apart. The expression old[post](d.p) is the memory that the expiring
output reference d points to after the call. The left-hand side of the magic wand thus
contains permissions for the integer that the output reference d aliased. The expression
old[pre](a.p) is the memory that the unblocked reference pointed to before the call.
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Given the permissions for the integer from the left-hand side, the magic wand is able to
reconstruct permissions for the point that was passed into the call via the reference a
and that d may have aliased. The expiration tool ET′({a, b, c}, {d, e, f}) now looks like
this:

(expires_first(d, {e, f})→ u32(old[post](d.p)) −∗ Point(old[pre](a.p))) ∧
(expires_first(e, {d, f})→ u32(old[post](e.p)) −∗ >) ∧
(expires_first(f, {d, e})→ u32(old[post](f.p)) −∗ >).

The right-hand sides of the magic wands for the last two branches contain no permissions,
because the expiration of e or f does not unblock any input references.

This expiration tool now allows callers to expire one output reference of their choosing
after the call. But it is not done yet, because callers have no way to also expire a
second output reference afterwards. To solve this, we revisit the right-hand sides of
the magic wands Wd, We, Wf . Instead of including only permissions for the unblocked
input references, we also include another expiration tool that enables the expiration of
the remaining output references. The expiration tool ET′({a, b, c}, {d, e, f}) then looks
as follows:(

expires_first(d, {e, f})→
u32(old[post](d.p)) −∗ Point(old[pre](a.p)) ∧ ET′({b, c}, {e, f})

)
∧(

expires_first(e, {d, f})→
u32(old[post](e.p)) −∗ ET′({a, b, c}, {d, f})

)
∧(

expires_first(f, {d, e})→
u32(old[post](f.p)) −∗ ET′({a, b, c}, {d, e})

)

After expiring d, the caller receives not only permissions for the unblocked point, but
also the expiration tool ET′({b, c}, {e, f}), which covers e and f – exactly the output
references that haven’t expired yet. Note that the input reference a is removed from
the first argument, because it was unblocked by the expiration. After expiring e, the
caller receives the expiration tool ET′({a, b, c}, {d, f}), which again covers the output
references that haven’t expired yet after expiring e. The first argument still contains a,
because it is still blocked in this setting.

After expanding the three nested expiration tools, we obtain the resource shown in
Fig. 3.4. This figure introduces a shortcut notation. We often need to refer to the permis-
sions for a value passed into a function call via a reference (written Point(old[pre](x.p))
for an input reference x that points to a point) and the permissions for a value returned
from a function call via a reference (written u32(old[post](y.p)) for an output reference
y that points to an integer). We will shorten these to Q(x) and Q(y), respectively. This
allows us to omit both the exact Viper predicate that models the Rust type and the
labelled old-expression that follows the reference in the pre- or post-state of the function
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(
expires_first(d, {e, f})→ Q(d) −∗ Q(a) ∧ (

expires_first(e, {f})→ Q(e) −∗ Q(b) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c)

)
) ∧ (

expires_first(f, {e})→ Q(f) −∗ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c)

)
)

) ∧ (
expires_first(e, {d, f})→ Q(e) −∗ (

expires_first(d, {f})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c)

)
) ∧ (

expires_first(f, {d})→ Q(f) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a)

)
)

) ∧ (
expires_first(f, {d, e})→ Q(f) −∗ (

expires_first(d, {e})→ Q(d) −∗ Q(a) ∧ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c)

)
) ∧ (

expires_first(e, {d})→ Q(e) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b)

)
)

)

Figure 3.4.: The expiration tool ET′({a, b, c}, {d, e, f}) generated for the function f14
from Fig. 3.2.
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call. The ambiguity arising from using the same name Q for both variants is easily
resolved by checking whether the argument is an input or output reference.

To better understand this expiration tool, consider a caller with the concrete expiry
order d, e, f . This means these expressions are true:

expires_first(d, {e, f}), expires_first(e, {f}), expires_first(f, {}),

while these expressions (among others) are false:

expires_first(e, {d, f}), expires_first(f, {d, e}), expires_first(f, {e}).

Given this information, the expression from Fig. 3.4 can be vastly simplified to:

Q(d) −∗ Q(a) ∧ (Q(e) −∗ Q(b) ∧ (Q(f) −∗ Q(c))).

Immediately after the call, the client has four resources at its disposal, namely the three
lists referred to by the output references and the magic wand from above:

{Q(d), Q(e), Q(f), Q(d) −∗ Q(a) ∧ (Q(e) −∗ Q(b) ∧ (Q(f) −∗ Q(c)))}.

Once the first output reference expires (which we know to be d), the client applies the
magic wand and is granted access to Q(a) again, plus another magic wand to continue
from there. (Note that the inputs unblocked by the expiration of d depend on whether e
already expired before d. In the current example the expiration of d does not grant access
to Q(b), because it is still blocked by e. If we had chosen the expiration order e, d, f , the
expiration tool from Fig. 3.4 would have collapsed to a magic wand that grants access
to both Q(a) and Q(b) upon expiry of d.) The client now owns these resources:

{Q(a), Q(e), Q(f), Q(e) −∗ Q(b) ∧ (Q(f) −∗ Q(c))}.

Then the second output reference expires, which we know is e. The client applies the
magic wand it receives Q(b), plus another magic wand to continue from there. After the
application, it owns these resources:

{Q(a), Q(b), Q(f), Q(f) −∗ Q(c)}.

Finally the last output reference expires. The client once again applies the magic wand
it owns and is granted access to Q(c), which is the last missing permission. It now owns
exactly the resources it had before the call:

{Q(a), Q(b), Q(c)}.

The sequence of held permissions for the expiration order f, d, e would be

{Q(d), Q(e), Q(f), Q(f) −∗ (Q(d) −∗ Q(a) ∧ (Q(e) −∗ Q(b) ∧Q(c)))} (after the call)
{Q(d), Q(e), Q(d) −∗ Q(a) ∧ (Q(e) −∗ Q(b) ∧Q(c))} (f expired)

{Q(e), Q(a), Q(e) −∗ Q(b) ∧Q(c)} (d expired)
{Q(a), Q(b), Q(c)} (e expired)
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We now give a description of the ET′ algorithm that constructs expiration tools for an
arbitrary function f . The algorithm takes as inputs the input references I and output
references O. It also has implicit access to the re-borrowing graph for f . In its most
succinct form, the algorithm is written as follows:

ET′(I, O) :=
∧

o∈O

expires_first(o, O \ o)→W(I, O, o),

W(I, O, o) := Q(o) −∗

∧
i∈I′

Q(i)

 ∧ ET′(I \ I ′, O \ o),

I ′ := accessible(I, O \ o),

where accessible(I, O \ o) denotes the subset of I that is not blocked by any reference in
O \ o, determined using the re-borrowing graph for f .

The resource produced by ET′(I, O) includes magic wands to expire any output refer-
ences from O. The magic wand to expire output o ∈ O, constructed by W(I, O, o),
is conditioned on the expression expires_first(o, O \ o) to make sure it is only avail-
able if o is actually the next reference to expire. (This is necessary because owning
all of these magic wands simultaneously would allow a client to duplicate permissions.)
The left-hand side includes the permission for the output reference that expires. The
right-hand side includes permissions for input references immediately unblocked by the
expiration, as well as the expiration tool that covers the remaining output references.
This expiration tool is constructed by a recursive call to ET′, where the parameters
reflect the changed situation after o expired. Only inputs still blocked by something in
O are included, because we just returned permissions for the other inputs. The output
o is excluded because it just expired.

There is an important optimization that reduces the size of the expiration tool. Recall
that we have to nest magic wands via the recursive call to ET′ because the effect of an
expiration depends on which other outputs expired before. In the example from Fig. 3.2,
expiring d before e unblocks just a, while expiring d after e unblocks a and b. However,
such interactions are only possible between outputs that appear in the same connected
component of the re-borrowing graph. We can therefore consider every connected com-
ponent in isolation, which reduces the depth of the recursion and consequently the size
of the final expiration tool. The optimized algorithm ET works like this:

ET(I, O) =
n∧

i=1
ET′(Ii, Oi),

where (I1, O1), . . . , (In, On) are the connected components of the re-borrowing graph.
The original ET′ algorithm must be modified to recursively call ET instead of itself.
The result of constructing ET({a, b, c}, {d, e, f}) for f14 is shown in Fig. 3.5

So far we’ve seen how to write the expiration tool that is passed to clients via the
postcondition. But because magic wands are involved, Viper expects us to be explicit
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(
expires_first(d, {e, f})→ Q(d) −∗ Q(a) ∧ (

expires_first(e, {f})→ Q(e) −∗ Q(b) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c)

)
) ∧ (

expires_first(f, {e})→ Q(f) −∗ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c)

)
)

) ∧ (
expires_first(e, {d, f})→ Q(e) −∗ (

expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b)
) ∧ (

expires_first(f, {})→ Q(f) −∗ Q(c)
)

) ∧ (
expires_first(f, {d, e})→ Q(f) −∗ (

expires_first(d, {e})→ Q(d) −∗ Q(a) ∧ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c)

)
) ∧ (

expires_first(e, {d})→ Q(e) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b)

)
)

)

Figure 3.5.: The expiration tool ET({a, b, c}, {d, e, f}) generated for the function f14
from Fig. 3.2.
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macro CET(I, O) {
for (I ′, O′) in connected_components(I, O) {

CET′(I ′, O′)
}

}

macro CET′(I, O) {
for o in O

“if expires_first(${o}, ${O \ o}) {”
CW (I, O, o)

“}”
end

}

macro CW (I, O, o) {
I ′ := accessible(I, O \ o)
“package ${W (I, O, o)} {”

“expire ${o}”
for i in I ′

“fold Q(${i})”
end
CET(I \ I ′, O \ o)

“}”
}

Figure 3.6.: The algorithm that generates Viper code to construct the expiration tool.
Quotes indicate Viper code that is emitted by the algorithm. Instances
of ${e} inside quotes are replaced by the evaluated form of e. The state-
ment expire ${o} is meant to expand to the Viper statements that Prusti’s
encoding uses to model the expiration of o.
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about how this resource is constructed from the permissions available at the end of
the method, in the form of package statements. The algorithm to explain Viper how to
construct the expiration tool, called CET, is given in Fig. 3.6. It has the same basic shape
as the ET algorithm – every predicate emitted by ET is replaced with the corresponding
fold operation in CET, every implication is replaced with the analogous if statement,
and every magic wand instance is replaced with the package statement constructing this
magic wand.

3.4. Specifications

The ET/CET algorithms in their current form provide clients with an expiration tool
which they use to recover permissions for input references that are blocked immediately
after the call. This section explains how these algorithms are extended with specifica-
tions, ie, with the functional properties provided by users via pledges. Essentially, there
are two questions two answer. First, how are the expressions inside pledges encoded
as Viper expressions? For logical connectives and function calls this does not deviate
from how normal postconditions are handled, but before_expiry and after_unblocked
environments are unique to pledges and require special treatment. Second, how are
individual encoded pledges embedded in the expiration tool?

