
Reasoning about Complexities in a
Rust Verifier

Master Thesis

Lowis Engel

October 9, 2021

Advisors: Prof. Dr. Peter Müller, Dr. Christoph Matheja and Aurel B́ılý

Department of Computer Science, ETH Zürich





Abstract

In addition to safety and correctness properties, the efficiency of pro-
grams is gaining more attention in recent years. There is a demand
to reason about the resource usage of software in terms of runtime,
memory space, energy consumption and other resources.

In this thesis we present a method to prove polynomial resource bounds
in a procedure-modular verifier. We focus on verifying asymptotic
bounds, but the approach is also suited to reason in terms of concrete
quantities. The polynomial bounds can be defined in terms of multiple
variables.

Similar to heap access permissions in separation logic or implicit dy-
namic frames, we use so-called resource credits to represent the right
to consume some unit of a resource quantity. The reasoning about such
credits is generic, the semantics of a resource are defined separately by
a cost model. Polynomial amounts of such credits are represented by
their coefficients in a normal form to simplify the proof obligations.

The verification is implemented as an extension to the Prusti verifier
which encodes Rust programs for the Viper verification infrastructure.

i



Acknowledgments
I would like to thank my supervisors Dr. Christoph Matheja and Aurel Bı́lý
for their support and patience. Our weekly meetings kept me motivated,
provided helpful feedback and always left me with a positive feeling. This
motivation was especially important due to the isolation in the pandemic. I
am also grateful that they came up with this interesting research topic.

I would like to extend my thanks to Dr. Alexander Summers for providing
us with insights about Viper and reminding us about permission amounts
above one, which was crucial for our Viper encoding. He also gave a great
introduction to program verification in a lecture with the same name, that
amplified my interest in the topic and equipped me with the background
knowledge for this thesis.

Furthermore, I thank Federico Poli for introducing me to the Prusti code
base and giving me the opportunity to contribute to the project as a prepa-
ration for working on this thesis.

I am also grateful to Prof. Peter Müller for the opportunity to work on both
of my theses with the great people of his research group. His lectures
sparked my excitement for programming languages and software quality,
which lead to the choice of my research topics.

Finally, I would like to thank my family for their support and especially,
for helping me to stay determined and motivated towards the end of this
project.

ii



Contents

Contents iii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Methodology and Related Work . . . . . . . . . . . . . . . . . 3

2.1.1 Amortized Complexity Analysis . . . . . . . . . . . . . 3
2.1.2 Hoare Logics . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Asymptotic Bounds . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Languages and Tools . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Viper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Prusti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Reasoning Principles 17
3.1 Resource Credits . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Binary Counter Example . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Loops and Recursion . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Coefficient-based Representation . . . . . . . . . . . . . . . . . 21
3.5 Defining Coefficient-based Costs . . . . . . . . . . . . . . . . . 22
3.6 Coefficient-based Reasoning . . . . . . . . . . . . . . . . . . . . 24
3.7 Base Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Amortized Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Asymptotic Bounds 31
4.1 Coefficient-based Definition . . . . . . . . . . . . . . . . . . . . 31
4.2 Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Verifying Asymptotic Bounds . . . . . . . . . . . . . . . . . . . 34

iii



Contents

4.3.1 Cost Inference . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Loops and Recursion . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation and Viper Encoding 39
5.1 Credit Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Asymptotic Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Conditional Asymptotic Bounds . . . . . . . . . . . . . 45
5.3.2 Coefficient Functions . . . . . . . . . . . . . . . . . . . . 46

5.4 Loops and Recursion . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Specification Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Limitations and Modeling Unsupported Features . . . . . . . 48

6 Evaluation 53
6.1 Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Bottom-up Algorithm . . . . . . . . . . . . . . . . . . . 54
6.1.2 Top-down Algorithm . . . . . . . . . . . . . . . . . . . . 55
6.1.3 Top-down Algorithm with Memoization . . . . . . . . 56

6.2 Abstract Examples . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.1 Multivariate Nested Loop . . . . . . . . . . . . . . . . . 58
6.2.2 Decreasing Recursive Cost . . . . . . . . . . . . . . . . 60
6.2.3 Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Conclusion 63
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Example Base Conversion 68

Bibliography 69

iv



Chapter 1

Introduction

Computers and software running on them have become omnipresent in our
lives. The more we depend on them, the more important it is that they work
reliably. At the same time, the size and complexity of software systems are
increasing, which makes ensuring their reliability even harder. Different
measures have been applied in the past to improve reliability.

Programming languages can prevent certain errors by imposing restrictions
on programmers. For example, the Rust programming language [21] has
a strict type system that provides strong safety guarantees. The so-called
ownership type system statically prevents common memory bugs such as
data races, dangling pointers and undesirable aliasing side effects.

Nevertheless, programming languages cannot prevent programmers from
writing functionally incorrect code, i.e. code that does not compute the de-
sired results. Empirical methods like testing can be used to increase the
confidence in a program’s correctness. However, they can often only cover
a subset of all possible inputs and program states. Higher reliability can be
achieved by using a static verifier, that is able to statically reason about all
possible program states.

The Prusti project built one such verifier for Rust [2]. As usual in program
verification, the Prusti verifier is mainly aiming at verifying functional re-
quirements. Additionally, it is able to prove the absence of errors like over-
flows or panics (unrecoverable failures). However, functional correctness
and safety guarantees do not imply efficient implementations.

Especially for a programming language like Rust, ‘targeting systems-level
applications’ [21], verifying assumptions about the resource usage of a pro-
gram to ensure efficiency might be equally important. For example, bounds
on the stack space usage of programs provide safety guarantees for poten-
tially safety-critical applications in embedded systems [23]. Furthermore,
reasoning about energy consumption becomes increasingly important with

1



1. Introduction

the rise of handheld devices and cloud computing [10]. Finally, proving con-
stant runtime bounds on cryptographic algorithms helps to prevent timing
side-channel attacks [20, 5].

The goal of this thesis is to extend the Prusti verifier to be able to prove
asymptotic upper bounds on the resource usage of Rust programs. As usual
in Prusti, the proof is performed by an encoding in the intermediate lan-
guage of the Viper verification infrastructure [22]. Combining this encod-
ing with the existing encoding of functional properties enables us to exploit
functional properties for more precise resource bounds. Our resource model
can also be used for amortized analyses.

1.1 Contributions
This thesis contains the following main contributions:

• The definition of a coefficient-based representation of multivariate poly-
nomials that simplifies the proof obligations,

• Methods to propagate this representation through the program,

• A formalization of asymptotic bounds in this representation and a way
how to prove them including a cost inference,

• An encoding of this approach in the intermediate language of the
Viper verification infrastructure,

• A prototype implementation as an extension of the Prusti verifier.

1.2 Outline
The following chapter presents necessary background knowledge. This in-
cludes relevant methodology and related work as well as an introduction to
Viper and Prusti. Chapter 3 introduces the basic principles of our reason-
ing about resource usage in mathematical terms. In Chapter 4 we continue
this part on abstract methodology by describing how we verify asymptotic
bounds. Chapter 5 presents how we encode the concepts introduced before
into Viper and other implementation details. It follows an evaluation on
examples in Chapter 6. Finally, we conclude in Chapter 7.

2



Chapter 2

Background

This chapter introduces some background knowledge that helps understand-
ing the following chapters. It is subdivided into a description of related
work and the concepts occurring there, in Section 2.1, and an introduction
of the languages and tools that constitute the environment of our implemen-
tation, in Section 2.2.

2.1 Methodology and Related Work
In this section we will first introduce two ways to model amortized complex-
ity analysis, since many formalizations for reasoning about complexities are
based on these models. A short overview over such formalizations follows.
Finally, we will present some existing tools that reason about program com-
plexities.

2.1.1 Amortized Complexity Analysis

As introduced by Tarjan [26], amortized analysis is a technique to analyze
the performance of operations on a data structure. The resource usage of
such operations may vary a lot depending on the previously executed op-
erations — especially when the data structure is self-adjusting from time
to time to keep an efficient structure, like splay trees are. Therefore, over-
approximating a sequence of operations by the sum of their worst-case com-
plexities might lead to a very pessimistic view of the overall performance.
Instead, amortized analysis takes into account which operations can or must
have been executed before. Hence, it gives a more realistic view of the oper-
ation’s performance in a sequence of operations.

Tarjan describes two equivalent conceptual models of amortized analysis.
We will mostly rely on the so-called banker’s view, also known as account-
ing method. It uses credits which are required to consume a certain constant

3



2. Background

amount of a resource, e.g. to run for 1 time step. The resource usage of each
operation can then be translated into paying a certain amount of credits. For
amortized analysis a different number of credits can be defined to be the cost
of an operation which can be smaller or greater than the actual cost. If there
are enough of those credits left over in every allowed sequence of operations
to pay the gap for operations with a higher actual cost (i.e. the credit amount
stays non-negative), the total actual cost of any such sequence will be upper
bounded by the sum of the defined credit costs. In other words the opera-
tions will be storing or receiving credits from an at least conceptual storage
of credits inside the data structure to average out costlier operations.

Figure 2.1 presents a typical example for the application of this approach.
It shows how the state of a 5-bit binary counter evolves. The representation
has the least significant bit at the bottom. Two separate incrementation steps
are presented. Following the usual definition of binary addition, the incre-
mentation flips each bit starting from the bottom until a zero is encountered.
Therefore, the run time of each addition depends on the number of 1-bits
at the tail of the counter. This number ultimately depends on how many
incrementations happened before.

0
0 0

0

0
0
0
0

0

1
flip bit

increment():

1
1

2

1
0 1

1

0
1
1
1

0

0

increment():

1
1

2

1
1
1

1 1

Figure 2.1: Amortized analysis of a binary counter increment using the banker’s approach

We can model each bit flip to take one time step. This means, we need
to pay one time credit in the banker’s view. The first increment operation
shown only needs one flip and hence has a actual cost of one time credit.
To average out the costlier operations, we also store one time credit for the
bit flip from zero to one. This stored credit will later pay for the flip back
to zero. In total we have a conceptual cost of two time credits as depicted
above the ‘increment()’. After some increment operations we reach the state
shown on the left of the second incrementation. Each bit value one has a
credit stored with it. As mentioned, these can then be used to pay for the
lower bit flips to zero. Therefore, we only need to pay for the last bit flip
and the credit stored. Consequently, we also have a conceptual cost of two
time credits for this operation, even though it would actually take four time

4



2.1. Methodology and Related Work

steps.

In some cases it might be easier to reason about amortized costs in terms
of the completely equivalent physicist’s or potential method. This means
defining a potential function mapping the state of a data structure to a real
number. The conceptual cost of an operation is then the actual cost plus
the corresponding change of potential. Consequently, the total cost of a
sequence of operations is the sum of their conceptual costs minus the overall
potential change. If the potential was zero in the beginning and always non-
negative, just the sum of conceptual costs is again an upper bound on the
total actual cost.

The binary counter example can also be modeled with this approach, as
shown in Figure 2.2. We define the potential function Φ to be the number
of ones in the current state of the counter. This exactly matches the number
of credits stored in the banker’s approach. The conceptual cost of the incre-
ment operations is then defined by the sum of the number of bit flips and
the change in potential. This means the cost of the first operations is:

1 + (Φ(σ′)− Φ(σ)) = 1 + (1 − 0) = 2

And the second operation costs:

4 + (Φ(σ′′′)− Φ(σ′′)) = 4 + (2 − 4) = 2

As expected, the resulting conceptual costs are the same as with the banker’s
approach.

0
0 0

0

0
0
0
0

0

1
flip bit

increment():

1
0 1

1

0
1
1
1

0

0

increment():

Φ(σ) = 0 Φ(σ′) = 1 Φ(σ′′) = 4 Φ(σ′′′) = 2

Figure 2.2: Amortized analysis of a binary counter increment using the potential method

2.1.2 Hoare Logics

In formal reasoning about the functional correctness of programs one often
uses Hoare logic [15] or extensions of it. The main component of this logic

5



2. Background

are so-called Hoare triples. They can be used to define pre- and postcondi-
tions of a program as follows:

{P} program {Q} (2.1)

Here, P and Q are logical predicates, mapping the program state returning
to a boolean value. If this triple is proven correct and the precondition P
holds in the program state before the execution, the postcondition Q will
be satisfied by the result state, if the program terminates (partial correct-
ness). Using this notation, inference rules for each program statement can
be defined to enable a formal proof.

Haslbeck and Nipkow [14] identified three main formalizations to reason
about resource consumption in Hoare logic, in particular about runtime.
Out of these, only the following two formalizations are relevant for us:

• Carbonneaux et al. [6] use a quantitative logic based on the potential
method for amortized analysis. They replace the logical predicates
in Hoare triples by potentials mapping a program state to a natural
number or infinity instead of boolean values. Predicates can be lifted
to a potential by replacing false by infinity and true by zero. Such
Hoare triples will be defined to be correct if both potentials are not
infinity and the pre-potential is greater or equal to the sum of the
program cost and the resulting potential.

• Atkey [3] extended separation logic with so-called time credits similar
to the banker’s approach in amortized analysis. This means he uses
natural numbers as a way to represent consumable resources, which
can be separated by addition similar to the partitioning of heap space
in normal separation logic. Therefore, the credits can also be stored in
data structures for amortized analysis.

The reasoning in this thesis will stay rather informal, but we will use the
following notation inspired by Atkey’s approach in semi-formal contexts:

{P ? (P0 → $R0 c0) ? · · · ? (Pn → $Rn cn)}
program

{Q ? (Q0 → $R′
0
c′0) ? · · · ? (Qk → $R′

k
c′k)} (2.2)

The predicate P is required to hold in the pre-state, as before. Addition-
ally, for each conditional resource credit specification Pi → $Ri ci where Pi is
satisfied, we require at least ci credits for resource Ri to be available. Since
we are using separating conjunctions (?), the credit requirements add up
if multiple conditions for the same resource are true. If all preconditions
hold and the Hoare triple itself is valid, the predicate Q and all conditional
resource credit specifications Qi → $R′

i
c′i will be satisfied in the final state,

accordingly.

6



2.1. Methodology and Related Work

Like for normal Hoare triples, there is an implicit universal quantification
in this definition. It universally quantifies over the possible pre-states, from
which the ones where the preconditions hold are selected. Also note, that
the credit amounts are evaluated in the respective states. Therefore, they can
be seen as functions mapping program states to natural numbers (including
zero). This is similar to the potentials in the Carbonneaux logic, but we do
not embed logical predicates as potentials here.

As before, we require the program to terminate for the postconditions to
hold (partial correctness). But if the resource Ri is running time1, we implic-
itly also perform a proof of termination.

Usually, the functional specification with P and Q will be omitted in this
thesis. To clearly mark this abstraction, we will use ⟨·⟩ brackets in these
cases instead of the usual {·}. The inference will follow similar rules as in
the above logics, but the rules are often left implicit.

2.1.3 Asymptotic Bounds
The amortized analysis approaches presented in the Section 2.1.1 and the
logics mentioned Section 2.1.2 are all reasoning in terms of concrete units
of resources, such as time steps in some cost model. When we are not
interested in tight implementation bounds and would rather like to compare
algorithmic choices, abstracting cost model and implementation details by
using asymptotic bounds might be useful.

We will use the well-known Landau-notation for asymptotic bounds. Unfor-
tunately, there is only a widely accepted definition of asymptotic dominance
for functions with one argument, but the resource usage of algorithms of-
ten depends on multiple variables. Therefore, we give the following explicit
definition of asymptotic bounds on multivariate functions that will be used
in this thesis:

f ∈ O(g) :⇔ ∃c > 0, N. ∀x0, x1, . . . , xn ≥ N.
| f (x0, x1, . . . , xn)| ≤ c · |g(x0, x1, · · · , xn)|

(2.3)

This definition is inspired by the definition in Section 2.2 of [29]. A more
general and formal treatment of asymptotic bounds can be found in [11] and
chapter 5 of [13].

2.1.4 Existing Tools
Statically inferring the running time of arbitrary programs is an undecid-
able problem, since it would solve the halting problem. Therefore, tools for

1and the program consumes time credits at every program point that is repeated (i.e. in
every loop iteration or recursive function call) as it should

7



2. Background

runtime analysis experience the usual trade-off between automation and ex-
pressiveness. There are completely automatic analyses, but they can only
support a rather small subset of programs. On the other hand, there are
tools that support a large range of programs, but require user interaction for
certain more complicated parts of the proof. The latter are mainly based on
interactive theorem provers. Our approach, based on program verification,
is more on the automation side, but requires users to specify the (asymp-
totic) bound they wish to verify and invariants on loops.

