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1 Introduction

The Rust programming language [6] has attracted a lot of attention in recent years [9, 8]
due to its focus on strong safety guarantees while keeping the capabilities of a low-level
systems programming language. Its type system statically prevents common memory
bugs such as data races, dangling pointers and undesirable aliasing side effects.

Nevertheless, memory safety alone does not make a program functionally correct. Empiri-
cal methods like testing can be used to increase the confidence in a program’s correctness.
However, if one wants to fully prove the absence of errors, a static verifier should be used.
Such verifiers take a program together with a formal specification and attempt to prove
that the specification is fulfilled.

The Prusti project built one such verifier for Rust [1]. By leveraging the guarantees pro-
vided by the Rust compiler, it is able to hide complicated logic from the user that is
otherwise needed for reasoning about heap-based programs. After the type checking by
the Rust compiler, Prusti obtains the functions to verify in the Mid-level Intermediate
Representation (MIR) and translates them together with the specification into the inter-
mediate representation of the Viper infrastructure [7]. Viper’s verifier is then used as a
back-end to perform the actual verification.

Currently, the Prusti verifier is only able to verify functional requirements and the absence
of errors like overflows or panics. However, in many cases programs should not only be
functionally correct, but also efficient. This is especially true for a systems language like
Rust targeting low-level applications. It is often easy to write a simple correct program
that is not very efficient, but correctly optimizing it while keeping functional correctness
is hard. Therefore, we would like to verify non-functional properties such as bounds on
the (asymptotic) runtime or space usage at the same time as the functional requirements.
Being able to verify both simultaneously is also beneficial because some complexity proofs
might rely on knowledge from the functional correctness proof.

Related Work

To enable formal reasoning about the resource usage of programs, Robert Atkey formal-
ized amortized complexity analyses in separation logic [2]. He transferred the notion of
separating access permissions of heap locations to the concept of ‘consumable resources’
which enables ‘consuming’ them only once. This approach was then brought into prac-
tice in [3] by verifying explicit bounds for the worst-case amortized time complexity of a
Union-Find data structure. They use so-called time credits to represent the permission
to perform a single operation in their cost model.
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Building on this previous work, Armaël Guéneau proposed in his PhD thesis [4] to ab-
stract the cost of a function by using asymptotic bounds. This required him to formalize
the ‘Big-O notation’ and the composition of such bounds to keep modularity. Using ab-
stract bounds improves modularity, since small changes in the program do not require
specifications to change. This also simplifies the specifications to an often sufficient level
of abstraction. Moreover, working with asymptotic bounds makes the verification more
robust against the concrete choice of a cost model and therefore more independent from
platform details. This enables Guéneau to use a very simple, but elegant, cost model
where only entering a loop or function body has a cost, which is 1.

Example

We would like to use the results from this previous work to verify (asymptotic) complexity
specifications as shown in Example 1 with Prusti. The use case in this example is the
verification of typical claims in library specifications. For instance, Rust’s standard library
states that its Vec implementation ‘guarantee[s] O(1) amortized push’1. The example
shows a simplified version of this Vec implementation for which we formalize the claim
with a possible syntax for specifications.

1 #[stored_credits(runtime(O(2*self.len - self.capacity))]

2 impl<T> Vector<T> {

3 #[requires(runtime(O(self.len))] // for copying to new location

4 #[ensures(self.capacity == total_new_cap)]

5 #[ensures(self.len == old(self.len))]

6 pub fn reserve(&mut self, total_new_cap: usize) {...}

7

8 #[requires(amortized(runtime(O(1)))]

9 pub fn push(&mut self, value: T) {

10 if self.len == self.capacity {

11 if self.capacity == 0 {

12 self.reserve(1);

13 }

14 else {

15 self.reserve(self.capacity * 2);

16 }

17 }

18 self.buffer[self.len] = value;

19 self.len += 1; // costs O(1) credits due to change of stored_credits

20 }

21 }

Example 1: Amortized analysis of a resizing vector push

Intuitively, one can prove the amortized runtime by assuming that we store some constant
amount of time credits per vector element added by a push call. These credits are then
used when the capacity is reached, to pay for copying the lower-half (with potentially no
credits left) as well as the elements from the upper-half themselves to the newly allocated
location. This credit view is similar to the ‘banker’s view’ described in [10]. Having control
over time credit store and pay operations may be needed in some use cases. Especially
for data structures like linked lists without an explicit length, stating resource properties
at each element and therefore relating them to the data structure’s shape as in [2] might
also be useful.

In this example it is arguably the easiest for static verification to use the so-called ‘po-
tential’ or ‘physicist’s’ approach to amortized analysis [10]. This means, that we define
a potential function which maps the state of the data structure to an amount of time

1https://doc.rust-lang.org/std/vec/struct.Vec.html
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credits currently stored for later use. The amortized cost of an operation then consists of
the actual cost of the operation plus the change of potential caused by it. If the potential
grows, we will pay for later, costlier operations. These operations can then make use of
the stored credits by decreasing the potential.

In the specification syntax of the example we define the potential function by using the
stored_credits keyword in line 1. We want to be flexible in terms of the consumable
resource to analyze to allow future extensions, for example to memory space complexity.
Therefore, we use the keyword runtime in the annotations to define which resource we
want to reason about. As mentioned before, we want to use the abstraction of the ‘Big-
O notation’ in most use cases, but sometimes concrete bounds might also be necessary
and are also easier to start with. That is why we introduce the O to signal the use of
asymptotic complexities.