Let’s consider the latter question first. A pledge p mentions input references I(p) (within
after_unblocked expressions) and output references O(p) (within before_expiry expres-
sions). The idea is to embed the encoded pledge at every position in the expiration tool
where it is true for the first time that every input from I(p) is unblocked and every
output from O(p) is expired (assuming time is measured by the magic wand nesting
level). Consider the function f14 (which has the expiration tool from Fig. 3.5) and this
pledge p:

#[pledge(before_expiry(∗e) = after_unblocked(b.x))]

To recap, this pledge states that b.x after b is unblocked equals whatever the expression
∗e evaluates to immediately before e’s expiry. We have O(p) = {e} and I(p) = {b}.
Embedding this pledge into the expiration tool from Fig. 3.5 produces the expiration
tool from Fig. 3.7, where (•) indicates the positions where the encoded pledge would be
inserted. Experimenting with this expiration tool, we eventually see that any concrete
expiration order causes it to collapse to an expression that contains exactly one (•).
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(
expires_first(d, {e, f})→ Q(d) −∗ Q(a) ∧ (

expires_first(e, {f})→ Q(e) −∗ Q(b) ∧ (•) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c)

)
) ∧ (

expires_first(f, {e})→ Q(f) −∗ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c) ∧ (•)

)
)

) ∧ (
expires_first(e, {d, f})→ Q(e) −∗ (

expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (•)
) ∧ (

expires_first(f, {})→ Q(f) −∗ Q(c)
)

) ∧ (
expires_first(f, {d, e})→ Q(f) −∗ (

expires_first(d, {e})→ Q(d) −∗ Q(a) ∧ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c) ∧ (•)

)
) ∧ (

expires_first(e, {d})→ Q(e) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (•)

)
)

)

Figure 3.7.: The expiration tool from Fig. 3.5 with an embedded pledge, indicated by
(•).
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Figure 3.8.: Re-borrowing–with–pledges graph RP . Orange edges indicate references
that are related via a pledge, while blue edges indicate references that are
related via a re-borrowing relationship. The pairs b− e and c− e are related
via both.

Now modify this pledge slightly to get p′:

#[pledge(
(before_expiry(∗e) = after_unblocked(b.x)) ∨
(before_expiry(∗e) = after_unblocked(c.x))

)]

For this pledge, O(p′) = {e} and I(p′) = {b, c}. But embedding p′ into the expiration
tool from Fig. 3.5 as before reveals a problem, specifically for the expiration orders e, d, f
and e, f, d. The simplified expiration tool (after evaluating the expires_first expressions)
for both expiration orders looks like this:

Q(e) −∗
(
Q(d) −∗ Q(a) ∧Q(b)

)
∧
(
Q(f) −∗ Q(c)

)
.

Notice that this expression does not actually contain the pledge, since there is no point
where Q(b) and Q(c) are simultaneously available, because these resources are managed
by sibling magic wands. This happens because in an effort to reduce the nesting depth,
the ET algorithm treats inputs/outputs in isolation if they are unrelated w.r.t. the
possible re-borrowing relationships. But treating b and c in isolation from each other
is exactly the wrong choice – they are actually related. Not via re-borrowing, but
via a pledge. The solution is to generalize the ET algorithm’s notion of relatedness by
extending the re-borrowing graph from Fig. 3.3 with edges indicating relations introduced
by pledges. This produces the re-borrowing–with–pledges graph RP , which is shown in
Fig. 3.8 for the pledge p′. Using this generalized notion of relatedness, the expiration tool
with embedded pledges takes on the form shown in Fig. 3.9. The simplified expiration
tool for the expiration order e, d, f now contains the pledge:

Q(e) −∗
(
Q(d) −∗ Q(a) ∧Q(b) ∧

[
Q(f) −∗ Q(c) ∧ (•)

])
.

Next we consider the encoding of pledges. We saw in Section 3.2 that pledges are mostly
just logical expressions similar to the ones making up postconditions, and are encoded to
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(
expires_first(d, {e, f})→ Q(d) −∗ Q(a) ∧ (

expires_first(e, {f})→ Q(e) −∗ Q(b) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c) ∧ (•)

)
) ∧ (

expires_first(f, {e})→ Q(f) −∗ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c) ∧ (•)

)
)

) ∧ (
expires_first(e, {d, f})→ Q(e) −∗ (

expires_first(d, {f})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (
expires_first(f, {})→ Q(f) −∗ Q(c) ∧ (•)

)
) ∧ (

expires_first(f, {d})→ Q(f) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (•)

)
)

) ∧ (
expires_first(f, {d, e})→ Q(f) −∗ (

expires_first(d, {e})→ Q(d) −∗ Q(a) ∧ (
expires_first(e, {})→ Q(e) −∗ Q(b) ∧Q(c) ∧ (•)

)
) ∧ (

expires_first(e, {d})→ Q(e) −∗ Q(c) ∧ (
expires_first(d, {})→ Q(d) −∗ Q(a) ∧Q(b) ∧ (•)

)
)

)

Figure 3.9.: The expiration tool with the generalized notion of relatedness and an em-
bedded pledge, indicated by (•).
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Viper in much the same way. Two elements of pledges require special thought, which are
the before_expiry and after_unblocked expressions. The meaning of these is straightfor-
ward. For an expression e1 that mentions an output reference ro, before_expiry[ro](e1)
evaluates e1 not in the current heap state, but in the heap state immediately before ro

expires. In a similar manner, for an expression e2 that mentions an input reference ri,
after_unblocked[ri](e2) evaluates e2 in the heap state immediately after ri is unblocked.
These heap states correspond directly to certain positions in the expiration tool. The
heap state immediately before an output reference ro expires corresponds to all left-hand
sides of magic wands that expire ro. The heap state immediately after an input refer-
ence ri is unblocked corresponds to all right-hand sides of magic wands that contain
permission for ri. This is justified because the expiration tool is constructed (and later
used) such that obtaining permission for ri as the result of a magic wand application is
accompanied by the unblocking of ri at the corresponding position in the Rust program,
and Viper evaluates the right-hand side of a magic wand when it is applied.

The key to encoding before_expiry and after_unblocked is thus to be able to refer to the
left-hand and right-hand sides of parent magic wands in a nested context. To understand
better what this means, consider the following example:

P (x′) −∗a P (x) ∧
(
P (y′) −∗b P (y) ∧ old[a:rhs](x.f) = y.f

)
.

First of all, the magic wands are named, there is one called a (denoted by −∗a) and
another one called b (denoted by −∗b). Putting the permissions aside, the inner magic
wand contains the assertion

old[a:rhs](x.f) = y.f,

which is to be read as “the value of x.f , evaluated directly after applying the magic wand
a, equals the value of y.f”. If we imagine Viper code that is using this magic wand, we
could observe something like this:

apply P (x′) −∗a P (x) ∧ (P (y′) −∗b P (y) ∧ old[a : rhs](x.f) = y.f);
label a : rhs;
. . .

apply P (y′) −∗b P (y) ∧ old[a : rhs](x.f) = y.f ;
assert old[a : rhs](x.f) = y.f ;

Or this example:

P (x′) −∗a P (x) ∧
(
P (y′) −∗b P (y) ∧ (old[a:lhs](x′.g) = y.g ∨ old[b:lhs](y′.g) = y.g)

)
.

Here, the inner magic wand contains the assertion

old[a:lhs](x′.g) = y.g ∨ old[b:lhs](y′.g) = y.g,
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which is to be read as “y.g equals either x′.g, evaluated immediately before applying the
magic wand a, or y′.g, evaluated immediately before applying the magic wand b”. This
could lead to the following usage:

label a : lhs;
apply P (x′) −∗a P (x) ∧ (

P (y′) −∗b P (y) ∧ (old[a : lhs](x′.g) = y.g ∨ old[b : lhs](y′.g) = y.g)
);
. . .

label b : lhs;
apply P (y′) −∗b P (y) ∧ (old[a : lhs](x′.g) = y.g ∨ old[b : lhs](y′.g) = y.g);
assert old[a : lhs](x′.g) = y.g ∨ old[b : lhs](y′.g) = y.g;

Having old[x : lhs](. . . ) and old[x : rhs](. . . ) expressions, we can now encode pledges. To
start with an example, take the pledge p′ from before

#[pledge(
(before_expiry(∗e) = after_unblocked(b.x)) ∨
(before_expiry(∗e) = after_unblocked(c.x))

)]

and consider a single position where the encoded pledge is to be inserted and simplify the
expiration tool using the expiration order corresponding to that position, for example:

Point(e) −∗e
(
Point(d) −∗d Point(a) ∧ Point(b) ∧

[
Point(f) −∗f Point(c) ∧ (•)

])
.

The magic wands are named according to the output reference on the left-hand side.
The sub-expression

before_expiry(∗e)

should be evaluated immediately before e expires, which corresponds to the left-hand
side of the magic wand e. It is therefore encoded as

old[e:lhs](∗e).

The sub-expression
after_unblocked(b.x)

should be evaluated immediately after b is unblocked, which happens when the magic
wand d is applied. It is therefore encoded as

old[d:rhs](b.x).

Finally, the sub-expression
after_unblocked(c.x)

46



should be evaluated immediately after c is unblocked, which happens when the magic
wand f is applied. It is therefore encoded as

old[f:rhs](c.x).

The complete encoded pledge that (•) will be replaced by therefore looks like this:[
old[e:lhs](∗e) = old[d:rhs](b.x)

]
∨
[
old[e:lhs](∗e) = old[f:rhs](c.x)

]
.

To make this procedure formal, we begin with a function EPW C(P ) that takes a pledge
P and turns it into a Viper expression, under a context WC. The context contains
information about the names of magic wands that expire outputs and unblock inputs.
For an input reference ri, WC(ri) gives the name of the magic wand that unblocks ri

and for an output reference ro, WC(ro) gives the name of the magic wand that expires
ro. The definition of EPW C(P ) then looks as follows:

EPWC(before_expiry(e)) = old[WC(r) : lhs](EPWC(e)),
EPWC(after_unblocked(e)) = old[WC(r) : rhs](EPWC(e)),

EPWC(e1 ∧ e2) = EPWC(e1) ∧ EPWC(e2),
. . .

Next, EPW C must be integrated with the ET/CET algorithms. The adjusted definition
of the ET algorithm is as follows:

ETWC(I, O, P ) :=
n∧

i=1
ET′WC(Ii, Oi, P ),

ET′WC(I, O, P ) :=
∧

o∈O

expires_first(o, O \ o)→WWC(I, O, P, o),

WWC(I, O, P, o) := Q(o) −∗l

∧
i∈I′

Q(i)

 ∧ EPWC′(P ′) ∧ ETWC′(I \ I ′, O \ o, P \ P ′),

I ′ := accessible(I, O \ o),
P ′ := {p ∈ P : ((I \ I ′) ∪ (O \ o)) ∩ (I(p) ∪O(o)) = ∅},

WC′ := WC[o→ l, i ∈ I ′ → l].

This is quite a bit to digest. The ET algorithm now receives two additional parameters.
First there is P , which is the set of all pledges that still need to be embedded in the
expiration tool – once a pledge is embedded, the P parameter of subsequent recursive
calls doesn’t contain it anymore. Then there is the magic wand context WC. Whenever
a new magic wand is created, WC ′, an updated version of WC, is created such that the
output o on the left-hand side of the magic wand and the inputs I ′ on the right-hand
side of the magic wands are mapped to l, the fresh label of the newly created magic
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1| fn f15(rx : &mut u32)→ &mut u32 {&mut ∗rx}
2| fn f16() {
3| let mut x = 0;
4| let a = if cond() { f15(&mut x) } else { &mut 1 };
5| // a expires.
6| }

Figure 3.10.: A re-borrowing function is invoked inside a branch.

wand. This update reflects the intention behind WC, since the output o and inputs
I ′ are expired/unblocked by the magic wand l. The two new parameters WC and P
are finally used to embed pledges in the right-hand side of magic wands, via the call
EPW C′(P ′). The argument P ′ is the set of pledges in P that are ready. A pledge p is
ready if the inputs and outputs that it mentions, formally I(p) ∪ O(p), overlap neither
with the inputs that haven’t been unblocked yet, formally I \ I ′, nor the outputs that
haven’t expired yet, formally O \ o. Formulated equivalently, a pledge is ready if all
inputs and outputs it mentions have been unblocked resp. expired.