Automatic Analyses

A promising branch of automatic inference tools is evolving under the term
‘Automatic Amortized Resource Analysis’ (AARA) [17]. They statically
derive concrete resource bounds using the potentials approach described
above. These potentials are represented as a linear combination of some
fixed base functions with abstract coefficients. The analysis collects linear
constraints on the coefficients which are then solved by a linear program
(LP) solver to retrieve a concrete cost. Keeping the constraints linear is only
possible for a certain restricted set of programs.

For functional programs this approach is implemented in the tool ‘Resource
Aware ML’ (RAML) [19]. There the potentials are formalized in the type sys-
tem of an ML-like language [16, 18]. The tool currently derives upper and
lower polynomial bounds on the number of user-defined ticks, allocated
heap cells or evaluations steps in big-step operational semantics. Internally,
the polynomial bounds are represented with binomial base functions. This
enables a simple inference rule for pattern matches on inductive data types
(like lists), frequently occurring in functional programming. Therefore, re-
cursion guarded by pattern matching is supported very well, but boolean
guards are not. More recent publications presented several extensions in-
cluding exponential and probabilistic bounds, as can be seen on the project’s
website2.

Carbonneaux et al. applied this technique to imperative programs in tools
called C4B [8] and Pastis [7]. They exclude non-linear constraints by set-
ting the corresponding coefficients to zero, which means the conditions can-
not be satisfied for certain programs. An interesting feature is the use of
so-called ‘weakening hints’ given by the user to trigger an automatically
selected rewrite function on the potential.

There are also other automatic approaches, especially for the problem of
‘Worst-Case Execution Time’ (WCET) [28]. WCET aims at hard real-time
systems. Their approaches are not of particular interest here, since the
programs analyzed usually terminate in linear time without any recursion.

2https://www.raml.co/publications/

8

https://www.raml.co/publications/


2.2. Languages and Tools

Other tools using abstract interpretation (e.g. [24]) or term rewriting (e.g. [4])
usually lack compositionality, which we would like to have in our verifier.

Interactive Tools

The semi-automatic tools we looked at are mostly based on separation logic
with time credits. Our original inspiration stems from Guéneau’s PhD the-
sis [13] which extends previous work by Charguéraud and Pottier [9]. He
puts particular emphasis on formalizing and encoding asymptotic bounds,
arguing that they improve modularity and simplify user annotations. More-
over, working with asymptotic bounds makes the verification more robust
against the concrete choice of a cost model and therefore more independent
from platform details. This enables Guéneau to use a very simple, but ele-
gant, cost model where only entering a loop or function body costs one time
credit.

The tool is implemented as a Coq library. Because he extends the separa-
tion logic implementation, it is possible to reason about functional correct-
ness properties at the same time and use their invariants in the resource
proof. The implementation is able to automatically infer a concrete cost
function with abstract placeholders for asymptotic costs. This concrete cost
closely follows the program’s structure and therefore, the simplification to
an asymptotic bound often needs human insight. Especially recursive func-
tions need to be solved by the user, using for example the master theorem
[12].

Zhan and Haslbeck follow a very similar approach in their implementation
for the Isabelle theorem prover [29]. They put emphasis on proving the
asymptotic bounds separately in the end after inferring a concrete cost func-
tion, but there is no large difference in comparison to Guéneau’s approach.
A more significant improvement is the application of the Akra-Bazzi the-
orem [1, 12] to automatically extract asymptotic bounds from recurrences
of divide-and-conquer algorithms. Solving recurrences by pattern-matching
has also been applied in Timed ML (TiML) for a functional language [27].

2.2 Languages and Tools

This section introduces the Viper verification infrastructure and the corre-
sponding intermediate language. Viper is used as a backend in the Prusti
verifier for Rust that is described afterwards. In this thesis we will extend
Prusti by encoding the complexity reasoning into Viper’s intermediate lan-
guage.

9



2. Background

2.2.1 Viper

Viper [22] is a verification infrastructure providing an intermediate lan-
guage, Silver, and automatic tools to perform formal verification on code
in that language — for simplicity, we will refer to both as Viper in this
thesis. Conceptually, formal verification means proving Hoare triples as de-
scribed in Section 2.1.2 using formal methods. For this proof in Viper, Silver
code is ultimately translated to proof obligations that are solved by the SMT
(satisfiability modulo theories) solver Z3.

Viper is designed to be used as a backend for a family of verification tools
targeting different programming languages. The intermediate language en-
ables a relatively high-level of encoding (and hence less encoding effort) by
natively supporting many concepts from modern programming languages,
such as custom data types. In particular, Viper supports reasoning about
heap manipulating programs and certain notions of concurrency. Framing
global heap locations is supported by using access permissions based on
implicit dynamic frames [25].

We will describe all Viper features that are relevant for this thesis in the next
paragraphs. For a more comprehensive description see the aforementioned
papers or the Viper tutorial3. The examples in this section are partially
adopted from this tutorial.

Heap Access Permissions

In Viper, heap locations are represented by field accesses on references, such
as x.val in the example in Listing 1. We can access such a field only if the
program state at that point contains the appropriate permission. Field per-
missions in Viper are a combination of the field access and a fractional value
between zero and one, both inclusive. Since the total permission amount for
each heap location cannot exceed one, holding a full permission with that
amount means exclusive access and we are allowed to write to the location
(since there are no aliases to be updated). Amounts below one and above
zero allow arbitrarily many shared read accesses.

The permission state can be explicitly manipulated by performing inhale or
exhale operations. Informally speaking, inhale A will add the permissions
contained in A to the program state and assume any value constraints in A.
The counterpart exhale A will assert that all value constraints hold, then
check that all access permissions in A are present in the current program
state and remove them.

The example in Listing 1 shows how to use these features in practice. First,
we inhale a read permission. Notice that permissions in assertions are de-

3https://viper.ethz.ch/tutorial/

10

https://viper.ethz.ch/tutorial/


2.2. Languages and Tools

noted by an accessibility predicate acc with the heap location and the per-
mission amount as arguments. We are then able to read x.val. After inhal-
ing a full permission for y.val, Viper can infer that x and y cannot be aliases,
since the total permission amount to their val field would be greater than
one. The permission amount 1/1 also allows us to write the value 3 to y.val
in line 5. As we exhale all permissions to y.val afterwards, Viper’s program
state will lose all information about this heap location. Consequently, even
after inhaling permissions to read, the assertion on y.val in line 8 will fail.

1 inhale acc(x.val, 1/2)
2 value := x.val
3 inhale acc(y.val, 1/1)
4 assert x != y
5 y.val := 3
6 exhale acc(y.val, 1/1) // havoc
7 inhale acc(y.val, 1/2)
8 assert y.val == 3 // will fail

Listing 1: Example for usage of heap access permissions

Predicates

To be able to summarize accessibility predicates and in particular to model
recursive data structures, Viper allows defining named, parameterized as-
sertions. These are called predicates and an example definition for a linked
list can be found in Listing 2. Since automatic reasoning about statically
unbounded recursive definitions is undecidable in general, Viper does not
automatically unfold predicates. Instead, predicates need to be explicitly
replaced by their body using an unfold statement. After the contained as-
sertion is used, the predicate can be folded back again using a fold. Ab-
stract predicates without a body can be used to model features that are not
natively supported by Viper.

1 predicate list(this: Ref) {
2 acc(this.val) && acc(this.next)
3 && (this.next != null ==> list(this.next))
4 }

Listing 2: Definition of the list predicate

Similarly to fields, predicate instances can be inhaled and exhaled. In fact,
folding and unfolding require the corresponding permissions to be avail-
able. It is also possible to inhale, exhale, fold and unfold fractional permis-

11



2. Background

sion amounts of a predicate. During folding and unfolding all contained
permission amounts will be multiplied by the fraction. In contrast to field
permissions, fractions above one are allowed for predicates. The currently
held permission amount can be checked by using the perm(P(..)) expres-
sion.

1 inhale list(l)
2 unfold acc(list(l), 1/2)
3 value := l.val
4 l.val := 3 // will fail
5 fold acc(list(l), 1/2)

Listing 3: Example for usage of predicates

The example in Listing 3 illustrates the use of predicates. Even though we
hold full permission to the list predicate, we only unfold half of it. Accord-
ing to the definition in Listing 2, the unfold results in read permissions to the
val and next fields of the list element as well as read access to the following
elements if there are any. Hence, we are only able to read the element’s
value and are not allowed to write to it, despite having full permission for
the list predicate in the beginning.

Methods

Viper’s statements as presented in Listings 1 and 3 need to be encapsulated
in methods. These form separate verification units for modular verification.
The interface to callers consists of the method’s signature and a contract of
pre- and postconditions, defined with the requires and ensures keywords.
Methods with a body definition are verified by inhaling the preconditions in
the beginning and exhaling the postconditions in the end. When verifying
a caller, the preconditions will be exhaled before the call and the postcondi-
tions inhaled afterwards. This way, heap locations that are not completely
exhaled by the preconditions can be framed across the method call, meaning
all value information is preserved. On the other hand, permissions that are
completely absorbed can imply a write inside the method and hence, the
value is undefined afterwards.

The example in Listing 4 shows a client method that receives two references
together with write permission for their val fields. After setting both fields
to negative numbers, the method abs is called on b. Because of the precon-
dition, the full permission to b.val is exhaled and only afterwards inhaled
again together with the non-negativity constraint. Since the permission for
a.val was never lost, we can ensure its value in the client’s postcondition.
Even though the body of the abs method is defined, the client cannot assert

12



2.2. Languages and Tools

1 method client(a: Ref, b: Ref)
2 requires acc(a.val) && acc(b.val)
3 ensures acc(a.val) && acc(b.val)
4 ensures a.val == -2
5 ensures b.val >= 0
6 ensures b.val == 5 // will fail
7 {
8 a.val := -2
9 b.val := -5

10 abs(b)
11 }
12

13 method abs(x: Ref)
14 requires acc(x.val)
15 ensures acc(x.val)
16 ensures x.val >= 0
17 {
18 if (x.val < 0) {
19 x.val := -x.val
20 }
21 }

Listing 4: Interaction of two Viper methods

that b.val is five, since the modular verification only takes the specifications
into account.

Functions

Another top-level declaration type in Viper are functions. They abstract
over side-effect free expressions and hence are functions in the mathematical
sense. A major use case of functions are recursive expressions. In contrast
to predicates, functions do not need to be explicitly unfolded, but will be re-
placed by their body once and then only when a mentioned predicate is un-
folded. Similar to methods, functions can have pre- and postconditions, but
no permissions can be mentioned in the postcondition, as the precondition
must still hold afterwards. Functions can also be abstract or uninterpreted
when the body is omitted.

Listing 5 shows an example function declaration. It computes the length
of a linked list, that was defined in the previous examples. To be able to
traverse the list, it requires permissions for the list predicate (line 2). This
predicate is temporarily unfolded using the unfolding expression. The list
is then traversed recursively and 1 is added for each element.

13



2. Background

1 function list_length(l: Ref): Int
2 requires list(l)
3 {
4 unfolding list(l) in
5 l.next == null ? 1 : 1 + list_length(l.next)
6 }

Listing 5: Definition of a recursive Viper function

Quantifiers

Assertions in Viper can contain quantifiers, but SMT solvers cannot fully
support them. Therefore, existentials might not always be provable (in a
reasonable amount of time). Also, when universal quantifiers occur in an
inhale or in the left-hand side of an implication, they are not actually in-
terpreted universally by the SMT solver. Instead, the quantified expression
is only instantiated if an explicit trigger expression, also known as pattern,
is matched. If not provided, these triggers will be automatically inferred
by Viper, but the heuristic-based inference does not work well in all cases.
Typically, one provides explicit triggers that are function applications on the
quantified variable.

1 function f(x: Int): Int
2 ensures result >= 0
3 function g(x: Int): Int
4

5 method quantifiers()
6 {
7 assume forall x: Int :: {f(x)} g(x) == f(x)
8 assert forall x: Int :: g(x) >= 0 // fails
9 assert forall x: Int :: f(x) == g(x)

10 }

Listing 6: Demonstration of triggering for universal quantifiers

Listing 6 shows an example where the trigger is chosen badly. There are
two abstract functions f and g and we only know that f has non-negative
results. If we assume that the results of both functions are the same for all
inputs, we should be able to verify that g(x) is also non-negative for any x.
But the verification of the assertion in line 8 fails, since the first quantifier is
only instantiated for values x on which f is applied. Therefore, the assertion
only mentioning g(x) fails, whereas the assertion in line 9 succeeds.

14



2.2. Languages and Tools

2.2.2 Prusti
As mentioned in the introduction, the programming language Rust [21] pro-
vides stronger safety guarantees than previous systems programming lan-
guages. Most of these guarantees are enabled by its so-called ownership
type system. It ensures that at each point during an execution, there is ei-
ther one exclusive usable binding which can modify a memory location or
arbitrarily many shared read references. This improves memory safety, as
it statically prevents data races, dangling pointers, undesirable aliasing side
effects and other common memory-related failures.

This concept of exclusive write and shared read capabilities closely resem-
bles Viper’s access permissions concept, as explained in the previous section.
Therefore, the Prusti project was able to automatically infer all permission
logic needed in its front-end verifier for Rust [2]. This is a huge advantage,
as Prusti does not require any initial specifications, but only the properties
that are relevant for the user need to be specified. The user is also not re-
quired to have any knowledge of the underlying permission logic of Viper.

This inferred core proof can be understood as a re-verification of Rust’s
memory safety guarantees, but it enables proving other properties on top
of it. For example, Prusti supports verifying the absence of panics, which
are Rust’s runtime failures. This includes failing assert! statements in the
Rust code. It is also possible to statically ensure the absence of overflows.
Finally, users can provide their own specifications in Rust syntax with a few
extensions.

Our technique for the verification of resource bounds is not Rust-specific,
but we have implemented it as an extension of Prusti. Therefore, all exam-
ples presented in this thesis will be written in Rust (or Viper) syntax.

Specification Syntax

The specifications are given by using Rust’s built-in attributes and macros.
Attributes are defined using this syntax above function declarations:
#[ attribute ] . Similarly to Viper, pre- and postconditions can be defined
using the requires(...) and ensures(...) attributes. Prusti specifica-
tions that can be used in these contracts are a superset of Rust boolean
expressions, but need to be side-effect free. The extensions to the Rust
syntax include implications via ==> and quantifiers, written for example as
forall(|var: type, ...| filter ==> expression).

Rust functions can also have the trusted attribute, which can be used if the
body of the function cannot be verified by Prusti to generate body-less meth-
ods in Viper. Marking functions as pure will generate Viper functions which
can be used in Prusti’s specifications. Obviously, such functions need to be
deterministic and side-effect free and can therefore only take immutable

15



2. Background

references. Finally, there are loop invariants which can be specified using
Prusti specifications inside the body_invariant!(...) macro. In contrast
to the most common loop invariant definition, these body invariants do not
need to hold when the loop condition is false and hence cannot be assumed
after the loop.

Viper Encoding

Prusti works as a plug-in to the Rust compiler. It intercepts the compilation
to retrieve the user specifications and access Rust’s intermediate representa-
tions MIR and HIR (mid-level and high-level IR). The MIR is translated into
Viper code, which is verified by a Viper backend. In the end, verification
failures are translated back to proper error messages on the Rust-level.

Since variables can be referenced in Rust and therefore, need to have access
permissions for the transfer to references, variables are encoded as Viper
references. The corresponding permissions are represented by a Viper pred-
icate for each type. For primitive types this contains just the access permis-
sions for the value field by default. With optional flags more information
can be encoded, such as the non-negativity of unsigned integers, as in the
following example:

predicate u32(self: Ref) {
acc(self.val_int, write) && 0 <= self.val_int

}

The necessary fold and unfold operations to use these predicates are auto-
matically inferred inside Prusti.

Functions in the Rust code are encoded as Viper methods by default. Viper
functions are used when the Rust function is marked as pure. In contrast
to what we have described in the Viper section, pre- and postconditions are
encoded as explicit inhales and exhales, also for calls.

More details about Prusti can be found in the paper mentioned before [2] or
online4.

4https://www.pm.inf.ethz.ch/research/prusti.html

16

https://www.pm.inf.ethz.ch/research/prusti.html


Chapter 3

Reasoning Principles

This chapter presents the basic principles of our approach to complexity
verification, independently of its implementation in Prusti or Viper. The
first section explains how we reason about program complexities using re-
source credits. In the next section we introduce the running example that
will be used throughout this thesis. Then we explain how we verify the
resource usage of loops and recursive functions. In Section 3.4 we define
our representation of credits which is coefficient-based like in AARA [17].
How we use this representation will be explained in detail in the following
three sections. Section 3.5 shows a syntax for specifying costs ensuring their
non-negativity. Section 3.6 explains our reasoning about credits in terms of
coefficients. And Section 3.7 presents how the representation is transformed
throughout the program. Finally, we discuss a possible approach for amor-
tized analysis.