For the specification of function complexities we use the standard Prusti requires- and
ensures-clauses for pre- and postconditions. Using them in preconditions might seem
more natural if one thinks in terms of time credits to pay. Whereas, complexities in
postconditions can be interpreted as credit debt after the call and allow the usage of
result values in the annotation. For the push function we want to prove an amortized
complexity. Therefore, we use the amortized keyword in the specification to enable
the usage of the stored_credits. For reserve on the other hand we only give a non-
amortized worst-case complexity, which might be useful if one wants to reason about the
strict worst-case complexity of a program without amortization.

To prove the specification of push, an automatic verifier would step through the MIR
statements of the function and construct a verification condition for its correctness with
respect to the annotations. For the cost inference during this construction it would use
the costs given for each operation in a cost model. As mentioned before, the change of
potential will be added to the operation’s cost when performing an amortized analysis.

The reserve call would be analyzed modularly by only using its specification and not
the implementation. Although the annotations only give a non-amortized runtime in this
case, we can infer the amortized runtime easily by adding the change of potential. Here
we usually call reserve with the doubled capacity. By the postconditions we can infer
that self.capacity will be set to the new capacity and self.len will be left unchanged.
This leads to a decrease of potential by the old self.capacity. Since we know that
self.len is equal to this capacity by line 10, the amortized complexity of the call is
O(self.len) - O(self.len), which is equal to O(1). It can be easily seen that the edge
case, when self.capacity is zero, also costs at most O(1), since self.len is zero. The
remaining parts of the function can also be performed in constant time, since we only
change the potential by a constant amount on line 20.

Following the approach in [4], the verifier would probably first construct a concrete cost
expression for the code. To keep the verification modular this cost expression would
contain placeholders for the costs of function calls. Only in the end, we would prove that
the cost expression satisfies the user-defined asymptotic bound by using the (asymptotic)
bounds provided in the specification of the called functions as constraints.
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2 Core Goals

The main goal of this thesis is to design and implement an extension of the Prusti verifier
to enable modular verification of asymptotic runtime bounds for programs written in
Rust. This task can be subdivided into the following core goals with a rough estimate of
the required time in weeks on the right-hand side (in total about 16 of 26 weeks), which
includes time needed for the implementation:

• Collecting Examples: Find interesting examples of Rust code to be verified. This
includes examples exposing complexity bugs (i.e. correct programs that take longer
than necessary and expected), but also correct examples that might not be simple to
analyze. These can then be used to guide the designing phase and for the evaluation
of the implementation.

(2)

• Cost Model: Define a runtime cost model for Rust’s MIR in terms of time credits.
This model should be generic to allow verification with respect to different cost mod-
els and in particular also allow reasoning about the consumption of other resources
such as memory (see Extension Goals).

(2)

• Specification Syntax: Define syntax to reason about cost functions and (time)
credits. As we have seen in Example 1, this mainly includes annotations to define
complexity bounds asymptotically or concretely, which should be flexible in terms
of different resources. But it may also include additional annotations which may be
needed to guide the cost inference process as in [4]. In particular, loops will require
annotations similar to a variant if the maximal number of iterations cannot directly
be inferred.

(1)

• Viper Encoding: Design an encoding of the cost model and specifications into
Viper. This includes constructing a (concrete) cost expression for the MIR code,
which can then be proven by Viper’s verifier to satisfy the time credit bound given
in the specification.

(4)

• Proving Asymptotic Bounds: Encode rules into Viper to prove asymptotic upper
bounds. This includes formalizing domination properties between functions and
simplification steps for complexity bounds. In the current state of Viper this is
probably only possible for uni-variate linear bounds. But it may be possible to
achieve first results for more complex functions, such as polynomial, logarithmic or
multivariate bounds (see Extension Goals).

(3)

• Amortized Analysis: Make it possible to store and extract time credits to and
from Rust data structures to enable amortized cost analyses. As mentioned, this
can be done using the potential method as in Example 1, but more flexible solutions
are needed in some cases. Try to minimize the manual annotations needed for this.

(2)

• Evaluation: Evaluate the verification, for example by re-verifying bounds estab-
lished by existing projects or modeling proofs of textbook algorithms. Use the
examples collected before. A possibility for evaluation might also be to perform
termination proofs by proving bounds on the runtime.

(2)

3 Extension Goals

The remaining time of about 10 weeks will be used for writing the report, finishing delayed
core goals and for implementing some of the following extensions:

• Lower Bounds: Extend the verifier to be able prove lower bounds on time
complexity.

• Space Complexity: Add a cost model for memory consumption and verify space
complexity bounds.
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• Complexity Inference: Automatically infer (simple) asymptotic complexity
bounds from the MIR code without a user providing a candidate bound.

• More Complex Asymptotic Bounds: Enable proof support for (more compli-
cated) polynomial, logarithmic or multivariate bounds. Using the approach from
Hoffmann et al. [5] to translate super-linear functions into linear constraints of base
functions, which can be solved by a LP solver, could be useful. Another approach
could be to require more manual annotations to enable non-linear inferences in Viper.

• Timing Side Channels: Prove that running times are independent of crypto-
graphic secrets to show absence of timing side channels for security applications.
For this approach more precise cost models are probably needed.
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