3.5. Clients

Finally, the question remains how clients can make use of the expiration tools returned
by the re-borrowing functions they call. Before the method is described in detail in
Section 3.5.1 and Section 3.5.2, we begin with two examples that illustrate the involved
challenges. This section often talks about loans created by function calls and their
expiration, instead of references returned from function calls and their expiration. Recall
from Section 2.2 that there is a one-to-one correspondence between loans created by and
references returned from function calls, which means both points of view are equally
valid and easily translated into each other.

One difficulty is posed by branches, as illustrated in Fig. 3.10. The function f15 takes
a mutable reference and returns a re-borrow of it. The function f16 assigns either the
result of a call to f15 or a reference to a literal 1 to a variable a, depending on the
expression cond(). In line 5, a expires and unblocks x. The appropriate action on the
Viper level in response to this expiration depends on which arm of the earlier branch
was taken. In one case, line 5 is encoded by applying the expiration tool returned by
the call to f15. In the other case, no further action is needed.

Another example, shown in Fig. 3.11, calls a function that takes two references rx, ry
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1| fn f17〈′x, ′y : ′x〉(
2| rx : &′x mut u32,

3| ry : &′y mut u32
4| )→ (&′x mut u32, &′y mut u32) {(&mut ∗rx, &mut ∗ry)}

5| fn f18() {
6| let mut x = 0;
7| let mut y = 0;
8| let rx = &mut x;
9| let ry = &mut y;

10| let (a, b) = f17(rx, ry);
11| ∗a = 1;
12| // a expires
13| ∗b = 2;
14| // b expires
15| }

Figure 3.11.: A re-borrowing function is called.
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as arguments and returns two re-borrows. The lifetimes tell us that the first output
reference can be a re-borrow of both rx and ry, while the second output reference is a
re-borrow of ry. After the call to f17 we hold some expiration tool that allows us to
recover permissions for rx and ry in exchange for permissions for a and b. If we fix the
expiration order a, b, this expiration tool looks as follows:

Q(a) −∗ Q(rx) ∧ (Q(b) −∗ Q(ry)).

To expire a in line 12, we apply the top-level magic wand from the expiration tool that
has permissions for a on the left-hand side. Recall that the right-hand side of this magic
wand will contain multiple resources. First, there are permissions for rx, since this input
parameter is unblocked by the expiration. Second, there is the expiration tool that we
can use to expire the next reference, ie, b:

Q(b) −∗ Q(ry).

To expire b, we don’t use the expiration tool returned by the call to f17, since this
has been consumed by the expiration of a. Instead, we take the expiration tool that
we obtained from the expiration of a, and apply the top-level magic wand from this
expiration tool that has permissions for b on the left-hand side. The right-hand side of
this magic wand will contain permissions for ry. Because b is the last output reference to
expire, there will be no further nested expiration tool. This example illustrates the need
to keep track of the expiration tool that we currently hold. Because a expired before b,
the expiration tool we can use to expire b is not the whole expiration tool we got from
the call to f17, but instead whatever is left over after expiring a.

Superficially, the expiration of loans at a given program location is split into two parts.
Section 3.5.1 describes a function that generates statements used to expire a single loan.
This function generates different statements depending on the kind of loan it is given.
Important for us is the case where the loan was created by a call to a re-borrowing
function, in which case the statements will include the application of the appropriate
magic wand that has permissions for the reference corresponding to the expired loan on
the left-hand side. Section 3.5.2 describes a function that takes the statements generated
in the first step and assembles them into a CFG that orchestrates their execution. This is
not entirely trivial for two reasons. One is that loans can be conditional, as we saw before
in Fig. 3.10. This necessitates measures that make sure the statements to expire a loan
are only executed if this loan has actually been created. The second reason is that loans
can have dependencies between each other, in the sense that the statements to expire
one loan must come after the statements to expire another loan. These dependencies
must be reflected in the generated expiration CFG.
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1| let (x, y) = f(. . . );
2| if cond() {
3| ∗x = 1
4| ∗y = 2
5| } else {
6| ∗y = 1
7| ∗x = 2
8| };

Figure 3.12.: The order in which the references x, y returned by a re-borrowing function
expire is different in the two arms of the if-statement. In one arm, x
expires after line 3 followed by y expiring after line 4. In the other arm,
the expiration order is different. There, y expires after line 6 followed by
x expiring after line 7.

3.5.1. Generating the Expiration Statements

We begin by looking at the algorithm that generates the statements to expire a single
loan L. Besides L, it receives the program location P (in the form of basic block index
and statement index) at which the loan expires. This is necessary because the same
loan can expire at multiple different (mutually exclusive) program locations, and the
generated statements depend on which loans have already expired before. As Fig. 3.12
shows, this depends on the program location.

First of all, we determine the call C that created L. Given C, we determine the set of
all loans created by C, called CL. Note that L ∈ CL, since L was also created by C.
Knowing CL is important, because these loans are managed by the same expiration tool
as L. We partition CL into two subsets, the set of loans that expired prior to P , called
CLE, and the set of loans that will expire later, called CLE. This step requires knowing
P , because the loans that have already expired can be different at different locations in
the program. Note that CLE does not contain L, while CLE does.

Next, we retrieve the initial expiration tool E for C. This expiration tool makes it
possible to expire all the loans from CL and obtain the blocked inputs in return. But
we have to be careful, because after using E to expire one loan from CL, we cannot use
E again to expire the next loan from CL. Instead, the first expiration dismantles E and
leaves behind a smaller expiration tool, E′, which we must use for the next expiration.
This process is described in detail on page 53.
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Because all the loans from CLE already expired before L, the expiration tool EL we can
use to expire L is whatever is left over of E after expiring the loans from CLE. This
expiration tool is obtained as follows. We start with E and perform one dismantling
step for every loan from CLE. The input for one step is the output of the previous step.
The output of the last step is the expiration tool EL. Note that the order in which the
loans from CLE are used to dismantle E is irrelevant. The expiration tool is constructed
such that any order yields the same result. This is important, because in general there
is no single correct order in which the loans from CLE expired. Instead, as we saw in
Fig. 3.12, every path from the entry point to the expiration point can expire the loans
from CLE in a different order.

Having the right expiration tool EL to expire L, we can use it to perform the actual
expiration. The first step is to identify the branch BL of EL responsible for L. Recall
that this branch has the following shape, where P contains the pledges made available
by the expiration and the permissions for input references that are unblocked by the
expiration, and EL′ is the expiration tool that must be used for the next expiration after
L:

BL = expires_first(L,CLE)→ Q(L) −∗ P ∧ EL′.

Note that this branch is a resource we own in Viper (ie, asserting BL at this point will
succeed). The right-hand side of the implication contains the magic wand to expire L.
The left-hand side is the branch condition that must be true before we can use the magic
wand. Since Polonius assures us that L really is the next loan to expire out of CLE, the
branch condition would be true according to the definition of expires_first. However,
Viper does not know this because the semantics of expires_first are not written down
as Viper axioms.1 Instead, we just assume the branch condition:

assume expires_first(L,CLE)

and apply the magic wand:

apply Q(L) −∗ P ∧ EL′.

After the application, permissions for the unblocked references and the pledges that are
made available by this expiration are accessible through P .

Finally, there is one more thing to take care of. The pledges in the expiration tool
EL′ can refer to the left- and right-hand side of the magic wand we just applied, via
old[L : lhs](. . . ) and old[L : rhs](. . . ) expressions. But because the next expiration
will use EL′ as a top-level expiration tool (instead of it being nested under the magic
wand), these references will be dangling. To keep them available, the expressions in these

1We could enhance Viper’s understanding of loans by appropriately axiomatizing expires_first and
inserting information about which loans expire where. For example, a boolean flag Lexpired for every
loan L that is false initially and set to true as soon as L expires would already provide enough
information. A definition of expires_first could then state that expires_first(L, LE) is true if and
only if there is a single loan L′ ∈ LE such that L′

expired is true and L = L′.
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dangling references must be evaluated and saved to local variables now. Later usages of
EL′ will then replace every old[L : lhs](. . . ) and old[L : rhs](. . . ) expression with the
name of the corresponding local variable, thereby eliminating dangling references.

Dismantling the Expiration Tool

This process works as follows. We start with an expiration tool Ei (which may or may not
be the initial expiration tool). Our goal is to construct the expiration tool Ei+1 reflecting
the state after we used Ei to expire a loan Li. (The indices are meant to indicate the
expiration we’re doing. We first expire L1 using E1, which leaves us with E2, and so
on.) Recall that Ei is just a collection of partial expiration tools Ei,1, . . . , Ei,n for the n
connected components of the re-borrowing graph. One of these partial expiration tools,
call it Ei,j , allows us to expire Li:

Ei = Ei,1 ∧ · · · ∧ Ei,j ∧ · · · ∧ Ei,n.

Further recall that a partial expiration tool is just a collection of branches, one for every
loan covered by it. We can dig into Ei,j to identify the branch BLi responsible for Li:

Ei,j = · · · ∧BLi ∧ . . . .

A branch is simply an implication with the expires_first condition on the left-hand side
and a magic wand on the right-hand side. This magic wand will contain permissions for
the expired place on the left-hand side and permissions for the unblocked places, pledges,
and a nested expiration tool E′i,j on the right-hand side:

BLi = expires_first(Li,CLE)→ Q(Li) −∗ P ∧ E′i,j .

The expiration tool Ei+1 is constructed by taking Ei and replacing Ei,j with E′i,j :

Ei+1 = Ei,1 ∧ · · · ∧ Ei,j−1 ∧ E′i,j ∧ Ei,j+1 ∧ · · · ∧ Ei,n.

A brief justification of why this is the right thing to do is that to expire Li, we apply
the magic wand from BLi , which gives us E′i,j . Since the branches of Ei,j are mutually
exclusive, choosing BLi voids all the other branches. This means the only part of Ei,j

that is left after the expiration is E′i,j .

3.5.2. Assembling the Expiration CFG

Every program location can have multiple loans expiring simultaneously. Because Prusti
tracks the permissions held for every place and loans transfer permissions from one place
to another (the expiration undoes this transfer), the expiration of simultaneously expiring
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loans must follow some order. For example, if loan L1 moves permissions from A to B
and loan L2 moves permissions from B to C, L2 must be expired before L1. Otherwise
the expiration of L1 notices that the permissions it wants to move from B to A are
missing. In other words, the loans can have dependencies on each other. This applies
to all loans created in a program, not just loans corresponding to references returned
from function calls. But for the latter case, the requirement is not just due to Prusti’s
permission tracking. Consider a program

let B
L1= f(A); let C

L2= f(B),

where A, B, C are mutable references. The loans L1 and L2 require a magic wand
application to instruct Viper to move the permissions from B to A and from C to B.
If L1 and L2 expire at the same time and we try to order the expiration of L1 before
the expiration of L2, Viper will produce an error that the magic wand for L1 cannot
be applied, because the permissions for the left-hand side are missing. We obtain these
permissions by applying the magic wand for L2 first.

Besides the order in which expirations must be performed, the expiration CFG also
ensures that loan conditions are honored. The example from Fig. 3.10 showed why this
is necessary. There are two loans, one for every branch of the if statement. When one
of these loans expires, the expiration statements should only be executed if the branch
in which the loan was created was taken earlier in the execution.