3.1 Resource Credits
As mentioned in the introduction, our general goal is to verify bounds on
the resource usage of (Rust) programs using a procedure-modular verifier.
For this verification we use resource credits to represent the right to use
a certain amount of a consumable resource. This means we aim to prove
Hoare triples of the following form (omitting the functional specification
and therefore using ⟨·⟩ brackets):

⟨(P0 → $R0 c0) ? · · · ? (Pn → $Rn cn)⟩ procedure ⟨$R00 ? · · · ? $Rn 0⟩ (3.1)

In contrast to the definition in Section 2.1.2, we only require a certain amount
of resource credits in the precondition and the remaining credit amounts in
the postcondition to be ≥ 0, which gives us upper bounds on the resource
consumption of each procedure. For modular verification these bounds are

17



3. Reasoning Principles

then assumed to hold in callers of the procedure. Also note that we allow
defining credit amounts that are only required under a certain condition Pi
(which can be ⊤, a tautology, to define an unconditioned amount). Care has
to be taken when such conditions overlap, because in that case the actual
upper bound on the execution is the sum of all credit amounts from the
overlapping conditions.

To verify such bounds, we perform a number of reasoning steps that es-
sentially prove a Hoare triple for each operation. Starting with the credit
amount in the precondition, we monotonically decrease it while conceptu-
ally stepping over the operations in program order. The amount of credits
that are subtracted in each step are (at least) the credit cost of the corre-
sponding operation. A monotonic decline together with the postcondition
of having ≥ 0 credits left is required to ensure that the credits defined in the
precondition are an actual upper bound on the resource usage (assuming we
are reasoning about a resource that can only be consumed once and cannot
be regained).

The costs of an operation are defined as in definition 3.1 either in the precon-
dition of a procedure (for procedure calls) or in a cost model for each opera-
tion. Each cost defined in the precondition of such a Hoare triple needs to be
non-negative to ensure a monotonically decreasing credit amount. Since we
reason on the abstraction level of resource credits, our approach is indepen-
dent of the specific resource that is being analyzed. The semantic meaning
of a resource credit is separately defined by the cost model (and procedure
preconditions).

Cost models can be defined for every quantity that might be interesting,
such as running time, (peak) memory usage, energy consumption or num-
ber of additions. However, for some of these quantities it might be difficult
to define the correct cost on the abstract level of a high-level programming
language such as Rust or even its intermediate representation.

3.2 Binary Counter Example

Throughout this thesis, we will use the example in Listing 7 for demonstra-
tion purposes. It contains a Rust implementation of a binary counter similar
to the one described in Section 2.1.1 and presented in Figure 6 of [8], except
this one has a dynamic size. The current count is contained in the field in
line 2. It is modeled by a vector of booleans which represents the bits with
the least significant bit in the first element.

The counter has a single method (or function in Rust terms) that increments
the counter by adding 1 to its binary count. To do so, it iterates through the
vector flipping the bits as long as they are all one (i.e. true) (lines 8-11). It

18



3.2. Binary Counter Example

then sets the next bit (a zero bit) to one, extending the vector with a push if
the end is reached.

1 struct BinaryCounter {
2 count: Vec<bool>,
3 }
4 impl BinaryCounter {
5 #[ requires(time_credits(O(self.count.len())))]
6 fn increment(&mut self) {
7 let mut i = 0usize;
8 while i < self.count.len() && self.count[i] == true {
9 self.count[i] = false;

10 i += 1;
11 }
12

13 if i < self.count.len() {
14 // ==> self.count[i] == false
15 self.count[i] = true;
16 }
17 else {
18 //#[requires(time_credits(O(self.len())))]
19 self.count.push(true);
20 }
21 }
22 }

Listing 7: Binary counter implementation in Rust

In line 5 we added a precondition. It represents the credit specification in
the Hoare triple in definition 3.1. Here, we only use a single unconditioned
credit amount $Rc. The syntax for specifying credit bounds is our proposed
extension to the Prusti specification syntax, which will be explained in more
detail in Section 5.5. Since the precondition specifies time_credits, the
resource R is runtime in this case. We are also specifying the number of
credits c to be asymptotic in the length of the current bit vector, as that is
the maximal number of loop iterations that will occur. The exact meaning
of this asymptotic bound will be explained in Section 4.

There is also a bound on the push function of Rust’s Vec, whose implemen-
tation and specification is not part of the listing, but the credit requirement
is copied to the comment in line 18. As the push might need to copy the
entire content of the vector to a new location when expanding it, we assume
a linear worst-case complexity bound. In most real-world cases you would
want to use the amortized constant bound instead, but we do not, since we

19



3. Reasoning Principles

need the linear bound for a better demonstration of our approach in the next
sections.

3.3 Loops and Recursion

A static verifier cannot verify a dynamic amount of loop iterations by un-
rolling them. Therefore, loops are typically verified by proving invariants
for their body, similar to the induction step in induction proofs.

For our credit verifier we could instead also prove a bound on the credits
used in the loop body and then compute the total bound on the loop as
the product of the maximal number of loop iterations and the bound on
the body. This would be possible for the loop in lines 8–11 of Listing 7.
The loop body may consume a single time credit if we assume a cost model
where only assignments to an element of count cost one credit. The maximal
number of iterations is bounded by the current length of the count vector
(and the length is not changed in the loop body). Therefore, we would be
able to prove the bound self.count.len() · 1 on the loop, as desired.

However, in general it might not be easy to find an explicit bound on the
number of loop iterations. Also this method might be too coarse to compute
a tight bound when the resource usage varies a lot between loop iterations.
Furthermore, when the bound for the loop body is given asymptotically this
approach might lead to wrong results as pointed out in section 3.3 of [13].

For these reasons, we decided to instead require a loop invariant that speci-
fies the total (asymptotic) amount of credits needed for all remaining loop it-
erations. Such invariants can be specified using the built-in body_invariant!
macro of Prusti.

In our example a credit invariant could be self.count.len()− i, as shown
in Listing 8. This invariant means we have self.count.len() credits avail-
able in the beginning (since i is zero). By incrementing i we decrease the
credit amount in the invariant by 1 in each iteration, which gives us enough
credits (in our cost model) to pay for the assignment in line 3. The credit
amount specified in the invariant also stays non-negative, because the loop
condition ensures that i < self.count.len().

1 while i < self.count.len() && self.count[i] == true {
2 body_invariant!(time_credits(self.count.len() - i));
3 self.count[i] = false;
4 i += 1;
5 }

Listing 8: Binary counter loop with invariant

20



3.4. Coefficient-based Representation

This invariant approach has the additional advantage that it is very similar
to how we would treat recursive functions. In fact, we can view the verifi-
cation of a loop as the verification of a recursive function with the invariant
in the precondition. For our example this equivalent recursive function is
presented in Listing 9.

1 #[ requires(*i < self.count.len() && self.count[*i ] == true)]
2 #[ requires(time_credits(self.count.len() - *i))]
3 fn loop_fn(&mut self, i: &mut usize) {
4 self.count[*i] = false;
5 *i += 1;
6 if *i < self.count.len() && self.count[*i] == true {
7 self.loop_fn(i);
8 }
9 }

Listing 9: Binary counter loop as recursive function

This view is useful to understand how a credit loop invariant would be
verified. If we enter the loop, we will subtract the credits mentioned in the
invariant as we would do for a function call. Recall that body invariants are
only checked when the loop condition holds. That is why the loop condition
occurs as a precondition in line 1 which needs to be checked in increment
before calling the function.

At the beginning of the loop or function body we then assume we have the
credit amount that is specified in the invariant available. Inside the loop
body we can only make use of these credits, as we could otherwise use the
credits from outside the loop multiple times (in each loop iteration). If the
loop condition still holds after the loop, we will need to make sure that
there are enough credits left over to pay for the following loop iterations.
Therefore, the loop invariant (evaluated in the state after the loop body)
is subtracted, as it would be done for a normal function call like in the
recursive function on line 7.

3.4 Coefficient-based Representation
We represent the credit amounts internally by non-negative coefficients ai of
some base functions bi(σ) like in AARA [17]. This simplifies proof obliga-
tions, since it mainly requires reasoning in terms of coefficients.

$Rc := $R

k

∑
i=0

ai · bi(σ), ai ∈ Q+
0 (3.2)

21



3. Reasoning Principles

In contrast to the method used in AARA, the coefficients ai are not single
abstract variables, but some expressions containing concrete and abstract
(i.e. quantified) constants. This means, that the coefficients must not depend
on the program state σ. We additionally restrict the base functions bi(σ) to
the following form:

bi(σ) := ±
l

∏
r=0

(JexprrKσ)
er , er ∈ N+, JexprrKσ ≥ 0 (3.3)

We use J·Kσ to denote evaluation of program expressions in state σ. If the
evaluation does not depend on the program state, σ might also be omitted.
The base functions can be either positive or negative. This enables modeling
negative coefficients using positive coefficients for a negative base function.
The product may also be empty, in which case we get bi(σ) = 1 and bi(σ) =
−1 by convention (since 1 is the multiplicative identity).

exprr may be any side-effect free (i.e. pure) program expression that evalu-
ates to a non-negative number. It should depend on the program state σ and
must not contain any arithmetic operations like addition or multiplication.
In particular, this includes program variables and formal arguments, but
also the size of data structures like in line 5 of Listing 7. The expression also
has to be well defined in the corresponding program state, which implies
only (function applications on) formal arguments or global variables may
be used in preconditions.

In essence, this means we reason about credits in terms of (conditional)
multivariate polynomials and hence can only verify such bounds. However, at
least in theory, we could allow other base functions to enable the verification
of more complex bounds, but this might lead to proof obligations that are
beyond the arithmetic capabilities of an SMT solver like Z3, especially by
making the coefficients resulting from the conversions mentioned in Section
3.7 too complex.

3.5 Defining Coefficient-based Costs
As mentioned in Section 3.1, we require credit costs to be non-negative for a
monotonically decreasing credit amount. Therefore, we need to verify that
costs specified by a user in a cost model or as method preconditions are non-
negative. However, checking the non-negativity of an arbitrary polynomial
as a whole might be too difficult for an SMT solver due to possibly super-
linear constraints in multiple variables. Therefore, we break down the non-
negativity constraint by restricting the possible user specifications.

To simplify the non-negativity check for user-provided credit polynomials,
we do not allow arbitrary multivariate polynomials with negative base func-
tions, as specified in definitions 3.2 and 3.3. Instead, negative base functions

22



3.5. Defining Coefficient-based Costs

can only be used by subtracting two expr (defined like the exprr before) at
the base of an exponentiation. This means credit costs can only be specified
in the following form:

$R

k

∑
i=0

ai · bi(σ), ai ∈ Q+ (3.4)

where bi(σ) :=
l

∏
r=0

(JexprrKσ)
er , er ∈ N+ (3.5)

and JexprrKσ :=

{ JexprrKσ orJexpr(0)r Kσ − Jexpr(1)r Kσ
(3.6)

JexprrKσ ≥ 0, Jexpr(0)r Kσ ≥ 0, Jexpr(1)r Kσ ≥ 0

Since the coefficients ai are required to be non-negative and all expr are non-
negative, using this form, we only need to separately check non-negativity of
the differences Jexpr(0)r Kσ − Jexpr(1)r Kσ, which can be ensured by a simple side
condition: Jexpr(0)r Kσ ≥ Jexpr(1)r Kσ. If the credits are only required under a
certain condition Pi, the non-negativity checks are also only necessary under
this condition.

We allow specifying negative base functions like this, since it is a recurring
pattern needed in credit specifications, especially for loops and recursive
functions, as we have seen in Listing 8. We could also allow more com-
plex arithmetic expressions at the base of the exponentiation, but this would
again complicate the non-negativity checks and also the automatic transla-
tion to our normal form. Such expressions can still be modeled, but require
rewriting the program to take the result of the expression as an (ghost) ar-
gument. The formal argument can then be used in specifications.

We replace such user specifications internally with a representation in our
normal form from definitions 3.2 and 3.3. This representation can be com-
puted using binomial expansion as follows:

ai ·
(Jexpr(0)r Kσ − Jexpr(1)r Kσ

)er

=

((
er

0

)
· ai

)
·
(
(Jexpr(0)r Kσ)

er · (Jexpr(1)r Kσ)
0
)

+

((
er

1

)
· ai

)
·
(
−(Jexpr(0)r Kσ)

er−1 · (Jexpr(1)r Kσ)
1
)

+ . . .

+

((
er

er

)
· ai

)
·
(
±(Jexpr(0)r Kσ)

0 · (Jexpr(1)r Kσ)
er
)

This is the same base conversion as defined for Jexpr(0) + expr(1)Kσ in Table
3.1. The amount of base functions gets increased in the order of the product

23



3. Reasoning Principles

of all (er + 1) where JexprrKσ is a difference. These exponents and the num-
ber of differences are usually very small. Therefore, this is not a big issue
for the verifier performance on usual complexity bounds.

Applying this translation to the credit amount self.count.len() − i from
the loop invariant in Listing 8 is very simple, since the exponent is one:

a0 · b0(σ) = 1 · (Jself.count.len()Kσ − JiKσ)
1

= 1 ·
(

1
0

)
· Jself.count.len()Kσ + 1 ·

(
1
1

)
· (−JiKσ)

= a0 · b0(σ) + a1 · b1(σ)

The translation of a more complex example is given in Appendix A.

3.6 Coefficient-based Reasoning
In our coefficient-based representation costs are subtracted coefficient-wise.
Which means the current credit amount needs to be available in terms of
large enough coefficients for the same base functions. Otherwise, we could
not preserve the non-negativity of the coefficients as required in Definition
3.2.

For example, if we assume that the call to push in line 19 of Listing 7 costs
exactly self.len() credits, we will require a coefficient that is at least 1 for
the base function (Jself.len()Kσ)1 in the credit amount before the call. We
can then subtract 1 from this coefficient.

More formally, if we encounter a statement with the following credit speci-
fication:

⟨$R

k

∑
i=0

costi · bi(σ)⟩ statement ⟨$R0⟩ , costi ≥ 0

We can deduce:

⟨P → $R

k

∑
i=0

ai · bi(σ) ? Q → $R

k

∑
i=0

a′i · bi(σ)⟩

statement

⟨P → $R

k

∑
i=0

(ai − costi) · bi(σ) ? Q → $R

k

∑
i=0

(a′i − costi) · bi(σ)⟩

only if (P ∨ Q) ∧ (P → ai − costi ≥ 0) ∧ (Q → a′i − costi ≥ 0)

For simplicity we only show two conditional credit amounts here. Note
that one of them needs to be true, such that we have any amount of credits
available for the subtraction.

24



3.7. Base Conversions

Furthermore, there is no condition for the cost. If the cost contains condi-
tional conjuncts, we subtract each cost only if the corresponding condition
is satisfied. This means, to deal with overlapping conditions, each combina-
tion of condition values needs to be taken into account with the cost being
the sum of all satisfied conditions:

(P → $R

k

∑
i=0

costi · bi(σ)) ? (Q → $R

k

∑
i=0

cost′i · bi(σ))

⇔ ((P ∧ Q) → $R

k

∑
i=0

(costi + cost′i) · bi(σ))

? ((P ∧ ¬Q) → $R

k

∑
i=0

costi · bi(σ))

? ((¬P ∧ Q) → $R

k

∑
i=0

cost′i · bi(σ))

Procedure postconditions are also verified coefficient-wise. This means, co-
efficients for positive base functions need to be greater than or equal to
the coefficient defined by the postcondition. Coefficients for negative base
functions need to be smaller or equal. This is an over-approximation of the
actual requirement, that the total amount of credits needs to be greater than
or equal to the total amount defined in the postcondition. We do this ap-
proximation to again be able to mainly reason in terms of constant credits.
As defined in Section 3.1, we require a non-negative amount of credits left
for each resource in the postcondition, i.e. all coefficients are zero in the
coefficient-based representation. This means, we do allow arbitrary coef-
ficients for positive base functions, but only the coefficient 0 for negative
ones.

3.7 Base Conversions
Credits in preconditions can only be defined in terms of program expres-
sions that are accessible and well defined in the beginning of the corre-
sponding procedure, in particular (function applications on) formal argu-
ments. Therefore, credits may not be available in terms of the right base
functions when a cost needs to be subtracted as described in the previous
section. For example, for the recursive function in Listing 9 the credits from
the precondition are defined in terms of self.count.len() and *i. How-
ever, the recursive function call requires the credits to be defined in terms
of self.count.len() and the new value of *i that is the result of the incre-
mentation in line 5.