The general idea behind the expiration CFG is to undo every statement that led to
the expiration point P in order, starting with the most recently executed statement
and finishing with the first statement of the method. Intuitively this works by taking
the method CFG M , flipping all the edges, and reversing the statement order within
the basic blocks. Then every statement is either deleted (if it does not create a loan)
or replaced with the expiration statements for the loan it created. The result M ′ is
embedded into M with two edges. The first edge connects the predecessor of P with the
point corresponding to the predecessor of P in M ′. The second edge connects the point
in M ′ that corresponds to M ’s entry point with the successors of P . One example of
this process is shown in Fig. 3.13.

With the structure of the expiration CFG fixed, it remains to equip the edges with the
appropriate conditions. First consider a method without loops. Because the goal is to
retrace the steps leading to P in reverse order, every edge of the expiration CFG should
be followed if the corresponding edge of the method CFG was taken to reach P . To
achieve this, we maintain a boolean variable visited(e) for every edge e of the method
CFG that indicates whether the edge was taken during the current execution. Then we
say an edge e′ of the expiration CFG should be followed if the visited(e) variable for the
corresponding edge e of the method CFG is true. What changes when we allow loops?
This is left as an exercise for the reader.
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(a) The method CFG M with the expiration
point P .
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(b) The expiration CFG M ′ (within the box)
embedded into the method CFG M . The
predecessor of P in M is connected to its
corresponding point in M ′ (green edge).
The point corresponding to the entry point
of M is connected to the successor of P (red
edge).

Figure 3.13.: The method CFG M before and after embedding the expiration CFG M ′.
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3.6. Implementation

We start with a general overview of the implementation and then revisit the individual
components in more detail in Sections 3.6.1 to 3.6.6. Afterwards, Section 3.6.7 highlights
some notable differences between the method that has been described so far and what is
actually implemented at the moment. The following outlines the relevant steps during
the verification of a method M .

Like pre- and postconditions, pledges are added to M via a procedural macro called
pledge, described in more detail in Section 3.6.1. The entry point of this macro is
the method of the same name in the main module of the prusti-contracts-internal sub-
project. During the verification of M , these pledges will be accessible through the
ProcedureSpecification struct as a vector containing instances of the Pledge struct. The
rhs field of the Pledge struct wraps the assertion that is the pledge. This assertion is
represented as an Assertion struct, just like regular pre- and postconditions.

Soon after beginning to verify M , its contract is constructed in the encoder::borrows::com-
pute_procedure_contract method of the prusti-viper sub-project. The contract contains
information pertaining to M ’s signature. One important part of the contract is the
re-borrowing graph R from Section 3.3, represented by the InterfaceReborrowingGraph
struct. This data structure is described in more detail in Section 3.6.2.

As the verification of M proceeds, three methods are relevant in particular:

encode_postcondition_expiration_tool constructs the expiration tool for a method as
a Viper expression. It is called to construct the expiration tool for M itself (if
M is a re-borrowing function) and also to construct the expiration tool for other
methods that M is calling.

encode_package_end_of_method generates the statements that package M ’s expi-
ration tool. It is called once during the verification of M and the generated state-
ments are inserted close to the end of the encoded method.

construct_vir_reborrowing_node_for_call generates the statements that expire a loan
created by a function call within M . It is called once for every expiration of a call
loan. This is described in more detail in Section 3.6.6.

All three methods rely heavily on one central data structure, the ExpirationTool struct,
located in the encoder::expiration_tool module of the prusti-viper sub-project. It accu-
rately implements (together with its descendants) the structure of the expiration tool
described in Section 3.3 and Section 3.4. An instance of this struct simply wraps a list
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of partial expiration tools:

struct ExpirationTool〈′c, ′tcx〉 {
partial_expiration_tools : Vec〈&′c PartialExpirationTool〈′c, ′tcx〉〉

}

A partial expiration tool is represented by the PartialExpirationTool struct and contains,
besides the sets of places that block something or are blocked, a list of magic wands. Each
magic wand enables the expiration of one place from the set of blocking places:

struct PartialExpirationTool〈′c, ′tcx〉 {
blocking : HashSet〈Place〈′tcx〉〉,
blocked : HashSet〈Place〈′tcx〉〉,
magic_wands : Vec〈&′c MagicWand〈′c, ′tcx〉〉

}

A magic wand is represented by the MagicWand struct. It specifies the place that
is expired by this magic wand, the places unblocked by this magic wand, the pledges
included on the right-hand side of this magic wand, as well as the nested expiration
tool:

struct MagicWand〈′c, ′tcx〉 {
expired : places::Place〈′tcx〉,
unblocked : HashSet〈Place〈′tcx〉〉,
pledges : Vec〈&′c typed::Assertion〈′tcx〉〉,
expiration_tool : &′c ExpirationTool〈′c, ′tcx〉,

}

The structs use two lifetimes. The first, ′c, is the lifetime of the whole expiration tool
itself. This allows the structs to contain references to their nested components, instead
of the nested components themselves. It avoids unnecessary copying, though the per-
formance improvement is negligible. The second, ′tcx, is the lifetime of the compiler’s
typing context. This is allows the expiration tool to reference compiler data, specifically
places.

There are two operations defined for expiration tools. The first is construction, imple-
mented in the encoder::expiration_tool::construct module and described in more detail
in Section 3.6.3. The construction takes the previously computed InterfaceReborrowing-
Graph and a list of pledges as input and returns an instance of the ExpirationTool struct.
The second operation is encoding, implemented in the encoder::expiration_tool::encode
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module and described in more detail in Section 3.6.4. The encoding takes an instance of
the ExpirationTool struct as input and either returns a Viper expression (implemented
in the expression sub-module) or a list of Viper statements that package the expiration
tool (implemented in the package sub-module).

3.6.1. Pledge Parsing

The parsing of pledges is mostly implemented in the specifications::untyped module of the
prusti-specs sub-project. It follows the existing structure of the parsing code, with one
exception. Recall that pledges can use the special before_expiry and after_unblocked
environments. These two forms come in two variations each. The reference that needs
to expire or be unblocked can be mentioned explicitly, written as before_expiry[ref](e)
and after_unblocked[ref](e), where ref is the output reference that needs to expire or
be unblocked. Alternatively, the reference can be inferred automatically, allowing the
shorter forms before_expiry(e) and after_unblocked(e).

Pledge bodies are ultimately compiled as regular Rust expressions. While before_expiry(e)
is a proper Rust expression (the function before_expiry called with the parameter e),
before_expiry[ref](e) has no equivalent in Rust syntax. To solve this, the token stream
passed to the macro is subjected to a pre-processing step in which the following replace-
ments are performed:

before_expiry(e) 7→ before_expiry(&0, e)
before_expiry[ref](e) 7→ before_expiry(&ref, e).

The result of compiling the pre-processed token streams is an expression where both
before_expiry(e) and before_expiry[ref](e) are represented as function calls to the same
2-ary before_expiry function. The first parameter is either the reference that needs to
expire (if specified in the original pledge) or just 0. The after_unblocked environment
is handled symmetrically.

3.6.2. Re-Borrow Relationships

The InterfaceReborrowingGraph data structure found in the encoder::reborrow_signature
module of the prusti-viper sub-project implements the re-borrowing graph R introduced
in Section 3.3. It is constructed by the InterfaceReborrowingGraph::construct method
and maps every blocking output reference to a list of input references that it blocks.

Instances of the InterfaceReborrowingGraph provide a method expire_output to deter-
mine the effect of an expiration. This method takes a blocking output reference (which
will be expired) and returns a new instance of the InterfaceReborrowingGraph together
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with a list of input references unblocked by the expiration. The returned instance of
the InterfaceReborrowingGraph reflects the re-borrowing situation after the expiration –
essentially, entries with the expired reference on the left-hand side are removed from the
mapping.

3.6.3. Expiration Tool Construction

Every instance of the ExpirationTool struct is constructed by three mutually recur-
sive methods: ExpirationTool::construct, PartialExpirationTool::construct, and Magic-
Wand::construct.

All three methods take the re-borrowing graph R as input, which allows the construc-
tion process to determine the input references that are unblocked in response to any
given expiration. This input changes as the recursion descends to reflect the current
re-borrowing situation.

The second input is a list of pledges that are to be embedded in the expiration tool.
Recall from Section 3.4 that every pledge p has dependencies I(p) and O(p), the input
references that need to be unblocked and output references that need to expire for the
pledge to make sense. These dependencies determine where in the expiration tool the
pledge is embedded. An initial pre-processing step, described in detail in Section 3.6.5,
computes the dependencies for every pledge such that the three construction methods
can readily access this information. Note that the re-borrowing graph R together with
the list of pledges and their dependencies encodes the re-borrowing–with–pledges graph
RP of the method that we introduced in Section 3.4.

The ExpirationTool::construct method constructs instances of the ExpirationTool struct.
It determines the connected components of the re-borrowing–with–pledges graph RP (by
calling the split_reborrows method from the encoder::expiration_tool::split_reborrows
module) and turns every one of them into a partial expiration tool (by calling the Par-
tialExpirationTool::construct method). Every connected component of RP is represented
in the same way as RP itself, ie, by a re-borrowing graph together with a list of pledges
and their dependencies.

The PartialExpirationTool::construct method constructs instances of the PartialExpira-
tionTool struct. It simply calls the MagicWand::construct method for every remaining
output reference and forwards the re-borrowing graph and list of pledges unchanged.

The MagicWand::construct method constructs instances of the MagicWand struct. Be-
sides the re-borrowing graph and list of pledges, it receives the output reference whose
expiration it is responsible for as another input. First of all, it produces an updated
version of the re-borrowing graph reflecting the state after the output reference expired.
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This also yields the input references unblocked by this expiration as a by-product. Next,
it identifies the ripe pledges, ie, the pledges that should be included immediately on
the right-hand side of the magic wand because their dependencies are satisfied after the
current expiration. Finally, it constructs the nested expiration tool by calling Expira-
tionTool::construct with the updated re-borrowing graph and the list of pledges that are
still pending.

3.6.4. Expiration Tool Encoding

After an expiration tool has been constructed, it can be encoded, either as a Viper expres-
sion or as a list of Viper statements that package it. The result of encoding an expiration
tool as package statements is used by the encode_package_end_of_method method,
which includes them at the end of a re-borrowing function to prove to Viper that the
expiration tool is justified. The result of encoding an expiration tool as a Viper expres-
sion is used in a variety of places, including the encode_postcondition_expiration_tool
method and construct_vir_reborrowing_node_for_call.

Viper expressions are produced by three functions (one for expiration tools, one for
partial expiration tools, and for magic wands) that recurse on the data they are called
to encode. Besides that there is no algorithmic complexity, because the whole structure
of the expiration tool has been determined during construction.

Viper statements for packaging are also produced by three functions that again recurse
on the data they are called to encode. Because packaging a magic wand requires a
representation of the magic wand as an expression, the function responsible for packaging
calls out to the function responsible for encoding as an expression.

The call graph of the six encoding functions is shown in Fig. 3.14.

One aspect of the encoding that warrants a more detailed description is the expires_first
function that is used in the left-hand sides of the implications that make up the expiration
tool branches. Recall that this function takes two arguments. The first is a reference-
typed place x returned by the function call, the second is a set of reference-typed places
ys also returned by the function call. The function is defined to return true if x expires
before all the places from ys, and false otherwise.

In the final encoding, the arguments of this functions are encoded as integers. Thus
instead of the expression expires_first(x, ys), the encoding will contain an expression
expires_first(x′, ys′), where x′ and ys′ are integer representations of x and ys. We find
x′ by fixing an arbitrary mapping from output references to integers, and sending x
through this mapping. For ys′, we simply take the number of elements in ys. Though
this is not very accurate – two sets are represented by the same integer if they contain
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ET → Expression

PET → Expression

MW → Expression ET → Statements

PET → Statements

MW → Statements

Figure 3.14.: The encoding call graph, where each node represents a function and each
edge represents a function call. The entry point for encoding expiration
tools as expressions is outlined in red, the entry point for encoding expira-
tion tools as statements is outlined in green. ET = expiration tool; PET
= partial expiration tool; MW = magic wand.

the same number of elements – it is enough for our purposes. Because these conflicting
encodings of the ys parameter always appear in mutually exclusive branches of the
expiration tool, a user can never depend on them being different.

3.6.5. Pledge Dependencies

Before embedding a pledge p in the expiration tool, its dependencies – the input refer-
ences I(p) appearing inside an after_unblocked environment and the output references
O(p) appearing inside a before_expiry environment – must be identified. A dependency
is an output reference that needs to expire or an input reference that needs to be un-
blocked before the pledge can be embedded in the expiration tool. This analysis happens
in the encoder::expiration_tool::pledges::analyze module of the prusti-viper sub-project.
The entry point of this module is the identify_dependencies function, which takes a
pledge to its list of dependencies. A single pledge dependency is represented by the
PledgeDependency type, instances of which contain a context (indicates whether the
dependency is due to a before_expiry or due to an after_unblocked expression) and a
place (the output place that needs to expire if the dependency is due to a before_expiry
expression and the input place that needs to be unblocked if the dependency is due to
an after_unblocked expression).

61



Users can write syntactically incorrect pledges and these errors are caught as a nat-
ural byproduct of the dependency analysis. All errors that can occur are defined in
the encoder::expiration_tool::pledges::errors module. In each case, an appropriate error
message is shown to the user. A quick summary follows:

unsupported_assertion The pledge uses a kind of assertion that is not supported in
pledges. Right now, only quantifiers are not supported. The reason is explained
in Section 3.6.7.

unsupported_expression The pledge uses a kind of expression that is not supported in
pledges. Rust has a versatile expression language, defined in the rustc_hir::Expr-
Kind struct [3]. The dependency analysis is only implemented for the follow-
ing subset of this language: Binary (a binary operation like x + y), Unary (a
unary operation like −x), Call (a function call like f(x)), MethodCall (a method
call like x.f()), Field (a field access like x.y), Match (a match expression like
match x {. . . }), Block (a block like {. . . }), Path (a path like X :: Y ), Lit (a
literal like 12), DropTemps (an internal expression that influences when values are
dropped). It should be straightforward to extend this list.

before_expiry_contains_inputs The pledge contains a before_expiry(e) sub-expression
where e contains an input reference.

after_unblocked_contains_outputs The pledge contains an after_unblocked(e) sub-
expression where e contains an output reference.

ctxt_no_dependencies The pledge contains a before_expiry(e) sub-expression where e
does not contain any output reference or it contains an after_unblocked(e) where
e does not contain any input reference.

ctxt_multiple_dependencies The pledge contains a before_expiry(e) sub-expression
where e contains multiple output references or it contains an after_unblocked(e)
sub-expression where e contains multiple input reference.

ctxt_wrong_dependencies The pledge contains a before_expiry or after_unblocked sub-
expression that contains a reference that does not match the reference explicitly
specified in square brackets.

ctxt_wrong_expected_dependency The pledge contains a before_expiry or after_un-
blocked sub-expression where the explicitly specified reference does not denote an
input or output reference.

nested_environments The pledge contains a before_expiry or after_unblocked sub-
expression nested inside of another before_expiry or after_unblocked sub-expression.
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3.6.6. Client-Side Expiration

Two methods implement the expiration of re-borrows created by function calls. The
first one, construct_vir_reborrowing_node_for_call, generates the statements to expire
a single loan. The second one, process_expire_borrows, assembles these statement lists
for multiple loans expiring at the same time into a larger structure that encodes the
expiration of all these loans. This method handles loans of all kinds, not just re-borrows
created by calls.

3.6.7. Differences

Some parts of the implementation, described in more detail below, deviate from the
method that we described so far, for various reasons. Either Viper does not support
some required features, or there are incompatibilities with the existing encoding, or
time constraints made the implementation of the ideal solution impossible. All of these
differences can be resolved eventually and once they are, the implementation should
match the described method exactly.

Simulating Labelled Magic Wands with Let-Expressions

We use labelled magic wands to allow nested magic wands to refer back to the left- and
right-hand side of their ancestors. This is very convenient, but Viper allows right-hand
sides of magic wands only to refer to the left-hand side of the same magic wand, and not
also to the left- and right-hand sides of magic wands they are nested in. An imperfect
work-around uses let-bindings to evaluate expressions in one magic wand and use the
result in another (nested) magic wand. For example, we may want to write this magic
wand:

A −∗x (B −∗y old[x : lhs](e)).

To turn this into a form that Viper understands, we insert a let-binding to evaluate
the old[x : lhs](e) expression at a position where this is possible and use the let-bound
variable at a later point:

A −∗ let v = old[lhs](e) in (B −∗ v).

This approach cannot handle old-expressions under quantifiers, for example:

A −∗x (B −∗y ∀n : old[x : lhs](e)).

Because n could be free in e, evaluating the old-expression in a let-binding outside of the
quantifier does not work. Viewed from another angle, the quantifier (which is just a big
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conjunction) contains many old-expressions, one for each value of n. This means we need
as many let-bindings, one for each old-expression. But the number of old-expressions is
variable, while we have to fix the number of let-expressions during the encoding.

Another problem becomes apparent when e requires some precondition (imposed by a
pure function, for example). Take the following example:

A −∗x (B −∗y n > 0→ old[x : lhs](f(n))),

where f requires a positive argument. The old-expression (and thus f) won’t be evalu-
ated under the implication, which means the pre-condition of f may not be satisfied.

The implementation can work in two ways. First, we could work with an extended version
of Viper’s AST that supports labelled magic wands and compile it down to Viper’s actual
AST eventually. This is very flexible – any part of Prusti can just use labelled magic
wands without being aware that Viper doesn’t actually support the feature. Second, we
can let the code that would use labelled magic wands (if they were supported) simply
generate the let-bindings directly instead. This is clearly inferior (because it conflates
two easily separable concerns), but much faster to implement in the short term. It is
also what was implemented in the end.

Encoding Expiration Tools as Expressions Recall from Section 3.6.4 that the encoding
of expiration tools is carried out by three functions that call each other recursively and all
return Viper expressions. One encodes expiration tools, one encodes partial expiration
tools, and one encodes magic wands. Consider the magic wand

A −∗x (B −∗y old[x : lhs](e))

from before and the nested magic wand

B −∗y old[x : lhs](e)

that it contains in particular. Because the old-expression will be realized with a let
binding, the nested magic wand is encoded as

B −∗ v,

where v is the let-bound variable. To make this expression meaningful, the function that
encodes this magic wand must provide enough information to allow one of its (indirect)
callers – the one that is encoding the magic wand x – to generate the correct let-binding
for v. This information, which we call an open binding, comprises three elements. The
first element is the name v of the binding. The second element states whether the
evaluation should happen on the left- or right-hand side of the magic wand. The third
element is the expression e that should be evaluated. Note that the name of the magic
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wand that should evaluate e is not explicitly included, because it is implicitly determined
by e

Consequently, we update the function that encodes magic wands to return, besides the
encoded expression, a set of open bindings. This set contains the open bindings that
were created by the magic wand itself and also the open bindings of the nested expiration
tool. We update the functions that encode partial expiration tools and expiration tools
in the same way, because they can have open bindings too. Partial expiration tools
inherit them from the magic wands they contain, and expiration tools inherit them from
the partial expiration tools they contain.

Open bindings are not only created. During the encoding of a magic wand, we inspect
all current open bindings. The ones that are meant for the current magic wand (call
them ripe bindings) are materialized as let-bindings. The open bindings that are not
ripe are passed on to the caller.

Encoding Expiration Tools as Package Statements We adapt the packaging of expira-
tion tools similarly. The three functions that package expiration tools, partial expiration
tools, and magic wands, respectively, are again modified to also return the set of open
bindings. As before, the two functions that package expiration tools and partial expi-
ration tools simply return the aggregated open bindings of their children. The function
that packages magic wands again materializes ripe open bindings. Because the bindings
are open in statements (instead of expressions), they are materialized as local variables
(instead of let-bindings).

Inhalation Point of Expiration Tools

The life of a re-borrow returned by a function is defined by two main events. The first
one is the creation by the function call (p and q model reference-typed variables):

label pre
q = f(p)
label post

Directly after the call, the expiration tool to expire the re-borrow q is inhaled. Assume
that q points to a value of type T1 and p points to a value of type T2. For this example,
the expiration tool is essentially just a magic wand (ignoring the expires_first condition).
The magic wand can contain an encoded pledge pledge R that relates the state of the
memory included on the left-hand side with the state of the memory included on the
right-hand side:

inhale PT1(old[post](q.p)) −∗ PT2(old[pre](p.p)) ∧R.
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Arbitrary statements can follow, and at some point the re-borrow expires – the second
main event. This is modeled by the application of the magic wand:

apply PT1(old[post](q.p)) −∗ PT2(old[pre](p.p)) ∧R.

This works as long as q.p is not changed for the lifetime of the re-borrow q. In other
words, we need q.p = old[post](q.p) at the point where q expires. However, Prusti’s
model of certain statements, such as ∗q = ∗q + 1 (assuming q points to an integer),
changes q.p even though q still points to the same memory in Rust. This is problematic,
because pledges read the state of old[post](q.p), but not q.p. For example, the increment
of q and any subsequent modification would be lost on the pledge.

There are two ways to solve this. The first one is to change the way statements like
∗q = ∗q +1 are modeled such that they do not change q.p. Essentially, q.p should change
only if the address saved in q is changed. This is harder than it sounds, but there are
ideas that can achieve this. The second way – the way it is actually implemented –
is to first move the inhalation point of the magic wand from after the function call to
immediately before the magic wand application and then replace every dereference of a
returned reference, like old[post](q.p), with the current value of its p field, like q.p.

Assembling the Expiration CFG

We discussed in Section 3.5.2 how the expiration CFG expires loans in the reverse order
they are created. Though necessary, this approach is significantly different from the
current implementation and would require changes throughout many different parts of
Prusti. The main obstacle is the current assumption that expirations are performed by
a list of statements, not an arbitrary CFG. Due to time constraints, our implementation
still expires loans using a list of statements. The consequence is that Prusti crashes on
certain inputs, but many other examples are verified successfully.

3.7. Evaluation

This section serves two purposes. In the first part, we show some self-contained examples
that Prusti can verify with the proposed changes. The second part takes a closer look
at the performance of the implementation.
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#[pledge(after_unblocked(p.x) = before_expiry(∗result)))]
#[pledge(after_unblocked(p.y) = 0))]
fn f19(p : &mut Point)→ &mut u32 {

p.y = 0;
&mut p.x

}

Figure 3.15.: The function f19.

#[pledge(after_unblocked(p.x) = before_expiry(∗result.0)))]
#[pledge(after_unblocked(q.x) = before_expiry(∗result.1)))]
#[pledge(after_unblocked(p.y) = after_unblocked(q.y)))]
fn f20〈′p, ′q〉(p : &′p mut Point, q : &′q mut Point)→ (&′p mut u32, &′q mut u32) {

p.y = q.y;
(&mut p.x, &mut q.x)

}

Figure 3.16.: The function f20.