Therefore, we need some conversion between coefficients of different base
functions. We have already seen such a conversion in Section 3.5 for the

25



3. Reasoning Principles

conversion of differences into proper base functions. For the assignment i
+= 1 from the loop function, we could apply the following conversion:

1 · Jself.count.len()Kσ + 1 · (−JiKσ) + 1 · (−1)
= 1 · Jself.count.len()Kσ′ + 1 · (−JiKσ′)

This equation is valid, since we know from the assignment that JiKσ′ =JiKσ + 1, where σ is the program state before the assignment and σ′ is the
state after it. After the conversion we can subtract the cost of the recursive
call (1 · Jself.count.len()Kσ′ + 1 · (−JiKσ′)) coefficient-wise.

JexprsKσ′ a · (JexprsKσ′)e

= ⇒ =JconstK (JconstK)e · a

JexprKσ a · (JexprKσ)
e

Jexpr ∗ constKσ (JconstK)e · a (JexprKσ)
e

Jexpr(0) ∗ expr(1)Kσ a · (Jexpr(0)Kσ)e · (Jexpr(1)Kσ)e

Jexpr + constKσ (e
0) · (JconstK)0 · a · (JexprKσ)

e +

(e
1) · (JconstK)1 · a · (JexprKσ)

e−1 +
. . .

(e
e) · (JconstK)e · a · (JexprKσ)

0

Jexpr(0) + expr(1)Kσ (e
0) · a · (Jexpr(0)Kσ)e · (Jexpr(1)Kσ)0 +

(e
1) · a · (Jexpr(0)Kσ)e−1 · (Jexpr(1)Kσ)1 +

. . .
(e

e) · a · (Jexpr(0)Kσ)0 · (Jexpr(1)Kσ)e

. . .

Table 3.1: Possible base conversions

Table 3.1 lists some of the base conversions that are possible, but one could
define arbitrarily many such equivalence facts.For a conversion to be valid,
some equivalence for part of the base function must hold. Typically, we
are conditioning on the equivalence of a single exprs that occurs in the base
function bi(σ) = ±∏l

r=0 (JexprrKσ)
er (i.e. s ∈ [0, l]). The right-hand side of

the equivalence is shown in the first column of the table. Note that, since all
expr are defined to be non-negative, the result of the arithmetic operation
on the right-hand side also needs to be non-negative.

The corresponding conversion conceptually replaces the right-hand side of

26



3.7. Base Conversions

the condition equality by JexprsKσ (or vice-versa). The resulting mathemat-
ical expression then needs to be transformed back into our normal form
for polynomials, as specified in Definitions 3.2 and 3.3. Therefore, we need
to separate constants that become part of the coefficient and non-constant
expressions. The non-constant expressions are also split into separate ex-
ponentiations. The resulting conversions are shown in the column on the
right of the arrow (⇒) in the table. The coefficient after the conversion is
shown on the left of the middle ·, the exponentiations on the right. For an
assignment, like the incrementation in our example, a · (JexprsKσ′)e may be
an replacement for the expression shown in the column below it.

The first row of the table shows arguably the simplest conversion. WhenJexprsKσ′ is equal to some constant program expression JconstK, we can re-
place it by the constant (or vice-versa). The constant will be exponentiated
and added to the coefficient. Therefore a · (JexprsKσ′)e = (JconstK)e · a.

The second conversion is based on the equivalence between JexprsKσ′ and
another expression JexprKσ and just is a one-to-one replacement.

The next conversion is a combination of the previous ones. It multiplies the
expression expr by a constant const. Therefore, the exponentiation of the
constant is added to the coefficient and expr replaces exprs. A similar rule
can also be applied for divisions by a non-zero constant. The corresponding
conversion is omitted in the table for simplicity, but can be retrieved by
viewing the division as a multiplication by the inverse of the constant.

When multiplying two non-constant expressions as in the next row, both get
added to the base function. Here we do not allow divisions, since the result
would not be a polynomial with non-negative exponents.

The last two conversions shown are more complicated, since the sum (a+ b)e

has to be separated by binomial expansion. This means we replace one base
function by e + 1 new ones. The coefficients gets extended by binomial coef-
ficients. When a constant is added, also the corresponding part becomes part
of the coefficient as before. The same conversions also apply to subtractions
by conceptually replacing the second summand by a negative one. In this
case the sign of the base function will be changed for odd exponents. Keep
in mind that the result of the subtraction is still required to be non-negative
and therefore the overall credit amount stays non-negative.

In the table we only show the part of the base function bi = ±∏l
r=0 (JexprrKσ)

er

that is actually converted. Each expression on the right-hand side of the ta-
ble therefore needs to be multiplied by ± (JexprsKσ)

es−e ·∏l
r=0, r ̸=s (JexprrKσ)

er

to retrieve the actual base functions. Note that we allow converting only a
part e ∈ [0, es] of the exponent es. Likewise, only a part a ∈ [0, ai] of the co-
efficient ai might be converted, leaving (ai − a) · ± ∏l

r=0 (JexprrKσ)
er behind.

27



3. Reasoning Principles

Base conversions are typically applied when an assignment took place. Since
assignments in Rust’s intermediate representation MIR can have at most two
operands on their right-hand side1, the conversions described here cover
almost all relevant assignments for our Rust verifier. However, one could
also apply them when an equivalence fact is provided by a postcondition or
a branching condition (which might be more difficult to do automatically).
If an expression occurs only in positive or negative base functions (with a
non-negative coefficient), one could even apply a conversion if an inequality
holds by ensuring that the credit amount could only decrease.

3.8 Amortized Analysis

Since our method reasons in terms of resource credits like the banker’s ap-
proach to amortized analysis (see Section 2.1.1), it is in principle suited to
verify amortized bounds as well. Here, we present an approach to perform
such an amortized analysis in our tool. It has not been implemented yet, but
we manually tested it on the binary counter example.

To amortize costs, we need to be able to transfer credits from one method
execution to another. Since we are working with a procedure-modular ver-
ifier, these credits cannot be passed explicitly, but we need some invariant
on the data structure that specifies the currently stored credit amount (like
a potential). The credits from the invariant, evaluated in the beginning of a
method, can then be added to the available credits. To ensure that the in-
variant is preserved, the credits need to be subtracted at the end, according
to the final state of the data structure. The same is done for the verification
of loop bodies according to the recursive function equivalent described in
Section 3.3.

The invariant often conditions on the state of single elements of the data
structure. For random access data structures, like the vector in our binary
counter, the invariant is usually stated globally with a universal quantifier
over the index of the element access. For recursively defined data structures,
like linked lists, that are traversed top-down, the invariant would normally
be stated on the element level. This is very similar to what is done for access
permissions in Viper.

Listing 10 contains the binary counter example with annotations for amor-
tized analysis. The changes in comparison to Listing 7 are highlighted by
the blue background color. The first three lines show the invariant on the
data structure that specifies the stored credits. For each bit with the value
one (true) we require at least one credit to be stored, i.e. enough to pay for

1see https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.
Rvalue.html#variant.BinaryOp (last accessed: 30.09.2021)

28

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html#variant.BinaryOp
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.Rvalue.html#variant.BinaryOp


3.8. Amortized Analysis

the flip back to zero (false). Note that the credit requirements for each index
i sum up, as in the separating conjunctions we had before.

If we assume the same cost model as before, where only setting a bit in
the vector has a cost of one, we will be able to prove that the loop does
not require any credits in addition to the credits from the data structure
invariant. Hence, we need no body invariant. The credits for setting the bit
value inside the loop in line 14 can be taken from the invariant, since the
loop condition tells us that the value was one (true) before, which matches
the condition in the invariant, and we set the bit to zero. The potential
specified by the invariant is hence decreased by (at least) one credit which
is enough to pay for the assignment.

Here, we are also using the constant amortized runtime for the vector push
instead of the worst case linear bound that we used before. Therefore, we
are able to prove a constant amortized runtime for the increment function
(line 8).

29



3. Reasoning Principles

1 #[ invariant(forall(|i: usize|
2 (i < self.count.len() && self.count[i ] == true)
3 ==> time credits(1))]
4 struct BinaryCounter {
5 count: Vec<bool>,
6 }
7 impl BinaryCounter {
8 #[ requires(time_credits(O(1)))]
9 fn increment(&mut self) {

10 let mut i = 0usize;
11 while i < self.count.len() && self.count[i] == true {
12 // no invariant needed, since the loop cost
13 // is completely amortized by the invariant
14 self.count[i] = false;
15 i += 1;
16 }
17

18 if i < self.count.len() {
19 // ==> self.count[i] == false
20 self.count[i] = true;
21 }
22 else {
23 // #[requires(time_credits(O(1)))]
24 self.count.push(true);
25 }
26 }
27 }

Listing 10: Binary counter with possible annotations for amortized analysis

30



Chapter 4

Asymptotic Bounds

Following the general goal of Prusti to simplify and minimize the user an-
notations needed, we aim for the verification of asymptotic bounds. They
enable the user to omit possibly complicated expressions for the polynomial
coefficients as well as lower-order base functions. As mentioned in Section
2.1.3, asymptotic bounds also make the bound independent from imple-
mentation and cost model details and are instead focusing on the algorithm
used. This enables a more modular verification, since small implementation
changes do not require a different asymptotic bound, which would trigger
client re-verification.

This chapter first introduces how asymptotic bounds can be defined using
the coefficient-based representation from the previous chapter. In the next
section we show how asymptotic bounds on function calls should be mod-
eled. Then Section 4.3 explains the difficulties that we face when proving
asymptotic bounds and presents our solution using a static analysis. Finally,
Section 4.4 explains the verification of loops and recursive functions in an
asymptotic context.

4.1 Coefficient-based Definition
Formally, asymptotic bounds on a procedure in our coefficient-based repre-
sentation are defined as follows:

∃c0 ∈ O

(
k0

∑
i=0

bi

)
, . . . , cn ∈ O

 kn

∑
i=k′n−1

bi

 .

⟨(P0 → $R0 c0) ? · · · ? (Pn → $Rn cn)⟩ procedure ⟨$R00 ? · · · ? $Rn 0⟩ (4.1)

Here we quantify over a Hoare triple with omitted functional specification
(indicated by the brackets). Recall that the Hoare triple contains an im-
plicit universal quantification over all pre-states that is evaluated inside the

31



4. Asymptotic Bounds

existential. Using the existential quantification, we search for some credit
amounts obeying the asymptotic bounds that provide enough credits for
the procedure execution to succeed with a non-negative amount of credits
left.

Also recall that each bi represents a function on such a program state as
defined in Section 3.5. Since asymptotic bounds are only given in user an-
notations, all of these only allow using negative base functions via a non-
negative subtraction in the bi as described before. This also implies that the
sums in the big-O are always non-negative.

Because we are only reasoning in terms of multivariate polynomials as cred-
its, the possible functions satisfying such an asymptotic bound can be ap-
proximated with a simpler condition than in Definition 2.3. We only need
to ensure that there exist coefficients ai such that the bounds are satisfied:

(∃a0, a1, . . . ak′n ∈ Q+
0 .

⟨(P0 → $R0

k′0

∑
i=0

ai · bi(σ)) ? · · · ? (Pn → $Rn

k′n

∑
i=k′n−1

ai · bi(σ))⟩

procedure

⟨$R00 ? · · · ? $Rn 0⟩)
∧ ∀t ∈ [0, n]. ∀j. ∈ (kt, k′t]. ∃i. ∈ [k′t−1, kt]. bj ∈ O(bi) (k′−1 := 0) (4.2)

Here we are assuming without loss of generality that for each t ∈ [0, n] the
first kt ≤ k′t base functions match the bi in the asymptotic bound. For each
additional base function bj we need to show that it is asymptotically domi-
nated by a base function bi that was mentioned in the asymptotic bound.

This formulation implies that we obey the asymptotic bound as defined in
4.1. Note that the other direction does not hold, since we do not cover all
possible functions that satisfy the asymptotic bound, but just approximate
them.

The asymptotic dominance between two of our base functions in the above
definition can simply be checked as follows — assuming all exprr and exprs
only occur once in their respective products:

bj =
l′

∏
s=0

(Jexpr′sKσ

)e′s ∈ O

(
l

∏
r=0

(JexprrKσ)
er

)
⇐ ∀s ∈ [0, l′]. ∃r ∈ [0, l]. expr′s = exprr ∧ e′s ≤ er (4.3)

32



4.2. Function Calls

Given the asymptotic bound from our binary counter example in Listing 7
in the previous chapter, i.e.,

#[ requires(time_credits(O(self.count.len())))]

definition 4.2 is instantiated as:

∃a0, a1 ∈ Q+
0 . ⟨$time(a1 · Jself.count.len()Kσ + a0 · 1)⟩ increment ⟨$time0⟩

The base functions (Jself.count.len()Kσ)1 and 1 are the only ones that
are upper bounded by the only base function mentioned in the asymptotic
bound, (Jself.count.len()Kσ)1. For the first the asymptotic dominance
check succeeds, since it is identical to the bound and hence has the same
expr and exponent. The 1 is represented by the empty product as men-
tioned before and hence the universal quantifier in condition 4.3 is trivially
satisfied.

4.2 Function Calls

As mentioned in the beginning of this chapter, asymptotic bounds lead to
fewer re-verifications of callers, because they subsume many different con-
crete credit amounts. To enable this abstract view, callers have to be verified
only against this asymptotic bound specification.

The asymptotic bound tells us that there is some cost function satisfying the
bound as defined in condition 4.1. This cost function needs to be a multivari-
ate polynomial which is defined using positive coefficients for base functions
bi (since we can only verify those). But to remain modular, we cannot as-
sume any additional properties for this cost function. Therefore, we need
to prove the asymptotic bounds of callers for any multivariate polynomial
costs of the called functions that satisfy their asymptotic bounds. This just
replaces the existential quantifier in condition 4.2 by an universal quantifier
for the verification of callers.

To make this more concrete, the condition for the bound on increment in
Listing 7 would actually be verified as follows against the asymptotic speci-
fication for the push call in line 19:

∀a(push)
0 , a(push)

1 ∈ Q+
0 . ∃a0, a1 ∈ Q+

0 .
⟨$time(a1 · Jself.count.len()Kσ + a0 · 1)⟩ increment ⟨$time0⟩
where
⟨$time(a(push)

1 · Jself.count.len()Kσ′ + a(push)
0 · 1)⟩

self.count.push(true)
⟨$time0⟩

33



4. Asymptotic Bounds

By this notation we mean that it needs to be possible to prove the first Hoare
triple using the specifications given in the second one when the correspond-
ing statement is encountered. Credits specified in the precondition of called
functions (as given by the second triple) are subtracted from the current
credit amount as described in Section 3.6. This implies that a0 and a1 must
depend on the abstract coefficients for the push call to make sure that there
are enough credits to subtract the cost of the call without making the credit
amount negative.

We also abstract the cost of calls to functions that have a non-asymptotic
credit specification, as if they had an asymptotic bound specified. This
gives us the same modularity improvement as for asymptotic bounds, since
changes to the concrete credit specifications that do not change asymptotic
behavior will not change the abstract bound for callers. However, when do-
ing this abstraction on the call site, concrete (non-asymptotic) credit bounds
need to refer to the abstract coefficients of called functions. This complicates
defining concrete bounds even further, in contrast to asymptotic bounds.

4.3 Verifying Asymptotic Bounds

To the best of our knowledge, existentials around Hoare triples are not sup-
ported in existing procedure-modular verifiers, such as Viper. Instead, they
prove Hoare triples over procedures in isolation. Program elements that are
not inlined are only assumed to comply with their specifications and can
be arbitrary otherwise. For example, abstract functions and called methods
are implicitly universally quantified in Viper. Since the existential for the
asymptotic bound occurs outside of the Hoare triple, we would additionally
need to be able to encode global existentials after this universal quantifica-
tion and before we quantify over all possible pre-states as required by the
Hoare triple.

To avoid this problem, the existential could be translated to a guarded uni-
versal quantifier, which makes the order of quantifiers irrelevant. Conse-
quently, we could use existing elements of the verification language such as
variables or functions to represent the coefficients. This translation can be
achieved by collecting constraints on the coefficients (from the structure of
the procedure), such that the Hoare triple is valid for any coefficients satisfy-
ing the constraints. Additionally, one still has to prove that these constraints
are satisfiable, i.e. that there exist coefficients such that all constraints are ful-
filled. The complete translated verification goal looks as follows (omitting

34



4.3. Verifying Asymptotic Bounds

the conditions Pi for simplicity):

∀a0, a1, . . . ak′ ∈ Q+
0 . constraintsprocedure(a0, a1, . . . ak′)

→ ⟨$R

k′

∑
i=0

ai · bi(σ)⟩ procedure ⟨$R0⟩

∧ ∃a0, a1, . . . ak′ ∈ Q+
0 . constraintsprocedure(a0, a1, . . . ak′)

∧ ∀j. ∈ (k, k′]. ∃i. ∈ [0, k]. bj ∈ O(bi) (4.4)

The newly introduced existential quantifier can be encoded in intermediate
verification languages like Viper, since it does not contain a Hoare triple.
Additionally, it does not depend on the program state and hence can be
proven in a completely independent assertion. This approach is very similar
to what AARA-based tools do by collecting linear constraints for an LP
solver [19, 7].