3.7.1. Examples

We first present examples to demonstrate what is possible to verify and qualitatively
evaluate the expressive power of pledges.

The first example, which Prusti was already able to verify before, involves a single input
and output reference, shown in Fig. 3.15. Though not necessary, the specification of this
function is distributed over two pledges.

The next function, shown in Fig. 3.16, involves two input and output references with
unrelated lifetimes. This means the expiration tool will actually have two levels of
nesting. Multiple pledges are required to capture the different properties.

What is borrowed can depend on a condition, as Fig. 3.17 illustrates. The pledges state
that it depends on the boolean parameter b what result.1 is aliasing.

The old value of inputs can also be used in pledges, as shown in Fig. 3.18.
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#[pledge(b→ after_unblocked(q.x) = before_expiry(∗result.1)))]
#[pledge(!b→ after_unblocked(p.y) = before_expiry(∗result.1)))]
#[pledge(after_unblocked(p.x) = before_expiry(∗result.0)))]
fn f21〈′a : ′b, ′b〉(

p : &′a mut Point,
q : &′b mut Point,
b : bool

)→ (&′a mut u32, &′b mut u32) {
let x1 = &mut p.x;
let x2 = if b { &mut q.x } else { &mut p.y };
(x1, x2)

}

Figure 3.17.: The function f21.

#[pledge(old(a.x) > 0→ after_unblocked(a.y) = before_expiry(∗result.0))]
#[pledge(old(a.x) ≤ 0→ after_unblocked(b.y) = before_expiry(∗result.0))]
#[pledge(after_unblocked(b.x) = before_expiry(∗result.1))]
#[pledge(after_unblocked(c.x) = before_expiry(∗result.2))]
fn f22〈′a : ′d, ′b : ′d + ′e, ′c : ′f, ′d, ′e, ′f〉(

a : &′a mut Point,
b : &′b mut Point,
c : &′c mut Point

)→ (&′d mut u32, &′e mut u32, &′f mut u32) {
let t0 = if a.x > 0 { &mut a.y } else { &mut b.y };
(t0, &mut b.x, &mut c.x)

}

Figure 3.18.: The function f22.
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fn f23(b : bool) {
let mut p = Point {x : 10, y : 20};
let mut q = Point {x : 30, y : 40};
let (x1, x2) = f21(&mut p, &mut q, b);
∗x1 = 11;
∗x2 = 41;
assert!(p.x = 11);
if b {

assert!(q.x = 41);
} else {

assert!(p.y = 41);
}

}

Figure 3.19.: The function f23.

fn f24(b : bool) {
let mut p = Point {x : 10, y : 20};
let mut q = Point {x : 30, y : 40};
let (x1, x2) = if p.x > 0 {

f21(&mut p, &mut q, b)
} else {

(&mut p.x, &mut q.y)
};

}

Figure 3.20.: The function f24.
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Callers can use the pledges provided by the called function to verify properties about
their data, which is shown in Fig. 3.19 for one possible caller of f21. Callers can also call
a re-borrowing function in a branch, shown in Fig. 3.20, and still recover permissions
after the branch.

These examples show that the implementation is indeed able to verify re-borrowing
functions with multiple input and output references.

3.7.2. Performance

This section analyzes the performance of the implementation and identifies its limits.
The verification time is almost exclusively determined by the size of the expiration tool,
which is exponential in the number of output references. For this reason, we expect there
to be a point beyond which verification is infeasible. To determine this more exactly,
we construct a sequence of functions. The n-th function fn will have n input references
pointing to a Point and n output references pointing to a u32. The function signature
defines n unrelated lifetimes. The first input and output reference have the first lifetime,
the second input and output reference have the second lifetime, and so on. Therefore,
f1 is defined as

fn f1〈′a〉(p1 : &′a mut Point)→ (&′a mut u32),

f2 is defined as

fn f2〈′a, ′b〉(p1 : &′a mut Point, p2 : &′b mut Point)→ (&′a mut u32, &′b mut u32),

and f3 is defined as

fn f3〈′a, ′b, ′c〉(
p1 : &′a mut Point,
p2 : &′b mut Point,
p3 : &′c mut Point

)→ (&′a mut u32, &′b mut u32, &′c mut u32).

These functions verify rather quickly. The unrelated lifetimes allow the expiration tool
to be optimized, essentially eliminating all the nesting. To force the construction of
a nested expiration tool, we add pledges that relate the inputs with each other. The
expiration tool is maximally nested if there is one pledge for every pair of input references.
Concretely, we add no pledge to f1, the pledge

#[pledge(after_unblocked(p1.x) = after_unblocked(p2.x))]
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Figure 3.21.: The time in seconds it takes to verify the functions f1, . . . , f5 (indicated by
the x-label).

f1 f2 f3 f4 f5
mean [seconds] 4.69 6.88 16.43 118.30 2604.77
std 0.05 0.14 0.15 1.07 21.70

Table 3.1.: The mean time in seconds it takes to verify the functions f1, . . . , f5, as well
as the standard deviation.

to f2, the pledges

#[pledge(after_unblocked(p1.x) = after_unblocked(p2.x))]
#[pledge(after_unblocked(p1.x) = after_unblocked(p3.x))]
#[pledge(after_unblocked(p2.x) = after_unblocked(p3.x))]

to f3, and so on.

We verify each function 10 times and report the mean verification time as well as the
standard deviation. The results are shown Table 3.1 and plotted in Fig. 3.21 using a
logarithmic y-axis. The data does not produce a line, because the expiration tool grows
with the factorial function2, which grows faster than the exponential function, and the
time Viper takes to verify a function is not linear in the size of the expiration tool. The
verification of f5 takes roughly 40 minutes, which stretches the limits of practicality.

2The expiration tool covering n references contains n magic wands that each contain an expiration tool
covering n− 1 references.
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3.8. Future Work

The work presented so far can be improved or extended in several directions. I highlight
the most important ones in the following sections. Section 3.8.1 outlines an alternative
way to phrase expiration tools that focuses on lifetimes that expire (in contrast to the
approach taken in Section 3.3, which focuses on references that expire). This makes
expiration tools smaller, because there can never be more relevant lifetimes than there are
relevant output references. Section 3.8.2 explores one important scenario unsupported
by the described method – re-borrows in loops. We will see that loops are closely related
to tail-recursive functions and pose essentially the same problems in the context of re-
borrowing. Finally, Section 3.8.3 describes the second important scenario that is still
unsupported – shared re-borrows of mutable references.

3.8.1. Phrasing the Expiration Tool in Terms of Lifetimes

The expiration tool described previously is phrased in terms of output references that
expire. Essentially, every magic wand handles the expiration of a single output reference,
with permissions for the expiring reference on the left-hand side and permissions for
the input references unblocked by the expiration on the right-hand side. This is best
illustrated with an example:

fn f〈′a〉(p : &′a mut Point, q : &′a mut Point)→ (&′a mut u32, &′a mut u32) {. . . }

Two output references can expire after a call to this function: result.0 and result.1. Either
expiration does not unblock anything, because the other reference can still contain an
alias of the inputs. The expiration tool provides us with the following magic wand for
the expiration order result.0, result.1:

Q(result.0) −∗ (Q(result.1) −∗ Q(p) ∧Q(q)).

For the other expiration order, it looks similar:

Q(result.1) −∗ (Q(result.0) −∗ Q(p) ∧Q(q)).

The order in which the output references does not seem to matter. Only after both
expirations do we get back permissions for both inputs. The reason is found in the type
of p, ie., &′a mut Point. The lifetime ′a means that as long as any output reference with
lifetime ′a is still alive, p is blocked. The same is true of q. More generally, expiring one
output reference with lifetime ′a cannot unblock anything if there is still another output
reference with the same lifetime around.

We can exploit this behavior and slightly change the role of magic wands. Instead of one
magic wand being responsible for the expiration of a single output reference, we change
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it to be responsible for the expiration of a single lifetime – involving multiple output
references, potentially. With this change, the expiration tool contains a single magic
wand:

Q(result.0) ∧Q(result.1) −∗ Q(p) ∧Q(q).

Generally, the nested structure of the expiration tool is kept. The only difference is that
the nesting is determined by lifetimes, not output references.

3.8.2. Re-Borrows in Loops

The introduction claimed that loops can show the same behavior that we already know
from re-borrowing functions. Consider a linked list

struct L〈A〉 { v : A, n : Box〈L〈A〉〉 }

and a loop that borrows the i-th node of a list instance xs:

let mut n = &mut xs;
while i > 0 {

n = &mut n.n;
i = i− 1;

}

Clearly, n aliases xs after the loop. Consequently, xs is blocked while n is still used.
What happens after n expires? We should restore permissions for xs – but how? Viper is
confused by the loop and does not understand why folding permissions for xs is possible.
It demands proof, which we can provide in the form of a magic wand that has permissions
for n on the left-hand side and permissions for xs on the right-hand side. This magic
wand is included in the loop variant (and proved again at the end of every iteration using
the magic wand from the previous iteration), which convinces Viper of it’s validity.

Now consider the loop written as a tail-recursive function:

fn f25(n : &mut L〈A〉)→ &mut L〈A〉 {
if i > 0 { f(&mut n.n, i− 1) } else { n }

}

This essentially requires the same magic wand. Instead of proving the magic wand at the
end of every iteration using the magic wand from the previous iteration, we now prove
it at the end of every call using the magic wand from the recursive invocation. The
proof required in the base case is virtually equivalent to the proof required to establish
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the loop invariant initially. We are looking at two incarnations of the same fundamental
thing.

Of course, loops can also create multiple re-borrows. To show this, we need trees:

struct T 〈A〉 { v : A, l : Box〈T 〈A〉〉, r : Box〈T 〈A〉〉 }

This loop borrows a node of xs into n1 and a node of either xs or ys into n2:

let mut n1 = &mut xs;
let mut n2 = &mut ys;
while i > 0 {

n1 = &mut n1.l;
n2 = if cond() { &mut n1.r } else { &mut n2.r };
i = i− 1;

}

This results in two aliases n1, n2 for xs and ys that behave in the same way as the
outputs of this re-borrowing function:

fn f26〈′a : ′b, ′b〉(
xs : &′a mut T 〈A〉,
ys : &′b mut T 〈A〉

)→ (&′a mut T 〈A〉, &′b mut T 〈A〉)

Expiring n1 unblocks xs, but only if n2, which can also borrow from xs, already expired
before. Expiring n2 unblocks ys and, if n1 already expired before, xs as well. These are
the same phenomena expiration tools are designed to handle, which likely means they
will play an important role for such loops as well. Indeed, it is again possible to rewrite
this example as a tail-recursive function.

The two examples demonstrate that loops can create re-borrows very much like re-
borrowing functions. The possibility to translate re-borrowing loops to tail-recursive
re-borrowing functions reinforces this similarity. It is therefore reasonable to assume
that the expiration tool that we developed for re-borrowing functions can also support
re-borrowing loops. However, the representation of loops in Prusti is distinct from
functions. Consequently, just as there is a certain amount of work needed to integrate
the expiration tool with functions, it is necessary to determine how loops are integrated
with the expiration tool.

3.8.3. Shared Re-Borrows of Mutable References

The previous chapters never talked about shared references; they exclusively considered
mutable references and their implications for the verification of Rust programs. It is true
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that shared references are less exciting. For example, this function requires no special
handling at all:

fn f27〈′a : ′b, ′b〉(xs : &′a T 〈A〉, ys : &′b T 〈A〉)→ (&′a T 〈A〉, &′b T 〈A〉).