Even though we can encode this approach into intermediate verification
languages, this encoding does no perform well in Viper. As mentioned in
Section 2.2.1, existentials like the one checking the satisfiability of the con-
straints are often not provable for the underlying SMT solver. Furthermore,
we would also need to infer appropriate constraints outside of Viper.

Therefore, we tried to improve the encoding by encoding the existential as
follows:

¬
(
∀a0, a1, . . . ak ∈ Q+

0 . constraintsprocedure(a0, a1, . . . ak) → ⊥
)

(4.5)

Here ⊥ is defined to be never satisfiable. In Viper or other verifiers, this
translates to assuming the constraints on coefficient variables and asserting
false at the end. The existential will be satisfiable if the assertion fails to
verify. This approach might work well, but it interferes with Prusti’s func-
tional verification. In Prusti, we want the assertions of functional properties
to succeed, but we might not find their failures when the assert false fails.

4.3.1 Cost Inference

Since there is no satisfying solution to encode the existential around Hoare
triples for our purposes, we decided to instead infer expressions for the
coefficients and then check their validity in the verifier by using them in
precondition as in the previous chapter. Additionally, we have to check
that the inferred coefficients satisfy the asymptotic bounds by checking their
corresponding base functions as in definition 4.2. Conceptually, this proves
the existential by providing a concrete instantiation.

Our inference collects the required credits by walking backwards over the
control-flow graph of the procedure. The credits are represented as condi-

35



4. Asymptotic Bounds

tional multivariate polynomials (as defined in the previous chapter), i.e.:

⟨(P0 → $R0 c0) ? · · · ? (Pn → $Rn cn)⟩ where ci =
ki

∑
j=0

aj · bj(σ)

Conditions come from conditional branches (and from conditional credit
requirements of calls) and hence model the program path that leads to a
specific cost, similarly to a path constraint in symbolic execution. For un-
conditional asymptotic bounds on non-recursive functions the cost can also
be approximated by summing all costs regardless of their path constraints,
since the sum will not change the asymptotic behavior.

More specifically the inference works as follows. When a call or an operation
that requires credits (in the cost model) is encountered, i.e.,

⟨(Q0 → $R′
0
c′0) ? · · · ? (Qm → $R′

m
c′n)⟩ call or op ⟨$R′

0
0 ? · · · ? $R′

m
0⟩

the corresponding cost is added to the currently inferred cost. This means
we conjoin the cost to the previously inferred separating conjunction. To re-
duce the number of conjuncts, we can also add the credit amounts coefficient-
wise if there is already a conjunct with the same condition (i.e. Pi = Qj) and
resource type (i.e. R′

j = Ri).

Conditional branches simply conjoin their condition to each predicate Pi from
the corresponding branch. Assertions in the program code are treated the
same by adding their assertion to all conditions inferred below.

More complicated is the handling of assignments. As in other backwards in-
terpreters, we need to replace the left-hand side (LHS) of the assignment by
the right-hand side (RHS), since the value of the LHS probably has changed
due to the assignment. For the conditions Pi we perform exactly this substi-
tution. However, we cannot simply do a syntactic substitution for the cost
expressions ci, since we want to preserve our coefficient-based representa-
tion of multivariate polynomials.

Therefore, we use the base conversions described in Section 3.7, but re-
versed. Due to the assignment, we know the equality JLHSKσ′ = JRHSKσ

holds. Consequently, we can replace each aj · ∏l
r=0 (JexprrKσ)

er in ci, where
the LHS occurs as an exprs, by the right-hand side of the conversion equality
defined in the previous chapter. Since the LHS does not (necessarily) have
the same value above the assignment, we eliminate it completely from each
ci, i.e. set a := aj and e := es in the conversion.

Note that we do not perform such conversions for equalities inferred from
specifications or conditionals, since for such equalities it is often not clear if
the conversion should be performed, as will be explained in more detail in
Section 5.2.

36



4.4. Loops and Recursion

An example for the cost inference is shown in Listing 11 at the end of this
chapter. It contains the increment function of our binary counter with the
intermediate inference results as comments. As denoted at the top of the
function body, we are able to infer the following cost:

(Ji < self.count.len()Kσ → $time1 · 1)

? (Ji >= self.count.len()Kσ → $time(a(push)
1 · Jself.count.len()Kσ + a(push)

0 · 1))

? $time(a(loop)
1 · Jself.count.len()Kσ + a(loop)

0 · 1)

This cost is compliant with the asymptotic bound, since it only contains the
base functions Jself.count.len()Kσ and 1.

4.4 Loops and Recursion
When dealing with asymptotic bounds as loop invariants or preconditions of
recursive functions, additional care needs to be taken. In contrast to normal
function calls, the abstract coefficients for recursive function calls cannot be
universally quantified, since they need to be the same as the coefficients
from the precondition. Therefore, the condition to verify for our example in
Listing 9 would become:

∃a0, a1 ∈ Q+
0 .

⟨$time(a1 · Jself.count.len()Kσ + a1 · (−JiKσ) + a0 · 1)⟩ loop_fn ⟨$time0⟩
where
⟨$time(a1 · Jself.count.len()Kσ′ + a1 · (−JiKσ′) + a0 · 1)⟩
self.loop_fn(i);
⟨$time0⟩

Finding coefficients to instantiate the existential then means solving a re-
currence equation (or inequality). For the loop_fn function this recurrence
would look like this:

∃a0, a1 ∈ Q+
0 . a1 − a1 ≥ 0 ∧ a0 − a0 + a1 − 1 ≥ 0

Here the −1 comes from the cost of the assignment in line 4 of Listing 9.
The +a1 arises from the fact that self.count.len() − i gets decreased by
1 due to the assignment in line 5. More details regarding the treatment of
assignments can be found in the next section and also more concretely in
the next chapter.

In this case the solution is simply some a0 and a1 such that a1 ≥ 1. Unfor-
tunately, these recurrences can get arbitrarily complex. Therefore, they are
hard to solve automatically in general. However, if we restrict the space of

37



4. Asymptotic Bounds

recursive functions, there will be methods to solve the recurrences, e.g. the
master theorem or extensions of it for divide-and-conquer algorithms, as de-
scribed in [29], or using an LP solver for linear constraints, as in the AARA
implementations mentioned in Section 2.1.4. Our implementation does not
use one of these methods yet and Viper cannot really solve the recurrences
either. This means, we unfortunately require the user to solve the recurrence
to make the verification of asymptotic bounds on recursive functions sound.

1 #[ requires(time_credits(O(self.count.len())))]
2 fn increment(&mut self) {
3 /* (Ji < self.count.len()Kσ → $time1 · 1)
4 ? (Ji >= self.count.len()Kσ

5 → $time(a(push)
1 · Jself.count.len()Kσ + a(push)

0 · 1))
6 ? $time(a(loop)

1 · Jself.count.len()Kσ + a(loop)
1 J0K · (−1) + a(loop)

0 · 1)
*/↪→

7 let mut i = 0usize;
8 /* (Ji < self.count.len()Kσ → $time1 · 1)
9 ? (Ji >= self.count.len()Kσ

10 → $time(a(push)
1 · Jself.count.len()Kσ + a(push)

0 · 1))
11 ? $time(a(loop)

1 · Jself.count.len()Kσ + a(loop)
1 · (−JiKσ)

12 + a(loop)
0 · 1) */

13 while i < self.count.len() && self.count[i] == true {
14 body_invariant!(
15 time_credits(O(self.count.len() - i)));
16 self.count[i] = false;
17 i += 1;
18 }
19 /* (Ji < self.count.len()Kσ → $time1 · 1)
20 ? (Ji >= self.count.len()Kσ

21 → $time(a(push)
1 · Jself.count.len()Kσ + a(push)

0 · 1)) */
22 if i < self.count.len() {
23 // $time1 · 1
24 self.count[i] = true;
25 }
26 else {
27 // $time(a(push)

1 · Jself.count.len()Kσ + a(push)
0 · 1)

28 self.count.push(true);
29 }
30 }

Listing 11: Cost inference on the binary counter increment

38



Chapter 5

Implementation and Viper Encoding

In this chapter we describe details of our prototype implementation. In
particular, this includes the Viper encoding of the concepts introduced in
the previous chapters, so that we can automatically prove resource bounds.
The first section introduces our encoding of credits using Viper predicates.
In Section 5.2 we explain our representation of the base conversions. The
next section describes how we verify asymptotic bounds in Viper. Section
5.4 presents how we deal with loops and recursive functions. In Section 5.5
we specify the exact syntax currently supported for specifications. Finally,
we illustrate limitations of the current implementation state and how one
can verify programs like our binary counter example by rewriting them.

The current implementation can be found on GitHub1 and will eventually
be merged into the master branch of the Prusti project2.

5.1 Credit Predicates

As pioneered by Atkey [3], resource credits can be understood as a new
permission type in addition to heap access permissions in separation logic
or logics based on implicit dynamic frames [25]. While heap access permis-
sions grant the right to read or modify the contents of a memory location,
a resource credit can be used to consume some unit of the corresponding
resource. The consumption of credits can be viewed as a transfer of permis-
sions to the corresponding operation, similarly to the (temporary) transfer
of access permissions to called methods. In contrast to access permissions
credits cannot be recovered. The remaining credits are ‘framed’ across the
operation, i.e. they are still available afterwards.

1https://github.com/ELowis/prusti-dev/tree/credit_spec_encoding
2https://github.com/viperproject/prusti-dev

39

https://github.com/ELowis/prusti-dev/tree/credit_spec_encoding
https://github.com/viperproject/prusti-dev


5. Implementation and Viper Encoding

Due to these similarities, we decided to model credits using Viper’s built-
in access permissions instead of using some variables keeping the count.
To be able to model an unbounded (possibly rational) number of credits,
we use the permission amount to represent their count. As explained in
Section 2.2.1, we cannot use field permissions for this, since they only allow
permission amounts between zero and one. Instead, we define predicates to
represent credits and use permissions on them for the amount.

Since we want to separate the coefficients of polynomial credit amounts, as
described in Section 3.4, we define one predicate for each combination of ex-
ponents that occurs in the program (and each resource type to be analyzed).
That is, we define a predicate for each base function. For example,

predicate time_credits_1_2(_0: Int, _1: Int)

represents the base function for the resource runtime with exponents one
and two. The predicate takes the base expressions as arguments and the
permission amount is used to represent the coefficient of the base function.
This means, for instance, that acc(time_credits_1_2(m, n), 3) stands for
$time(3 · (m · n2)) in Viper.

As defined before, negative coefficients are represented using a negative
base function and a positive coefficient, which also works with Viper’s non-
negative permission amounts. Therefore, we can use predicates modeling
these negative base functions, for example:

predicate time_credits_1_2_neg(_0: Int, _1: Int)

Note that the order of arguments for these predicates imposes a fixed or-
der on the elements of a base function product. This means that two base
functions that are mathematically the same (by commutativity) might not be
equivalent in Viper, e.g.

time_credits_1_1(m, n) != time_credits_1_1(n, m)

To avoid explicitly specifying equivalence facts that model commutativity,
we require the arguments of credit predicate instances to be ordered by
their name, i.e. only time_credits_1_1(m, n) would be allowed for this
example.

Using this translation to Viper access permission, (conditional) credits can
be inhaled and exhaled like other specifications, that means credits in pre-
conditions are inhaled when verifying a method body and exhaled before
method calls. Cost models can be encoded by simply inserting exhales at the
corresponding program points. Viper automatically checks that coefficients
do not become negative by ensuring non-negative permission amounts.

However, since we allow users to introduce coefficients for negative base
functions by using differences, as described in Section 3.5, we need to ex-
plicitly assert that all permission amounts for negative base functions (i.e.

40



5.2. Conversion Methods

negative predicates) used in the precondition are zero at the end of the
method:

assert forall expr1: Int :: {time_credits_1_neg(expr1)}
perm(time_credits_1_neg(expr1)) == 0/1

Otherwise, coefficients of positive base functions could be used without their
negative counterpart from the difference, leading to a possibly negative re-
maining credit amount. This would violate the non-negativity postcondition
needed for proving upper bounds, as defined in chapter 3.

Additionally, we need to explicitly assert the non-negativity side condition
for all expressions used at the base of an exponentiation in user specifica-
tions. This includes the aforementioned differences. The check is performed
at the beginning of the Viper method and for each conversion, as we will
explain in the next section.

5.2 Conversion Methods

The conversions between coefficients of different base functions, as described
in Section 3.7, can be modeled using Viper methods. Listing 12 presents an
example of such a conversion method. The method requires Jexpr_0Kσ =Jexpr + constKσ to be true in line 9. It also checks the non-negativity of the
summation, to ensure that expr_0 is non-negative as required by our repre-
sentation. We can then convert from a credits in terms of the base function
(−JexprKσ) (line 10) and JconstKσ · a credits in terms of the base function
(−1) (line 12) to a · (−Jexpr_0Kσ) credits (line 14).

By only looking at the pre- and postconditions, we can see that this method
represents the following instance of a conversion from Table 3.1 in the pre-
vious chapter:

Jexpr_0Kσ = Jexpr + constKσ

⇒ a ·
(
−(Jexpr_0Kσ)

1
)
=

(
1
0

)
· a ·

(
−(JexprKσ)

1
)

+

(
1
1

)
· JconstKσ · a · (−1)

More generally, we encode these conversions using Viper methods as fol-
lows. All conversion methods result in a single access permission, denoted
in their postcondition, which represents the following coefficient and base
function:

a ·
l

∏
r=0

(JexprrKσ)
er

41



5. Implementation and Viper Encoding

1 predicate time_credits_0_neg()
2

3 predicate time_credits_1_neg(expr: Int) {
4 expr >= 0 && acc(time_credits_0_neg(), expr/1)
5 }
6

7 method convert_from_sum(a: Perm, expr_0: Int, expr: Int, const:
Int)↪→

8 requires expr + const >= 0
9 requires expr_0 == expr + const

10 requires a >= 0/1 && acc(time_credits_1_neg(expr), a)
11 requires const * a >= 0/1
12 && acc(time_credits_0_neg(), const * a)
13

14 ensures acc(time_credits_1_neg(expr_0), a)
15 {
16 unfold acc(time_credits_1_neg(expr), a)
17 // perm(time_credits_0_neg()) = const * a + expr * a
18 // = (const + expr) * a = expr_0 * a
19 fold acc(time_credits_1_neg(expr_0), a)
20 }

Listing 12: Verification of a conversion method

The preconditions of a conversion method contain the equality constraintJexprsKσ′ = JRHSKσ (compare with line 9), where RHS is one of the expres-
sions described in Section 3.7. Furthermore, the preconditions require the
non-negativity constraint for JRHSKσ (or JexprsKσ′ , equivalently) as well as
the access permission representation for the original coefficients of the credit
amount (lines 10 to 12). For the built-in non-negativity check of permission
amounts to succeed in Viper, the method also requires that all mentioned
permission amounts are non-negative.

To make the methods as reusable as possible, they take the resulting coef-
ficient (i.e. permission amount) a, all resulting exprr and all operands from
the right-hand side of the conversion equality, i.e. expr if expr ̸= exprr, const,
etc., as arguments. Nevertheless, different operands and predicates in the
pre- and postconditions still require separate methods, e.g. for each type of
RHS, each index s, each list of exponents er and each sign of the resulting
base function.

Since we require the arguments of predicate instances to be ordered lexico-
graphically (see Section 5.1), simple equalities between two expr, as shown
in the second row of Table 3.1, might also require a conversion. For ex-

42



5.2. Conversion Methods

ample, for k = n we might need to convert time_credits_1_1(m, n) to
time_credits_1_1(k, m). These reordering conversions will only be nec-
essary if the order of arguments needs to change due to an assignment.
Otherwise, Viper can automatically infer the equivalence of predicates on
equivalent arguments.

The body of a conversion method can be omitted, but it is needed to formally
verify the correctness of the conversion in Viper. Such bodies contain a series
of Viper’s unfold and fold operations and possibly calls to other conversion
methods for reuse. To be able to unfold credit predicates, the predicates also
need to have a body defined, as shown in the listing. Depending of the order
defined by the predicate bodies, a conversion might need to unfold credits
completely to the basic predicates for one positive or negative credit.

In the example only a single unfold is needed, since it already reaches the
lowest level. Viper can then perform the necessary arithmetic, shown in the
comments in line 17 and 18, to verify that the fold operation succeeds.

This conversion method would for example be called with the following
arguments after the assignment i += 1 in Listing 8:

convert_from_sum(loop_i1(), JiKσ′, JiKσ, 1)

Here, loop_i1() represents the abstract coefficient for i in the loop invari-
ant, as described in Section 5.3.2. σ′ represents the program state after the
assignment and σ the state before. In Rust’s MIR and hence in Prusti JiKσ′

and JiKσ would be translated to different variables.

Especially, when the body is omitted and hence modular verification would
not be used, the method can also be inlined by first exhaling the precondi-
tions and then inhaling the postcondition.

When to trigger a conversion and with which arguments, in particular which
permission amount is required, will be determined by a static analysis iter-
ating backwards over the MIR. To determine the postconditions of conver-
sions, the analysis collects the credits required below. Calls to conversion
methods will then be inserted after every assignment whose left-hand side
occurs in an inferred predicate instance. Since we do not know the value
of the left-hand side above the assignment, it will be completely eliminated
in the inferred credit amount by applying the conversions with the corre-
sponding arguments in reverse. This is very similar to the credit inference
for asymptotic bounds (see Section 4.3.1). Therefore, we combined them in
our implementation.

If the credits required after the assignment are only needed under a certain
condition Pi, the conversion call will only be performed if the condition is
true:

43



5. Implementation and Viper Encoding

if (Pi) {
conversion_method(. . . )

}

As mentioned before, the verifier could be more powerful if we also per-
formed conversions for equalities learned from conditions and functional
specifications. However, for these it is more difficult to infer if the conversion
should be performed or not. For example, for an equality Jk == m + nKσ we
do not know if JkKσ or JmKσ and JnKσ should be used to represent the credit
amount, such that we reach a representation that matches the precondition.
Therefore, a more sophisticated analysis (or additional user annotations)
would be needed to perform such conversions.

5.3 Asymptotic Bounds
To verify asymptotic bounds, we implemented the cost inference as de-
scribed in section 4.3.1 in Prusti as an backwards interpreter on Rust’s MIR.
The inferred cost is added as a precondition to the Viper encoding. We ver-
ify that the inferred credit amount is large enough to execute the function
by exhaling the costs as described before. Additionally, we need to check
if the inference result satisfies the asymptotic bounds that the user speci-
fied. This means the inferred cost must not contain any coefficient for a base
function that does not comply with the asymptotic bounds. In Viper, we do
this by asserting that the permission amount for all other base functions is
zero after inhaling the inferred credits.

For example, the asymptotic bound O(JnKσ · JmKσ + JkKσ) allows the follow-
ing base functions bi(σ) to occur in the inferred cost function according to
the definition asymptotic dominance, given in Section 4.1:

b1(σ) = JnKσ · JmKσ ∈ O(JnKσ · JmKσ)

b2(σ) = JnKσ ∈ O(JnKσ · JmKσ)

b3(σ) = JmKσ ∈ O(JnKσ · JmKσ)

b4(σ) = JkKσ ∈ O(JkKσ)

b5(σ) = J1Kσ ∈ O(JnKσ · JmKσ) ∩ O(JkKσ)

To check that the inferred cost only contains (non-zero) coefficients for these
base functions, we add the assertions shown in Listing 13 to the Viper encod-
ing after inhaling the inferred cost.We add an assertion for every predicate
that occurs in the inferred cost. Therefore, there might be more assertions
like the one on time_credits_1_2(expr1, expr2) needed depending on
the inference result.

We impose these assertions only on positive predicates, since negative pred-
icates only make the required credit amount smaller. Therefore, the exis-

44



5.3. Asymptotic Bounds

1 assert forall expr1: Int, expr2: Int ::
2 {time_credits_1_2(expr1, expr2)}
3 perm(time_credits_1_2(expr1, expr2)) == 0/1
4 assert forall expr1: Int, expr2: Int ::
5 {time_credits_1_1(expr1, expr2)}
6 !(expr1 == n && expr2 == m) // b1
7 ==> perm(time_credits_1_1(expr1, expr2)) == 0/1
8 assert forall expr: Int :: {time_credits_1(expr)}
9 !(expr == n) && !(expr == m) && !(expr == k) // b2, b3, b4

10 ==> perm(time_credits_1(expr)) == 0/1

Listing 13: Asymptotic bound check in Viper

tential would still succeed only with coefficients for positive base functions.
Also note that inferred negative predicates cannot make the overall credit
amount negative, since they are only introduced for non-negative differ-
ences in costs.

However, for differences in asymptotic bounds an additional check is re-
quired, such that $R ∑k′

i=0 ai · bi(σ) is actually enough for the execution. The
inferred coefficients must comply with the relationship that would be the re-
sult of translating bi to our internal representation bj, as described in Section
3.5. For each pair of coefficients for the resulting bj, where there is no bi = bj
in the asymptotic bound for at least one of the two, we need to perform a
check that they contain the same ai for the difference. For instance, one such
assertion could look as follows for bi = (Jexpr1Kσ − Jexpr2Kσ)3:

assert perm(time_credits_3(expr1)) * (3
2) ==

perm(time_credits_1_2(expr1, expr2)) * (3
0)↪→

Coefficients for resulting negative base functions bi can also be smaller than
required, as described before, therefore a <= is sufficient instead of the =.

5.3.1 Conditional Asymptotic Bounds

Allowing conditional asymptotic bounds in the specifications complicates
determining the allowed coefficients. Since we only deal with the user an-
notations syntactically in the encoder, we do not know which conditions
might overlap. Overlapping conditions could lead to a larger actual asymp-
totic bound, since the user-defined asymptotic bounds sum up. Therefore,
we need to compute the resulting asymptotic bound for each combination
of the conditional asymptotic bounds. The asymptotic bound will then be
checked under the combined condition.

To minimize the number of combinations, we summarize all combined con-

45



5. Implementation and Viper Encoding

ditions that lead to the same asymptotic bound, by disjoining (i.e. joining
with a ∨) them and possibly simplifying the resulting disjunction. If we
order the resulting asymptotic bounds by dominance, we can additionally
omit negated conditions by checking the combined conditions with an if-
then-else starting with the largest asymptotic bound.

An example for this encoding is shown in Listing 14. The assertions for the
asymptotic bound checks will look the same as presented before and are
hence omitted.

1 #[ requires(P0 ==> time_credits(O(1)))]
2 #[ requires(P1 ==> time_credits(O(n)))]
3 #[ requires(P2 ==> time_credits(O(m)))]
4 fn foo(n: u32, m: u32) { ... }

1 if (P1 && P2) {
2 // check O(n + m)
3 }
4 elseif (P1) { // && !P2
5 // check O(n)
6 }
7 elseif (P2) { // && !P1
8 // check O(m)
9 }

10 elseif (P0) { // && !P1 && !P2
11 // check O(1)
12 }

Listing 14: Example encoding of conditional asymptotic bounds

5.3.2 Coefficient Functions

For (non-recursive) function calls, the existential over coefficients in the
asymptotic bound becomes a universal quantifier, as described in Section
4.2. Therefore, we can simply use abstract Viper functions (without a body)
or variables to model the possible coefficients. We decided to use functions,
since they only need to be declared once and not in every method. For
each called function we declare a Viper function for each possible coefficient
with the only postcondition that the result is non-negative. Note that in this
model all calls to the same function inside one Viper method have the cost
function as an upper bound.

For the push function in line 19 of Listing 7, we would for example declare
the following two coefficient functions in the encoding:

46



5.4. Loops and Recursion

function push_0(): Perm
ensures result >= 0/1
function push_len1(): Perm
ensures result >= 0/1

These represent the two possible coefficients a(push)
0 and a(push)

1 which occur
in the example in Section 4.2. The cost for the function call will then in Viper
be represented by:

acc(time_credits_1(len), push_len1())
&& acc(time_credits(), push_0())

5.4 Loops and Recursion
Loops and Recursive functions are verified as described in Sections 3.3 and
4.4.

This means loops are treated like their recursive function equivalent. How-
ever, they are not translated into a separate Viper method. Therefore, addi-
tional care has to be taken. If the loop condition is true before the loop, we
exhale the credits specified in the invariant. Additionally we exhale all other
credits and save their permission amounts in temporary variables to inhale
them again after the loop. This ensures that we only use the credits from
the invariant for verifying the loop body, as we would do for a recursive
function.

To verify that the loop body preserves the invariant, we verify the body
starting in an abstract state where only the body invariants3 are assumed to
be true, as Prusti does already for the functional verification. This means
we also inhale the credits from the body invariants. If the loop condition
still holds after one abstract body execution, we exhale the body invariants
to ensure their preservation.

As mentioned in Section 4.4, verifying asymptotic bounds for loops and
recursive functions adds an additional complication.

We can construct an existentially quantified Viper assertion for this proof.
The recurrence relation is constructed by replacing the calls to coefficient
functions of the recursive function in the inference result with quantified
variables.

This check is (optionally) translated to an existentially quantified assertion in
our Viper encoding. However, Viper is often not able to solve the existential,
even for very simple examples, as stated before. Therefore, it is currently up
to the user to check the recurrence relation.

3loop conditions are currently not automatically assumed to hold in Prusti and therefore
need to be stated as explicit body invariants

47



5. Implementation and Viper Encoding

5.5 Specification Syntax

As we have seen in the examples presented before, we add a new expression
to Prusti’s specification syntax to represent credit amounts. In this section
we explain more precisely how credit amounts can be defined and where
they can occur in our current implementation.

Expressions specifying credit amounts can be used in requires attributes
of non-pure functions (or in body invariants). The specifications may only
contain a single credit expression or an implication with a credit expression
on the right-hand side. Multiple credit expressions need to be defined in
separate preconditions or invariants.

Credit expressions start with an identifier ending in _credits where the
prefix defines the credit or resource type, like time in our examples. Cur-
rently, these types do not have any cost model attached. Therefore, they
present only a syntactical separation of different credit currencies that can
be analyzed at the same time. After the identifier a credit polynomial can be
provided in parenthesis. This polynomial can either be defined asymptoti-
cally or concretely. Asymptotic amounts need to be specified in parenthesis
after an uppercase O.

The polynomial follows the form described in Sections 3.5 and 4. Asymp-
totic polynomials contain a sum of one or more base functions separated by
‘+’ operators. The base functions may either be the literal ‘1’ or a sequence
of exponentiations, separated by ‘*’ operators. The exponentiations can con-
tain a pure expression evaluating to a non-negative numerical value and an
exponent after a ‘ˆ’ sign, that is a (small) positive integer literal. Currently,
we only support formal arguments (and local variables) of type u32 at the
base of these exponentiations. This also means differences as described in
Section 3.5 are not supported yet.

Concrete credit amounts need to additionally define a non-negative coeffi-
cient expression before every base function, multiplied with a ‘*’ operator.
Since the coefficient expression needs to be independent of the program
state, it may only contain arithmetic operations on unsigned integer literals
(fractional coefficients are not yet supported), and possible special function
calls representing abstract coefficients of called functions, as described in
Section 5.3.2.

5.6 Limitations and Modeling Unsupported Features

Our implementation still has a few limitations. Most of these limitations can
be overcome by fully implementing what we have described in the previous
chapters. Nevertheless, our prototypical implementation is already capable

48



5.6. Limitations and Modeling Unsupported Features

of verifying the binary counter example from Section 3.2 after some rewrit-
ing (except for solving the recurrence for the asymptotic bound on the loop).
The rewritten implementation of the example is provided in the two listings
at the end of this section. We refer to them to demonstrate how most of the
limitations can be mitigated.

Since we were focusing on asymptotic bounds, concrete credit annotations
(like in Listing 9) cannot be verified in the current state of the implementa-
tion. Instead, concrete credit specifications will be abstracted as asymptotic
bounds. However, this is a limitation that is relatively easy to lift, since con-
crete credit amounts were supported in an earlier stage of development for
testing purposes. Also note that concrete credit amounts would currently
be abstracted for calls as described in Section 4.2, which could be changed
to support verifying concrete costs without the need for abstract coefficients
in their specification.

We have not implemented cost models for different resources yet. Therefore,
costs have to be always explicitly modeled by using calls to functions with
credit annotations. Especially, one needs to be careful to have such a func-
tion call in every loop body and recursive function when termination should
be proven. To verify our binary counter example, we need to model setters
and getters for the count vector as explicit functions anyway, since Prusti
does not support reasoning about Vec at the moment. As shown in Listing
15 at the end of this section, we use trusted (i.e. unverified) function stubs
for setting, reading and pushing a bit. Setting a bit is assumed to require
O(1) time credits (line 13), extending the vector using push_bit costs linear
time in the old length (as in the original version). The getter is marked as
pure to be able to use it in specifications. Note that pure functions cannot
have credit annotations.

The current implementation does not support the encoding of loops. How-
ever, loops can be modeled by using a recursive function, as described in
Section 3.3 and shown in Listing 16. This view is also very similar to how
loops are encoded in Prusti. Recall that Viper can effectively never solve
the recurrence relation required for the verification of asymptotic bounds on
recursive functions. Therefore, even the translation to a recursive function
could only be verified soundly by using concrete credit amounts (which is
currently not working as mentioned before). When the existential with the
recurrence for asymptotic bounds is omitted, the verification will not be
sound without requiring the user to solve the recurrence manually.

As mentioned in the previous section, credit specifications may only con-
tain a single formal argument at the base of exponentiations. Nevertheless, as
briefly described in Section 3.5 for more complicated expressions, we can
still model specifications in terms of more complicated expressions by intro-
ducing an additional argument. This ghost argument represents the result

49



5. Implementation and Viper Encoding

of the expression and is updated if the value changes.

For example, the recursive function representing the loop from our binary
counter has an additional argument self_len_minus_i in line 27 of Listing
16 to represent the difference of counter.len and *i, as specified in the
highlighted precondition. This additional argument can then be used in the
credit specification in line 23. The loop function will be called in line 9 with
the result of the difference. The value of the variable additionally needs to
be updated before the recursive call. When i gets incremented, self_len_ ⌋
minus_i needs to be decremented (line 30). Similarly to the loop function,
the increment and push_bit functions also require an additional argument
which represents the length of the current count vector, since field accesses
are also not supported yet.

Also note that the current credit inference requires function calls to only
take local variables (or their references) as arguments for simplicity. There-
fore, we need to use temporary variables to represent the difference of
counter.len and i (line 6) as well as the boolean literals true and false
(lines 4 and 28).

Formal verification of base conversions, as mentioned in Section 12, can be
activated with a configuration flag. However, we have only implemented
a body for the conversion replacing a constant by an expr yet. Therefore,
all other conversions will fail to verify. One has to trust their mathematical
correctness and that we use the corresponding pre- and postconditions in
our implementation. Also recall that we do not perform conversions due
to equalities learned from postconditions or conditionals yet. For example
the postcondition in line 27 of Listing 15 would not be used even if it were
defined in terms of the old_self_len argument. Instead, another function
call with linear cost in the length of the count after push_bit in Listing 16
would require updating self_len with a manual assignment.