A call to this function takes no permissions away from the caller, a consequence of
shared references being copy-types in Rust. The outputs keep the inputs alive, but the
expiration of an output does not necessitate the application of a magic wand, because
the inputs were never blocked.

Another function involving shared references is impossible to implement in Rust:

fn f28〈′a : ′b, ′b〉(xs : &′a T 〈A〉, ys : &′b T 〈A〉)→ (&′a mut T 〈A〉, &′b mut T 〈A〉).

The output lifetimes suggest that the returned references borrow the input data or static
memory. The first option is not possible, because the input data is behind a shared
reference. The second option is not possible, because this creates mutable references to
static memory – something that Rust forbids.3

Finally, one case remains – shared re-borrows of mutable references:

fn f29〈′a : ′b, ′b〉(xs : &′a mut T 〈A〉, ys : &′b mut T 〈A〉)→ (&′a T 〈A〉, &′b T 〈A〉).

Though this does not create an interesting specification scenario (we cannot modify the
inputs via the re-borrows), the permission handling requires attention. Rust guarantees
that data behind shared references cannot change. For this reason, the shared references
degrade the aliased data to be read-only until they expire. After the expiration, the
previously aliased data is mutable again.

Prusti already provides methods to deal with shared aliases of mutable data. Most
importantly, it can encode the temporary degradation of mutable data to read-only
data while shared aliases are alive. This existing encoding must be integrated with the
expiration tool, which is mostly implementation work.

3Both these points ignore a possible unsafe implementation of the function. Arenas, which are a type of
allocator, have a method alloc with a similar signature. It takes a shared reference to the arena and
produces a mutable reference to data owned by the arena. To make this safe, the arena guarantees
that it never produces aliasing references – much like C’s malloc.
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4. References Inside Structs

Prusti supports only a subset of types. Imagine a type as a tree, and every node has to
be either a primitive, tuple, struct, enum, or reference. Furthermore, reference nodes can
only appear at the root. So far, we restricted re-borrowing functions to these supported
types. But Rust’s type system is far richer. In this chapter, we explore how to relax
these restrictions: the requirement that every node must be a primitive, tuple, struct,
enum, or reference stays, but we do not restrict reference nodes to the root anymore.
This chapter does not lay out a finished solution. Instead, it tries to illustrate the
challenges introduced by this generalization and possible directions an eventual solution
could take.

4.1. Permission Management

We explore the permission management aspect of the problem using a simple linked list
type as an example:

enum Option〈T 〉 { None,Some(T ) }
struct List〈′a, T 〉 {

v : &′a mut T,

n : Option〈&′a mut List〈′a, T 〉〉
}

The option type is encoded as the following Viper predicates:

none(x : Ref) = ∅
someT (x : Ref) = acc(x.v) ∧ PT (x.v)

optionT (x : Ref) = acc(x.d) ∧ acc(x.v) ∧
x.d = 1→ none(x.v) ∧
x.d = 2→ someT (x.v).
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The list type is encoded as the following Viper predicate:

listT (x : Ref) = acc(x.v) ∧ refmutT (x.v)
acc(x.n) ∧ optionList[T ](x.n).

The memory owned by a linked list with two elements is shown in Fig. 4.1. Now consider
the following function:

fn f30〈a〉(l : List〈′a, T 〉)→ &′a mut T {. . . }

It receives a linked list l of (mutable references to) T ’s and returns a single mutable
reference to a T (call it r). The lifetimes reveal that the returned reference can be a
re-borrow of references owned by the list. As a result of the same aliasing rules that
motivated the previous chapter, the compiler must block access to anything borrowed
by l while r is still alive:

let mut v = 0;
let l = List(&mut v,None);
let r = f30(l);
// v is blocked due to r
∗r = 1;
// v is unblocked
assert!(v = . . . );

Let’s analyze this at the Viper level. Ignoring the part where permissions are returned
to the caller after re-borrows expire, the method f30 is basically encoded like this:

method f30(l : Ref) returns (r : Ref)
requires ListT (l)
ensures refmutT (r)

{...}

Naturally, f30’s postcondition doesn’t include permissions for the list l itself, because it
is moved into the method call and therefore lost to the caller. But the postcondition also
doesn’t include permissions for the T -values borrowed by l, because these permissions
may be included in the refmutT (r) predicate instance already. But this changes once r
expires and the permissions in refmutT (r) are available again. It is possible to imagine
the following magic wand:

PT (old[post](r.p)) −∗ permissions for all T -values borrowed by l.
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Figure 4.1.: The memory owned by a linked list with two elements. Nodes corresponding
to references are drawn as a red square.
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How can we formulate the right-hand side of this magic wand? It needs to refer to values
below l evaluated in the pre-state of the method call. Writing this out for the first two
nodes, we get the following:

PT (old[post](r.p)) −∗ PT (old[pre](l.v.p)) ∧ PT (old[pre](l.n.v1.v.p.v.p)) ∧ . . .

Once again, notice that the right-hand side does not contain permissions for PT (l.v.p),
since the caller does not have permissions to access l.v.p after the call. Instead, it contains
permissions for PT (old[pre](l.v.p)). This is well defined, since the caller had permissions
to access l.v.p before the call. However, writing the right-hand side like this is not viable
in practice where the length of the list is usually determined at runtime (and, more
fundamentally, can vary between calls). What is needed is a statically constructable
expression that does not depend on the exact shape of l and still captures permissions
for all T -values borrowed by l.

Viper provides two tools for this: predicates and quantified permissions. The need for
old-expressions disqualifies predicates. But quantified permissions provide a way out.
Assume one function length(l) that returns the length of l and one function get_nth(l, n)
that returns the n-th T -value borrowed by l:

get_nth(l, 0) = l.v.p

get_nth(l, 1) = l.n.v1.v.p.v.p

get_nth(l, 2) = l.n.v1.v.p.n.v1.v.p.v.p

. . .

Now we can write down the magic wand:

PT (old[post](r.p)) −∗ ∀ 0 ≤ i < length(l) : PT (old[pre](get_nth(l, i))).

The functions length and get_nth are very specific to the shape of the data structure.
For a binary tree, we would need another set of functions that allow us to enumerate
permissions for all values referenced by the tree nodes. Ultimately, we want to generate
the magic wand for general data structures. We thus need a general method to enumerate
the unblocked permissions.

Start with a path expression that describes a sequence of field accesses, but leaves the
root open. Examples for path expressions are _.v.p and _.n.v1.v.p.v.p. Note that path
expressions are runtime values, which means we can write Viper functions that operate
on them. A path expression can be applied to a root to produce a value. For example, the
path expression _.v.p applied to the root l produces a value equivalent to the expression
l.v.p. This operation is implemented by the apply(r, p) function. In general, it allows a
simple recursive definition:

apply(r, p) = if empty(p) {r} else {apply(r′, tail(p))}
r′ = apply_one(r, first(p)),
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where the apply_one expressions applies the first element of p to r in a simple case
distinction.

Path expressions allow a reformulation of get_nth:

get_nth(l, 0) = apply(l,_.v.p)
get_nth(l, 1) = apply(l,_.n.v1.v.p.v.p)
get_nth(l, 2) = apply(l,_.n.v1.v.p.n.v1.v.p.v.p)

. . .

The exact structure of data is not known statically due to enums. For example, lists are
terminated after a statically unknown number of nodes when the field containing the
next list node is a None value. This means not every possible path expression is actually
valid for every instance of the data structure. Another function can test this property
at runtime:

valid(r, p) = if empty(p) {>} else {v ∧ valid(r′, tail(p))}
v = valid_one(r, first(p))
r′ = apply_one(r, first(p)).

The functions apply and valid are closely related in the sense that the latter is a precon-
dition of the former: evaluating apply(r, p) requires valid(r, p) to be true.

The final element we need is a boolean-valued function over path expressions that is true
if the argument corresponds to a reference that points to an unblocked value. For the
list example, the expressions

unblocked(_.v)
unblocked(_.n.v1.v.p.v)

unblocked(_.n.v1.v.p.n.v1.v.p.v)
. . .

evaluate to true, while all other expressions evaluate to false. Now we can give another
formulation of the magic wand:

PT (old[post](r.p)) −∗ ∀p : valid(l, p)→ unblocked(p)→ PT (old[pre](apply(l, p).p))

This section demonstrated some challenges introduced by allowing structures with ref-
erences – the statically unbounded number of references that are involved, most impor-
tantly – and outlined a general approach that an eventual solution could build upon.
Many questions are left open, which future work will have to answer. For one, it is
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unclear which magic wands to actually generate. For this, we need to better understand
Rust’s blocking rules, which we attempt in Section 4.2. Then there is the issue of pack-
aging the magic wands. Since they contain quantified permissions, we likely need ghost
code to assemble the resources on the left- and right-hand side. For example, this could
involve a function that consumes permissions for a list and produces permissions for
all T -values in the list. It is also not obvious how clients can use these magic wands to
obtain permissions for unblocked references. It should be possible in theory (because the
right-hand side includes permissions for everything that is unblocked by the expiration),
but communicating this to Viper can prove tricky.

4.2. Re-Borrow Relationships

In Section 3.1 we described for re-borrowing functions that involve simple references
which output references can borrow from which input references, which also helped to
explain the blocking behavior. Now we want to adapt these rules to account for references
that appear inside structs. We still exclusively consider mutable references.

Consider three structs A, B, C:

struct A〈′x, ′y〉 { b1 : B〈′x〉, b2 : &′x mut B〈′y〉, c : &′y mut C〈′y〉 }
struct B〈′x〉 { f : &′x mut u32 }
struct C〈′x〉 { c : &′x mut C〈′x〉, f : &′x mut u32 }

We can draw any type as a tree with back-edges. Generally, the root node of the tree for
a type T1 has one sub-tree for every type T2 obtainable from T1 via a single projection
step (field access, dereference, . . . ), generated in the same way. If possible, we replace
a sub-tree for T2 with a back-edge to an ancestor node that already represents T2. The
result of this construction for the type A〈′x, ′y〉 is shown in Fig. 4.2. A single projection
step from A〈′x, ′y〉 can produce values of type B〈′x〉, &′x mut B〈′x〉, and &′y mut C〈′y〉,
visible in the tree as the three children of the node for A〈′x, ′y〉. Instances of C〈′y〉 can
produce values of type &′y mut C〈′y〉 and &′y mut u32 with a single projection step.
The latter becomes a sub-tree of the node for C〈′y〉. The former is realized with a
back-edge to the node for &′y mut C〈′y〉, since it is an ancestor.

Since a place is blocked after a function call if there is the possibility that some reference
is aliasing it, we must answer two questions. First, Section 4.2.1 explains which data
owned by the caller we can create references for (borrow sources). These are the places
that are blocked after a call if the created references can be communicated to the caller.
This leads to the second question, covered in Section 4.2.2. Here we explain where
references can be stored such that they are accessible to the caller (borrow sinks). While
these two sections fall short of explaining the blocking behavior completely, the thoughts
they contain may be useful in an eventual formalization.
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Figure 4.2.: The type A〈′x, ′y〉 represented as a tree with back-edges. The nodes are types
and an edge from T1 to T2 indicates that a value of type T1 gives access to a
value of type T2 via a single projection step (field access, dereference, . . . ).