50



5.6. Limitations and Modeling Unsupported Features

1 struct Counter {
2 b: bool, // needed, since need state to change even if

len stays the same (different get result)↪→

3 len: u32,
4 }
5

6 #[ pure ]
7 #[ trusted ]
8 fn get_bit(counter: &Counter, i: u32) -> bool {
9 return counter.b; // dummy implementation

10 }
11

12 #[ trusted ]
13 #[ requires(time_credits(O(1)))]
14 #[ requires(i < counter.len)]
15 #[ ensures(counter.len == old(counter.len))]
16 #[ ensures(get_bit(counter, i) == val)]
17 // everything else unchanged:
18 #[ ensures(forall(|j: u32| (j < counter.len && j != i)
19 ==> get_bit(counter, j) == old(get_bit(counter, j))))]
20 fn set_bit(counter: &mut Counter, i: u32, val: bool) {
21 () // dummy implementation
22 }
23

24 #[ trusted ]
25 #[ requires(old_self_len == counter.len)]
26 #[ requires(time_credits(O(old_self_lenˆ1)))]
27 #[ ensures(counter.len == old(counter.len) + 1)]
28 #[ ensures(get_bit(counter, counter.len - 1) == val)]
29 // everything else unchanged:
30 #[ ensures(forall(|j: u32| j < old(counter.len)
31 ==> get_bit(counter, j) == old(get_bit(counter, j))))]
32 fn push_bit(counter: &mut Counter, val: bool, old_self_len:

u32) {↪→

33 counter.len = counter.len + 1; // dummy implementation
34 }

Listing 15: Abstracting the Vec field of the binary counter

51



5. Implementation and Viper Encoding

1 #[ requires(self_len == counter.len)]
2 #[ requires(time_credits(O(self_lenˆ1)))]
3 fn increment(counter: &mut Counter, self_len: u32) {
4 let temp_true = true;
5 let mut i = 0u32;
6 let len_minus_i = self_len - i;
7 if i < counter.len {
8 if get_bit(counter, i) == true {
9 loop_fn(counter, &mut i, len_minus_i);

10 }
11 }
12

13 if i < counter.len {
14 set_bit(counter, i, temp_true); // O(1)
15 }
16 else {
17 push_bit(counter, temp_true, self_len);// O(self_len)
18 }
19 }
20

21 // loop translation
22 #[ requires(self_len_minus_i == counter.len - *i)]
23 #[ requires(time_credits(O(self_len_minus_iˆ1)))]
24 #[ requires(*i < counter.len && get_bit(counter, *i) == true)]
25 #[ ensures(counter.len == old(counter.len))]
26 #[ ensures(*i >= counter.len || get_bit(counter, *i) != true)]
27 fn loop_fn(counter: &mut Counter, i: &mut u32, mut

self_len_minus_i: u32) {↪→

28 let temp_false = false;
29 set_bit(counter, *i, temp_false); // O(1)
30 *i += 1; self_len_minus_i -= 1;
31

32 if *i < counter.len {
33 if get_bit(counter, *i) == true {
34 loop_fn(counter, i, self_len_minus_i);
35 }
36 }
37 }

Listing 16: Rewritten binary counter increment implementation

52



Chapter 6

Evaluation

Since our implementation is still incomplete and not optimized, we are only
doing a qualitative evaluation here. This means we present a few examples
that illustrate the features of our proposed extension to Prusti. If not stated
otherwise, all examples verify using the current implementation except for
solving the recurrence relation. Section 6.1 presents different implementa-
tions for the computation of the n-th Fibonacci number. Some more abstract
examples that include common algorithmic patterns or a certain degree of
complexity are shown in Section 6.2.

Throughout this chapter we will use the functions presented in Listing 17 to
model the use of a certain asymptotic amount of credits. The credit type r_ ⌋
credits is just a placeholder for the types that will be used in the examples.
Calls to these functions can be seen as a way to specify a cost model. As
mentioned in Section 5.6, our implementation does not have built-in cost
models yet.

1 #[ trusted ]
2 #[ requires(r_credits(O(1)))]
3 fn constant() {}
4

5 #[ trusted ]
6 #[ requires(r_credits(O(nˆ1)))]
7 fn linear(n: u32) {}
8

9 #[ trusted ]
10 #[ requires(time_credits(O(nˆ1*mˆ1)))]
11 fn multi(n: u32, m: u32) {}

Listing 17: Functions to model costs

53



6. Evaluation

6.1 Fibonacci Numbers
In this section we present the asymptotic runtime verification of different
algorithms to compute the n-th Fibonacci number. The Fibonacci numbers
form a mathematical sequence that is defined by the following recurrence
relation:

F1 := 1, F2 := 1 (6.1)
Fn := Fn−1 + Fn−2, for n > 2 (6.2)

This means every number in this sequence is the sum of its two predecessors,
or one if there are less than two predecessors. There is also an alternative
definition starting at zero which leads to equivalent algorithms.

There are two principle approaches to compute the n-th Fibonacci number.
One computes the number bottom-up starting at F1 and F2, always remem-
bering the last two numbers to sum them. The other approach follows the
recurrence relation for Fn top-down until it reaches F1 and F2.

6.1.1 Bottom-up Algorithm
We will start with an algorithm using the bottom-up approach. Usually, this
algorithm is formulated as a loop, but as mentioned in the Section 5.6 our
implementation does not support loops yet. Therefore, we use the recursive
formulation shown in Listing 18 on the next page. Given the two previous
Fibonacci numbers, fib_bottom_up computes the next one and calls itself
recursively until the index n is reached.

We assume that each invocation of fib_bottom_up consumes a constant
amount of time credits (line 13) by itself before performing the recursive
call. As there are no built-in cost models, omitting the function call with
constant cost would allow us to prove that no credits are needed for the
whole recursion, which is counter-intuitive when thinking about runtime.
With the constant cost per recursive call, we need to instead specify linear
bounds on the entry function and the recursive function.

Recall that bounds on recursive functions cannot be automatically verified at
the moment. Instead, our cost inference generates the following recurrence
relation to be solved for a sound proof:

∀c0 ∈ Q+
0 . ∃a0, a1 ∈ Q+

0 . a1 ≥ a1 ∧ a0 ≥ a0 + c0 − a1

Here, c0 represents the abstract coefficient for the cost of the constant func-
tion, i.e. it costs c0 · 1, a0 and a1 represent the coefficients for the cost func-
tion of fib_bottom_up. The recurrence is easily solvable by any a1 satisfying
a1 ≥ c0 (and a0 ≥ c0 for the terminating branch). Therefore, the verification
of the asymptotic bound is sound.

54



6.1. Fibonacci Numbers

1 #[ requires(n > 0)] // 1-based index
2 #[ requires(time_credits(O(nˆ1)))]
3 fn fib(n: u32) -> u32 {
4 if n > 2 {
5 let fib_1 = 1;
6 let fib_2 = 1;
7 fib_bottom_up(n-2, fib_2, fib_1)
8 } else { 1 }
9 }

10 #[ requires(n_minus_i > 0)]
11 #[ requires(time_credits(O(n_minus_iˆ1)))]
12 fn fib_bottom_up(mut n_minus_i: u32, fib_i: u32, fib_i_minus_1:

u32) -> u32 {↪→

13 constant();
14 // compute (i+1)-th Fibonacci number
15 let fib_i_plus_1 = fib_i + fib_i_minus_1;
16 n_minus_i -= 1;
17 if n_minus_i > 0 {
18 fib_bottom_up(n_minus_i, fib_i_plus_1, fib_i)
19 } else { // i == n
20 fib_i_plus_1
21 }
22 }

Listing 18: Algorithm to compute n-th Fibonacci number bottom-up

6.1.2 Top-down Algorithm
The top-down algorithm is better suited for a recursive implementation,
since it contains two recursive calls to compute the two previous Fibonacci
numbers. A Rust implementation is shown in Listing 19 on the next page.
Performing the recursive calls naively will lead to the re-computation of
many numbers, since the computation of the (n − 1)-th Fibonacci number
includes computing the (n − 2)-th. The resulting call structure forms a bi-
nary tree of depth n. Therefore, the runtime grows exponentially, i.e. O(2n).

We cannot specify and verify such exponential bounds with our current
approach. However, we can disprove that the recursive function can run in
linear time by using the inferred recurrence relation:

∀c0 ∈ Q+
0 . ∃a0, a1 ∈ Q+

0 . a1 ≥ a1 + a1 ∧ a0 ≥ a0 + a0 + c0 − a1 − 2 · a1

Since we have two recursive calls, a0 and a1 occur twice on the right-hand
side of their respective inequalities. The first inequality is only solvable for
a1 = 0, which means we cannot compensate for the parts added to a0 on the

55



6. Evaluation

1 #[ requires(n > 0)] // 1-based index
2 #[ requires(time_credits(O(nˆ1)))] // incorrect
3 fn fib_top_down(n: u32) -> u32 {
4 constant();
5 if n > 2 {
6 fib_top_down(n-1) + fib_top_down(n-2)
7 } else { 1 }
8 }

Listing 19: Algorithm to compute n-th Fibonacci number top-down

right-hand side of the second inequality. Therefore, the recurrence relation
as a whole is not solvable for a linear bound, as expected.

Keep in mind that the recurrence relation cannot be automatically proved or
disproved in the current implementation. Therefore, without encoding the
failing existential, our verifier would actually be able to prove the incorrect
linear bound, since it assumes that the recursive calls are just calls to any
function with linear runtime. Even worse, it would also be able to verify a
linear bound if the function never terminated. For example, the argument to
the first recursive call could just be set to n by mistake, leading to an infinite
recursion.

6.1.3 Top-down Algorithm with Memoization

The redundant computation of the top-down algorithm can be avoided by
using memoization. Memoization is a common pattern to solve this prob-
lem. It caches already computed results and returns them if the function
is called again with the same argument. For our example, this means each
Fibonacci number Fn is computed at most once. This leads to a linear run-
time bound in general and even to a constant runtime if the value is already
stored.

As shown in Listing 20, this algorithm represents a use case for our condi-
tional bounds. The user can specify different bounds depending on whether
the value is stored in the cache or not, as we do in lines 3 and 4. The inter-
face of the cache is presented in the separate Listing 21. For simplicity, we
also assume that the base values F1 and F2 are already stored in the cache
(line 2).

The postcondition of fib_top_down_m declares that all values with a smaller
or equal index are stored in the cache, since the algorithm reaches all of
them in recursive calls. Therefore, we could deduce from the postcondition
of the first recursive call that the value for the second recursive call with
index n-2 is already stored. Hence, the second recursive call has constant

56



6.1. Fibonacci Numbers

1 #[ requires(n > 0)] // 1-based index
2 #[ requires(is_stored(1) && is_stored(2))]
3 #[ requires(is_stored(n) ==> time_credits(O(1)))]
4 #[ requires(!is_stored(n) ==> time_credits(O(nˆ1)))]
5 #[ ensures(forall(|i: u32| i > 0 && i <= n ==> is_stored(i)))]
6 fn fib_top_down_m(n: u32) -> u32 {
7 constant();
8 if is_stored(n) { load(n) }
9 else {

10 let res = fib_top_down_m(n-1) + fib_top_down_m(n-2);
11 store(n, res);
12 res
13 }
14 }

Listing 20: Algorithm to compute n-th Fibonacci number top-down with
memoization

runtime cost and we can prove the linear bound by solving the following
recurrence relation:

∀c0 ∈ Q+
0 . ∃a0, a1, a(stored)

0 ∈ Q+
0 . a1 ≥ a1 ∧ a0 ≥ a0 + a(stored)

0 + c0 − a1

In this recurrence a(stored)
0 represents the abstract coefficient of the constant

bound for cached values, which might be different from the coefficient a0 for
the (disjoint) uncached case. This recurrence is solvable for a1 ≥ a(stored)

0 + c0.

Unfortunately, our current inference for asymptotic bounds is not powerful
enough to be able to infer that is_stored(n) is always true for the second
call. Instead it will propagate the conditional bounds to the beginning of

1 #[ pure ]
2 #[ trusted ]
3 fn is_stored(n: u32) -> bool { true } // dummy implementation
4 #[ trusted ]
5 #[ ensures(is_stored(n))]
6 fn store(n: u32, val: u32) {}
7 #[ trusted ]
8 #[ requires(is_stored(n))]
9 #[ requires(time_credits(O(1)))]

10 #[ ensures(forall(|i: u32| i > 0 && i <= n ==> is_stored(i)))]
11 fn load(n: u32) -> u32 { return n; } // dummy implementation

Listing 21: Modeling the cache for memoization

57



6. Evaluation

the Viper method, where Viper cannot infer that either. Therefore, we could
only prove a linear bound with concrete credits which do not require the
use of the cost inference. For asymptotic bounds, we can only workaround
this by calling load(n-2) instead of fib_top_down_m(n-2). This will be a
sound replacement, since the precondition of load checks that the value is
actually stored, which Viper can then infer from the first call. However, this
is not satisfying, since it requires the user to be aware that the value for the
second call will be cached. Future work might refine the cost inference to be
able to deal with these cases.

6.2 Abstract Examples
This section presents the verification of two common loop patterns as well
as stress tests of the base conversions and conditional bound support. All
examples are kept abstract by using r_credits which can represent any
resource of interest.

6.2.1 Multivariate Nested Loop
Listing 22 presents a common example for multivariate bounds. It contains
the recursive implementation of a nested loop. The outer loop (function
nested_loop) performs m iterations, in which the body of the inner loop is
executed ⌊n/2⌋ times. Both loops pay a constant amount of credits for each
loop iteration.

For the inner loop we have to check a recurrence relation that is very similar
to the one for the bottom-up algorithm for the n-th Fibonacci number:

∀c0 ∈ Q+
0 . ∃a0, a1 ∈ Q+

0 . a1 ≥ a1 ∧ a0 ≥ a0 + c0 − 2 · a1

1 #[ requires(r_credits(O(mˆ1*nˆ1)))]
2 fn nested_loop(m: u32, n: u32) -> u32 {
3 constant();
4 inner_loop(n);
5 if m > 0 { nested_loop(m - 1, n) }
6 m
7 }
8 #[ requires(r_credits(O(nˆ1)))]
9 fn inner_loop(n: u32) {

10 constant();
11 if n > 1 { inner_loop(n - 2) }
12 }

Listing 22: Nested loop with linear bound client

58



6.2. Abstract Examples

This is the typical recurrence relation for a linear for-loop, except that we
only perform an iteration for every second n here. Therefore, 2 · a1 needs to
be greater than or equal to c0.

The recurrence relation for the outer loop is similar. It only contains more
coefficients for the multivariate bound:

∀c0, a(inner)
0 , a(inner)

1 ∈ Q+
0 . ∃a0, an1, am1, am1n1 ∈ Q+

0 .
am1n1 ≥ am1n1 ∧ am1 ≥ am1

∧ an1 ≥ an1 + a(inner)
1 − am1n1

∧ a0 ≥ a0 + a(inner)
0 + c0 − am1

Here, a(inner)
0 and a(inner)

1 denote the constant and linear coefficient of the
inner loop cost, respectively. The coefficients for the outer loop have a rep-
resentation of their corresponding base function as a subscript. This recur-
rence condition is satisfiable for any coefficients, such that am1n1 ≥ a(inner)

1

and am1 ≥ a(inner)
0 + c0.

Listing 23 presents a client method that calls the nested loop with n being
zero. As presented in Section 3.2 of [13], a flawed proof of an asymptotic
bound on this example could just substitute zero for n in the asymptotic
bound of the nested loop and deduce that the call costs O(0) credits. Since
we represent the credits needed for calls as expanded polynomials with
abstract coefficients, this cannot happen in our approach. In this case, the
cost of a call to nested_loop is represented by

am1n1 · nm + am1 · m + an1 · n + a0 · 1

If we substitute zero for n in a conversion, we will still have the following
cost remaining:

am1 · m + a0 · 1

Therefore, a constant bound specification would fail in the asymptotic bound
check, defined in Section 5.3, since the inferred cost is linear in m.

1 #[ requires(r_credits(O(1)))] // fails, O(mˆ1) succeeds
2 fn client(m: u32) {
3 constant();
4 let zero = 0;
5 nested_loop(m, zero);
6 }

Listing 23: Nested loop with linear bound client

59



6. Evaluation

6.2.2 Decreasing Recursive Cost

Another typical algorithmic pattern is a loop whose iteration cost depends
on the loop variable and hence decreases with it. A recursive implementa-
tion of this pattern is shown in Listing 24. Every recursive function invo-
cation costs a linear amount of credits in terms of the argument n which is
decreased before every recursive call. The upper bound on the function is
quadratic, since ∑n

i=1 i = (n2 + n)/2.

The inferred recurrence relation for this function will look as follows:

∀l0, l1 ∈ Q+
0 . ∃a0, a1, a2 ∈ Q+

0 .
a2 ≥ a2

∧ a1 ≥ a1 + l1 − 2 · a2

∧ a0 ≥ a0 + a2 + l0 − a1

Here, l1 and l0 represent the cost function coefficients for the call to linear.
The −2 · a2 and +a2 are coming from the binomial expansion of a2 · (n − 1)2.
This recurrence is solvable for 2 · a2 ≥ l1 and a1 ≥ a2 + l0.

1 #[ requires(n > 0)]
2 #[ requires(r_credits(O(nˆ2)))]
3 fn decreasing(n: u32) {
4 linear(n); // decreases with every iteration
5 if n > 0 { decreasing(n-1) }
6 }

Listing 24: Quadratic function with decreasing linear cost

6.2.3 Stress Tests

Listing 25 presents a chain of arithmetic operations. The cost inference is
able to determine the right credit amounts by applying base conversions,
such that the verification succeeds. The variable t is only built-up from
constant parts and hence r ∈ O(n). The second argument of the call to bar
only contains the product of n and m. Therefore, we can prove the overall
asymptotic bound O(n3m1) = O(n2(m · n)1).

In Listing 26 we included a Rust program with multiple conditionals. We de-
fined conditional credit amounts in the precondition of this function match-
ing the structure of the program. Notice that the condition k < (n + m)
overlaps with the following three conditions and hence their asymptotic
bounds get summed. For example the program path ending in line 13, has
a total credit bound of O(n + m).

60



6.2. Abstract Examples

Both examples shown here verify without any manual help by solving a
recurrence, since they do not include recursive functions.

1 #[ requires(cf_time_credits(O(nˆ3*mˆ1)))]
2 fn conversions(n: u32, m: u32) {
3 let l = 3;
4 let j = (l + 5) * 6;
5 let t = j / 3;
6 let r = t - 3 + n;
7 let s = m * n;
8 bar(r, s);
9 }

10 #[ trusted ]
11 #[ requires(cf_time_credits(O(nˆ2*mˆ1)))]
12 fn bar(n: u32, m: u32) { }

Listing 25: Test of various base conversions

1 #[ requires(k < (n + m) ==> time_credits(O(nˆ1)))]
2 #[ requires(k < (n + m) && k < (n-3) && k == 3 ==>

time_credits(O(nˆ1)))]↪→

3 #[ requires(k < (n + m) && k < (n-3) && k == 6 ==>
time_credits(O(nˆ1*mˆ1)))]↪→

4 #[ requires(k < (n + m) && k < (n-3) && k != 3 && k != 6 ==>
time_credits(O(mˆ1)))]↪→

5 #[ requires(!(k < (n + m)) ==> time_credits(O(1)))]
6 fn conditional(n: u32, m: u32, k: u32) {
7 if k < (n + m) {
8 linear(n);
9 if k < (n - 3) {

10 match k {
11 3 => linear(n),
12 6 => multi(n, m),
13 _ => linear(m),
14 }
15 }
16 } else { constant() }
17 }

Listing 26: Test with multiple conditions

61





Chapter 7

Conclusion

In this thesis we have shown how abstract credits can be used to automat-
ically reason about the resource usage of programs in the Viper verifica-
tion infrastructure. Representing credit amounts by polynomial coefficients,
enables us to prove resource bounds in terms of multivariate polynomials
while avoiding complex super-linear constraints. Additionally, this repre-
sentation simplifies the check of asymptotic bounds. On the other hand,
reasoning in terms of coefficients requires the use of explicit conversions be-
tween them. Furthermore, our representation causes over-approximations
when checking the non-negativity of costs and comparing different credit
amounts.

These over-approximations are unproblematic for the proof of asymptotic
bounds. However, reasoning about asymptotic behavior introduces new
complexities. It requires the verifier to prove that there exists a concrete
credit amount that provides enough credits for the execution and obeys the
asymptotic bound. For programs without loops and recursion, we can in-
fer this concrete credit amount. Loops and recursion additionally require
checking a recurrence relation on the inferred cost, which our current im-
plementation cannot do automatically.

We model credit amounts using Viper’s built-in access permissions. Since
these permissions represent a similar notion of rights, we can exploit the
integrated reasoning on them to reduce the amount of additional encoding
needed for resource credits. This also enables us to easily add or subtract
credits conditionally, leading to more precise inference results and allowing
users to specify conditional resource bounds.

63



7. Conclusion

7.1 Future Work
In addition to lifting the limitations of the implementation mentioned in
Section 5.6, the work presented in this thesis can be improved or extended
in the following directions.

Asymptotic Bounds

The cost inference which is needed to prove asymptotic bounds introduces
some redundancy, since it is similar to the verification Viper performs af-
terwards. Therefore, it might be worth considering if the reasoning about
asymptotic bounds could be built into the Viper verifier itself, instead of
building on top of it. This also includes the proof of recurrences.

Alternatively, one could use concrete credit amounts together with suffi-
ciently abstract cost models, like the one provided in [13], to prove asymp-
totic bounds. To further simplify the specification of concrete coefficients
needed in this case, our coefficient-based reasoning could be made more
precise. For example, we could allow transfers between coefficients of neg-
ative base functions and their positive counter-part. This would effectively
model possibly negative coefficients by the difference of a positive and a
negative coefficient.

Verifying Recurrence Relations

Reasonably simple recurrence relations for recursive functions should be
possible to verify automatically. As mentioned before, one could apply a
similar method as in [29] based on the master theorem. Using an LP solver
as in the AARA-based tools (e.g. in [7]) could also be feasible. Another alter-
native could be a clever heuristics-based pattern matching, since the typical
recurrence relations are very similar, as we have seen in the evaluation.

Regaining Credits

For some resources it might be useful to have operations with negative costs
or similarly, operations that return credits in their postcondition. This is
for example the case for a verification of the currently allocated memory.
Credits could be used to pay for an allocation and could be returned when
the memory is deallocated.

New Base Functions

It might be worth reconsidering the base functions of our coefficient-based
representation. First and foremost, this means adding more base functions
to enable the verification of more complex bounds. Additionally, there
might be better base functions for polynomials that simplify the conversions

64



7.1. Future Work

needed, like the binomial base functions used in RAML [19] for inductive
data types. Especially, reducing the number of additional terms introduced
by conversions for additions would be useful.

Amortized Analysis

As mentioned in Section 3.8, we have not implemented our proposed method
for amortized analysis yet. This includes defining a new specification syntax
for type invariants.

Stronger Inference

Our cost and base conversion inference cannot work on arbitrary programs,
since inferring resource bounds that would prove termination is undecid-
able in general. However, the inference can still be improved. We have seen
an example in Section 6.1.3 where the inference fails, since it does not take
postconditions of previously called functions into account. Functional spec-
ifications (and conditionals) could also be used for the conversion inference
in addition to assignments.

Cost Models

We have not defined any cost models yet and instead rely on the user to
define their own cost model by calling annotated functions. It would be
useful for users if the verifier provided at least some pre-defined cost models
for different resources. These could include runtime models at different
abstraction levels and cost models for memory usage.

65





Appendix A

Example Base Conversion

67



A. Example Base Conversion

a0 · b0(σ) = a0 ·
(Jexpr(0)0 Kσ − Jexpr(1)0 Kσ

)2
·
(Jexpr(0)1 Kσ − Jexpr(1)1 Kσ

)2

=

((
2
0

)
·
(

2
0

)
· ai

)
·(Jexpr(0)0 Kσ)

2 · (Jexpr(0)1 Kσ)
2

+

((
2
1

)
·
(

2
0

)
· ai

)
·(−(Jexpr(0)0 Kσ)

1 · (Jexpr(1)0 Kσ)
1 · (Jexpr(0)1 Kσ)

2)

+

((
2
2

)
·
(

2
0

)
· ai

)
·(Jexpr(1)0 Kσ)

2 · (Jexpr(0)1 Kσ)
2

+

((
2
0

)
·
(

2
1

)
· ai

)
·(−(Jexpr(0)0 Kσ)

2 · (Jexpr(0)1 Kσ)
1 · (Jexpr(1)1 Kσ)

1)

+

((
2
1

)
·
(

2
1

)
· ai

)
·(Jexpr(0)0 Kσ)

1 · (Jexpr(1)0 Kσ)
1 · (Jexpr(0)1 Kσ)

1 · (Jexpr(1)1 Kσ)
1

+

((
2
2

)
·
(

2
1

)
· ai

)
·(−(Jexpr(1)0 Kσ)

2 · (Jexpr(0)1 Kσ)
1 · (Jexpr(1)1 Kσ)

1)

+

((
2
0

)
·
(

2
2

)
· ai

)
·(Jexpr(0)0 Kσ)

2 · (Jexpr(1)1 Kσ)
2

+

((
2
1

)
·
(

2
2

)
· ai

)
·(−(Jexpr(0)0 Kσ)

1 · (Jexpr(1)0 Kσ)
1 · (Jexpr(1)1 Kσ)

2)

+

((
2
2

)
·
(

2
2

)
· ai

)
·(Jexpr(1)0 Kσ)

2 · (Jexpr(1)1 Kσ)
2

= ai ·(Jexpr(0)0 Kσ)
2 · (Jexpr(0)1 Kσ)

2

+ (2 · ai) ·(−(Jexpr(0)0 Kσ)
1 · (Jexpr(1)0 Kσ)

1 · (Jexpr(0)1 Kσ)
2)

+ ai ·(Jexpr(1)0 Kσ)
2 · (Jexpr(0)1 Kσ)

2

+ (2 · ai) ·(−(Jexpr(0)0 Kσ)
2 · (Jexpr(0)1 Kσ)

1 · (Jexpr(1)1 Kσ)
1)

+ (4 · ai) ·(Jexpr(0)0 Kσ)
1 · (Jexpr(1)0 Kσ)

1 · (Jexpr(0)1 Kσ)
1 · (Jexpr(1)1 Kσ)

1

+ (2 · ai) ·(−(Jexpr(1)0 Kσ)
2 · (Jexpr(0)1 Kσ)

1 · (Jexpr(1)1 Kσ)
1)

+ ai ·(Jexpr(0)0 Kσ)
2 · (Jexpr(1)1 Kσ)

2

+ (2 · ai) ·(−(Jexpr(0)0 Kσ)
1 · (Jexpr(1)0 Kσ)

1 · (Jexpr(1)1 Kσ)
2)

+ ai ·(Jexpr(1)0 Kσ)
2 · (Jexpr(1)1 Kσ)

2

68



Bibliography

[1] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence
equations. Computational Optimization and Applications, 10(2):195–210,
May 1998. doi:10.1023/A:1018373005182.

[2] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), volume 3,
pages 147:1–147:30. ACM, 2019. doi:10.1145/3360573.

[3] Robert Atkey. Amortised resource analysis with separation logic.
Logical Methods in Computer Science, 7(2), June 2011. doi:10.2168/
lmcs-7(2:17)2011.

[4] Martin Avanzini and Georg Moser. A Combination Framework for
Complexity. In Femke van Raamsdonk, editor, 24th International Con-
ference on Rewriting Techniques and Applications (RTA 2013), volume 21
of Leibniz International Proceedings in Informatics (LIPIcs), pages 55–70,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. doi:10.4230/LIPIcs.RTA.2013.55.

[5] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David
Pichardie. System-level non-interference for constant-time cryptogra-
phy. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, page 12671279, New York, NY, USA,
2014. Association for Computing Machinery. doi:10.1145/2660267.
2660283.

[6] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and
Zhong Shao. End-to-end verification of stack-space bounds for c pro-
grams. SIGPLAN Not., 49(6):270281, June 2014. doi:10.1145/2666356.
2594301.

69

https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1145/3360573
https://doi.org/10.2168/lmcs-7(2:17)2011
https://doi.org/10.2168/lmcs-7(2:17)2011
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2666356.2594301
https://doi.org/10.1145/2666356.2594301


Bibliography

[7] Quentin Carbonneaux, Jan Hoffmann, Thomas Reps, and Zhong Shao.
Automated resource analysis with Coq proof objects. In Rupak Ma-
jumdar and Viktor Kunčak, editors, Computer Aided Verification, pages
64–85, Cham, 2017. Springer International Publishing. doi:10.1007/
978-3-319-63390-9_4.

[8] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional
certified resource bounds. SIGPLAN Not., 50(6):467478, June 2015. doi:
10.1145/2813885.2737955.

[9] A. Charguéraud and F. Pottier. Verifying the correctness and amor-
tized complexity of a union-find implementation in separation logic
with time credits. Journal of Automated Reasoning, 62(3):331–365, 2019.

[10] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David
Liu. Energy types. SIGPLAN Not., 47(10):831850, October 2012. doi:
10.1145/2398857.2384676.

[11] Manuel Eberl. Landau symbols. Archive of Formal Proofs, July 2015.
https://isa-afp.org/entries/Landau_Symbols.html, Formal proof
development.

[12] Manuel Eberl. Proving divide and conquer complexities in isabelle/hol.
Journal of Automated Reasoning, 58(4):483–508, Apr 2017. doi:10.1007/
s10817-016-9378-0.

[13] Armaël Guéneau. Mechanized Verification of the Correctness and Asymp-
totic Complexity of Programs. PhD thesis, Université de Paris, 2019.

[14] M.P.L. Haslbeck and T. Nipkow. Hoare logics for time bounds: A study
in meta theory. Lecture Notes in Computer Science, 10805 LNCS:155–171,
2018. doi:10.1007/978-3-319-89960-2_9.

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576580, October 1969. doi:10.1145/363235.363259.

[16] J. Hoffmann and M. Hofmann. Amortized resource analysis with
polynomial potential. In ESOP, pages 287–306, 2010. doi:10.1007/
978-3-642-11957-6_16.

[17] Jan Hoffmann. Types with potential: polynomial resource bounds via au-
tomatic amortized analysis. PhD thesis, Ludwig-Maximilians-Universität
München, Oktober 2011. doi:10.5282/edoc.13955.

[18] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amor-
tized resource analysis. ACM Trans. Program. Lang. Syst., 34(3), Novem-
ber 2012. doi:10.1145/2362389.2362393.

70

https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1145/2813885.2737955
https://doi.org/10.1145/2813885.2737955
https://doi.org/10.1145/2398857.2384676
https://doi.org/10.1145/2398857.2384676
https://isa-afp.org/entries/Landau_Symbols.html
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/978-3-319-89960-2_9
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-11957-6_16
https://doi.org/10.1007/978-3-642-11957-6_16
https://doi.org/10.5282/edoc.13955
https://doi.org/10.1145/2362389.2362393


Bibliography

[19] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware
ML. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided
Verification, pages 781–786, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-31424-7_64.

[20] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant
aes-gcm. CHES ’09, page 117, Berlin, Heidelberg, 2009. Springer-Verlag.
doi:10.1007/978-3-642-04138-9_1.

[21] N. D. Matsakis and F. S. Klock. The rust language. In Proceedings of the
2014 ACM SIGAda Annual Conference on High Integrity Language Technol-
ogy, HILT ’14, page 103104, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2663171.2663188.

[22] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016. doi:10.1007/978-3-662-49122-5_2.

[23] John Regehr, Alastair David Reid, and Kirk Webb. Eliminating stack
overflow by abstract interpretation. ACM Trans. Embed. Comput. Syst.,
4:751–778, 2005. doi:10.1145/1113830.1113833.

[24] Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scal-
able static analysis for bound analysis and amortized complexity anal-
ysis. In Armin Biere and Roderick Bloem, editors, Computer Aided Veri-
fication, pages 745–761, Cham, 2014. Springer International Publishing.
doi:10.1007/978-3-319-08867-9_50.

[25] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combin-
ing dynamic frames and separation logic. In ECOOP, pages 148–172,
2009. doi:10.1007/978-3-642-03013-0_8.

[26] Robert Endre Tarjan. Amortized computational complexity. SIAM
Journal on Algebraic Discrete Methods, 6(2):306–318, 1985. doi:10.1137/
0606031.

[27] Peng Wang, Di Wang, and Adam Chlipala. Timl: A functional language
for practical complexity analysis with invariants. Proc. ACM Program.
Lang., 1(OOPSLA), October 2017. doi:10.1145/3133903.

[28] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter

71

https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/1113830.1113833
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1137/0606031
https://doi.org/10.1137/0606031
https://doi.org/10.1145/3133903


Bibliography

Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problemoverview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3), May 2008. doi:10.1145/1347375.1347389.

[29] Bohua Zhan and Maximilian P. L. Haslbeck. Verifying asymptotic time
complexity of imperative programs in Isabelle. CoRR, abs/1802.01336,
2018. URL: http://arxiv.org/abs/1802.01336, arXiv:1802.01336.

72

https://doi.org/10.1145/1347375.1347389
http://arxiv.org/abs/1802.01336
http://arxiv.org/abs/1802.01336



	Contents
	Introduction
	Contributions
	Outline

	Background
	Methodology and Related Work
	Amortized Complexity Analysis
	Hoare Logics
	Asymptotic Bounds
	Existing Tools

	Languages and Tools
	Viper
	Prusti


	Reasoning Principles
	Resource Credits
	Binary Counter Example
	Loops and Recursion
	Coefficient-based Representation
	Defining Coefficient-based Costs
	Coefficient-based Reasoning
	Base Conversions
	Amortized Analysis

	Asymptotic Bounds
	Coefficient-based Definition
	Function Calls
	Verifying Asymptotic Bounds
	Cost Inference

	Loops and Recursion

	Implementation and Viper Encoding
	Credit Predicates
	Conversion Methods
	Asymptotic Bounds
	Conditional Asymptotic Bounds
	Coefficient Functions

	Loops and Recursion
	Specification Syntax
	Limitations and Modeling Unsupported Features

	Evaluation
	Fibonacci Numbers
	Bottom-up Algorithm
	Top-down Algorithm
	Top-down Algorithm with Memoization

	Abstract Examples
	Multivariate Nested Loop
	Decreasing Recursive Cost
	Stress Tests


	Conclusion
	Future Work

	Example Base Conversion
	Bibliography