82



4.2.1. Borrow Sources

Take borrow sources first and consider a value of type A〈′x, ′y〉 with no relation between
′x and ′y. The expression &mut _.b1 (where _ indicates the argument of type A) creates
a reference of type &′x mut B〈′x〉, but this is uninteresting because the borrowed data
is not owned by the caller. The expression &mut ∗ _.b1.f creates a reference of type
&′x mut u32. The referenced u32 is owned by the caller, because we didn’t receive the
value itself, but a reference to it. Note that the expression &mut ∗_.b1.f cannot create
a reference of type &′y mut u32, because _.b1.f only lives for ′x, and ′x is not known
to outlive ′y. The expression &mut ∗_.b2 creates a reference of type &′x mut B〈′y〉.
Again, the referenced value is owned by the caller, because we followed at least one
reference to obtain it. One might think that the expression &mut ∗(∗_.b2).f allows us
to create a reference of type &′y mut u32, but this is not the case. Because _.b2 has the
lifetime ′x, no reference obtained from ∗_.b2 can outlive ′x. In other words, the lifetime
of the reference created by &mut ∗(∗_.b2).f must be outlived by both ′x and ′y. Because
′x and ′y are unrelated, the compiler conservatively assumes that the only lifetime that
satisfies this requirement is the empty lifetime, making re-borrows impossible.

We now formulate rules that generalize the observations from the previous paragraph.
Given some value, we want to determine for every projection p out of this value the most
permissive lifetime that a reference to the corresponding place can have. For this, collect
the lifetimes of all references dereferenced by p and compute their intersection:

intersection({′x}) = ′x

intersection({′x, ′y, . . . }) =


intersection({′y, . . . }) if ′x : ′y
intersection({′x, . . . }) if ′y : ′x
∅ otherwise

We can try this for the value of type A〈′x, ′y〉. The place ∗_.b1.f dereferences a single
reference, _.b1.f , which has the lifetime ′x. The intersection of the singleton set is the
lifetime contained in it, ie ′x. This means the longest-living reference to ∗_.b1.f that
we can create has lifetime ′x. The place ∗(∗_.b2).f dereferences _.b2 and (∗_.b2).f ,
with lifetimes ′x and ′y, respectively. The intersection of these two lifetimes is empty,
because they are unrelated. This means the longest-living reference to ∗(∗_.b2).f that
we can create has the empty lifetime. The place ∗(∗_.c).f also dereferences references
with lifetimes ′x and ′y, yielding the same result.

What about ∗(∗(∗_.c).c).f , ∗(∗(∗(∗_.c).c).c).f , . . . ? These places still just dereference
references with the lifetime ′y. We see in Fig. 4.2 that the projections performed by these
places follow the cycle between &′y mut C〈′y〉 and C〈′y〉 once, twice, or more often.
Following the cycle does not visit new types, which means it cannot add dereferences of
references with other lifetimes. This allows us to handle these places together. We need
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place borrow source lifetime borrow sink lifetime
_.b1 − −
_.b1.f − −
_.b1.f.∗ ′x −
_.b2 − −
_.b2.∗ ′x −
_.b2.∗.f ′x ′y
_.b2.∗.f.∗ ∅ −
_.c − −
_.c.∗[.c.∗] ′y −
_.c.∗[.c.∗].c ′y ′y
_.c.∗[.c.∗].f ′y ′y
_.c.∗[.c.∗].f.∗ ′y −

Figure 4.3.: Places accessible from a value of type A〈′x, ′y〉 together with the maximum
lifetime a reference to the place can have (borrow source lifetime) and the
minimum lifetime a reference stored in the place must have (borrow sink
lifetime). Places that are not owned by the caller or where references cannot
be stored in are indicated with a “–” on the right side.

two notational extensions to refer to these places as a unit. First, we add the option
to write dereferences as field accesses, turning ∗(∗(∗(∗_.c).c).c).f into _.c.∗.c.∗.c.∗.f.∗.
Second, we add a square bracket notation to denote arbitrary repetition. This allows us
to write _.c.∗[.c.∗].f.∗ for all places that start with _.c.∗, followed by arbitrarily many
instances of .c.∗, followed by .f.∗. All of these places are equivalent with respect to the
lifetimes of the references they dereference.

Finally, we build a list, given in Fig. 4.3, of all accessible places together with the most
permissive lifetime that a reference to each such place can have. A place from this list
is blocked after a call if we can also save the reference in a location that the caller can
access after the call, which is the topic of the next subsection.

4.2.2. Borrow Sinks

Having obtained a reference with some lifetime to data owned by the caller, we now try
to store it in a place that is accessible to the caller too. The rules for this are a bit
simpler than for borrow sources. We still consider the list of all places from Fig. 4.3.
To start, exclude the ones that are not owned by the caller (ie, are not behind at least
one dereference). Next, also exclude all places that are not of a reference-type, because
we naturally cannot store references in them. What’s left are the reference-typed places
that are owned by the caller. In such a place of type &′a mut T , for some ′a and T ,
we can store any reference that has a lifetime outliving ′a. Interestingly, the lifetimes of
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references that were dereferenced to get to this place are unimportant here.

4.3. Pledges

This section demonstrates some verification scenarios and pledges that one could write
to capture suitable functional properties. It does not provide a comprehensive pledge
syntax suitable for functions involving structures with references, but instead shows
exemplary properties that such a syntax must be able to capture eventually.

4.3.1. Single Non-Recursive Struct

We begin with an example struct that contains a reference:

struct S〈′a, T 〉 { x : &′a mut T }

Consider a function that takes a reference to the struct and changes the contained
reference to be 0:

#[pledge(after_unblocked(∗old[pre]((∗d).x)) = 0)]
fn f31〈′a〉(d : &′a mut S〈′a,u32〉) {
∗d.x = 0;

}

Because the contained reference is (briefly) blocked after the call, a pledge is required.
This pledge needs to describe the following property: take the reference that was passed
into the function via d.x – formally written as old[pre]((∗d).x) – and dereference it after
it is unblocked. It’s value will be 0.

This function stores an alias for d.x in the output parameter x:

#[pledge(after_unblocked(∗old[pre]((∗d).x)) = before_expiry(∗old[pre](∗x)))]
fn f32〈′a〉(d : &′a mut S〈′a,u32〉, x : &mut &′a mut u32) {
∗x = &mut ∗d.x;

}

The pledge describes the following property. Take the reference that was passed into the
function via d.x – formally written as old[pre]((∗d).x) again – and dereference it after
it is unblocked. Then take reference that was passed into the function via x – formally
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written as old[pre](∗x) – and dereference it immediately before it expires. These values
turn out to be the same, ie, old[pre]((∗d).x) and old[pre](∗x) are aliases.

The following function is a slight variation of f32, it just returns the alias instead of
saving it to an output parameter:

#[pledge(after_unblocked(∗old[pre]((∗d).x)) = before_expiry(∗result))]
fn f33〈′a〉(d : &′a mut S〈′a,u32〉)→ &′a mut u32 {

&mut ∗d.x

}

Another variation of f32 stores the caller-accessible alias for d1.x in another instance of
S:

#[pledge(after_unblocked(∗old[pre]((∗d1).x)) = before_expiry(∗old[pre]((∗d2).x)))]
fn f34〈′a〉(d1 : &′a mut S〈′a,u32〉, d2 : &mut S〈′a,u32〉) {

d2.x = &mut ∗d1.x;
}

4.3.2. Single Recursive Struct

Structs can contain instances of themselves. For example, we can define a linked list of
mutable references:

struct L〈′a, T 〉 { v : &′a mut T, n : Box〈L〈′a, T 〉〉 }

This list is infinite, which makes the following examples easier to write – we don’t have
to worry about the length. A finite version is easily defined by using enums. Assume
a pure get method takes a parameter i and returns a shared reference to the i-th list
node.

We can write a function that returns a mutable reference to the i-th value of the list:

#[pledge(after_unblocked(∗old[pre]((∗self.get(i)).v)) = before_expiry(∗result))]
fn f35〈′a〉(&′a mut self, i : u32)→ &′a mut T {

if i = 0 {
&mut ∗self.v

} else {
f35(self.n, i− 1)

}
}

86



The specification for this is similar to what we saw before. We use after_unblocked and
before_expiry to communicate an alias relationship between a reference passed into the
call – old[pre]((∗self.get(i)).v) – and a reference available after the call – result.

We can create many aliases, as the following function that returns a list containing every
second value of the input list shows:

#[pledge(∀i. let
p = old[pre]((∗self.get(2i)).v),
q = old[post](result.get(i).v)

in after_unblocked(∗p) = before_expiry(∗q))]
fn f36〈′a〉(&′a mut self)→ L〈′a, T 〉 {

L { v : &mut ∗l.v, n : Box::new(f36(self.n.n)) }
}

Note that q is obtained in the post-state of the call. To see why this is necessary, observe
two things. First, the pledge is activated once all references in the returned list expire.
Second, a caller can change the values in the returned list, for example by pointing some
of them to different memory locations. This breaks alias relationships guaranteed by f36.
Therefore, result.get(i).v must be evaluated in the post-state of the call. Technically,
this is also necessary in the previous examples.

This section explored possible specifications for some of the more advanced re-borrowing
functions involving structs with references. We saw that the familiar before_expiry
and after_unblocked environments still provide a powerful tool to formulate functional
properties. Determining the correct state in which sub-expressions must be evaluated
requires extra care. Often, a reference is obtained in the pre-state of the function call
and only dereferenced later, when the place it references is unblocked. The pledge of
f36 makes this especially clear. Eventually, pledges must be embedded in the encoded
program. Once future work paints a clearer picture of the way permissions around
re-borrowing functions involving structs with references are handled, the embedding of
pledges can be approached. The examples given here will help to test ideas.
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A. Terms and Notation

Re-Borrowing Function. A function that has reference-typed arguments and reference-
typed return places. Crucially, a re-borrowing function can create aliases by re-
turning references to data referenced by input references.

Input Reference. A reference-typed argument of a re-borrowing function.

Output Reference. A reference-typed return place of a re-borrowing function.

Pledge. A kind of specification that can relate the final state of output references with
the initial state of input references after they are unblocked.

Re-Borrowing Graph R. A bipartite graph that indicates for a function f which input
references any output reference can borrow from. It has one node for every input
reference, one node for every output reference, and an edge between an input and
an output node if the output can borrow from the input.

Re-Borrowing-With-Pledges Graph RP . The re-borrowing graph R extended with edges
to indicate input references and output references that appear together in the same
pledge. For every pledge p, edges are inserted such that the nodes corresponding
to I(p) ∪O(p) form a clique.

Expiration Tool. A Viper resource that allows the caller of a re-borrowing function to
give up permissions for expired references and obtain permissions for unblocked
places in return. It also provides the caller with the facts from pledges.

Partial Expiration Tool. An expiration tool that is responsible for one connected com-
ponent of the re-borrowing-with-pledges graph RP . Many partial expiration tools
make up one “whole” expiration tool.

expires_first. A boolean-valued function of two arguments that is defined to be true
when the first argument, which is an output reference of a re-borrowing function,
expires before all elements of the second argument, which is a set of output ref-
erences of the same re-borrowing function. This is used in the expiration tool to
provide the caller with the correct magic wand that can expire the next expiring
output reference.
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before_expiry. An environment that can be used in pledges to evaluate an expression
immediately before a reference expired.

after_unblocked. An environment that can be used in pledges to evaluate an expression
immediately after a place was unblocked.

I(p). The input references mentioned by a pledge p within after_unblocked environ-
ments.

O(p). The output references mentioned by a pledge p within before_expiry environ-
ments.

Q(x). Shortcut notation to denote permissions passed into or returned from a func-
tion call. If x corresponds to an argument of type &mut T , then Q(x) expands
to PT (old[pre](x.p)), where PT is the Viper predicate that encodes the type T .
If x corresponds to a returned value of type &mut T , then Q(x) expands to
PT (old[post](x.p)).

Projection. A sequence of field accesses and dereferences. A single element of this
sequence is called projection step.
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