
Verification of Practical Go Programs

Bachelor Thesis

Luca Halm

September 01, 2021

Advisors: Prof. Dr. Peter Müller, Felix Wolf, João C. Pereira

Department of Computer Science, ETH Zürich

Abstract

Gobra is a verifier based on the Viper verification framework, which
statically verifies Go code. In this project, we use Gobra to verify part of
the implementation of the SCION protocol.

SCION is a new internet architecture designed to provide secure routing
and forwarding. We use Gobra to verify a part of SCION’s border router,
which is responsible for forwarding packets.

Verifying such an extensive project poses some challenges, such as scal-
ability issues of the verifier and high annotation overhead. Furthermore,
it exposes idioms and features of the programming language that may
not be supported by the verifier.

In this work, we identify several shortcomings of Gobra and present a list
of verification techniques that decrease verification time. Furthermore,
we extend Gobra with three new features to decrease specification
overhead and increase performance.

i

Contents

Contents iii

1 Introduction 1

2 Preliminaries 3
2.1 SCION . 3
2.2 The Gobra Ecosystem . 4

2.2.1 Permission-Based Verification 5
2.2.2 Predicates . 5

2.3 Viper . 6

3 Methodology 9
3.1 Verification Goals . 9
3.2 Codebase . 9
3.3 Verification Process . 10

3.3.1 Bottom-Up Approach 11
3.3.2 Handling Predicates . 12
3.3.3 Outlining . 12

3.4 Library Specification . 13

4 Added Features 15
4.1 Specification Keywords . 15
4.2 Outline . 16

4.2.1 Design . 17
4.2.2 Encoding . 18

4.3 Chopping . 19
4.3.1 Algorithm . 20
4.3.2 Evaluation . 23

5 Examples 25
5.1 Error-Dependent Guarantees 25

iii

Contents

5.2 Required Proof Aannotation . 25
5.3 Implementation Proof . 26

6 Results 29
6.1 Verified Properties . 29
6.2 Statistics . 30
6.3 Gobra . 30

Bibliography 33

iv

Chapter 1

Introduction

Go [1] is a compiled, concurrent, statically typed programming language
developed by Google. It was designed to simplify the development of
software for multiprocessor and network systems.

Even when tested, Go programs can suffer from various kinds of bugs that
jeopardize memory safety and functional correctness. Software verification
can help in reducing the risk of unexpected software faults by proving that
the program behaves according to some formal specification.

Gobra [2] is a modular verifier for Go programs. It verifies Go code that
is annotated with preconditions, which must hold before the method gets
invoked, and postconditions, which must hold after the method execution.
Gobra performs verification by encoding the annotated source code to a
program in the Viper [3] intermediate verification language which gets
processed by the Viper toolchain.

SCION [4] is a new internet architecture designed and developed at ETH
Zürich. SCION was developed to provide secure routing and forwarding,
alongside a number of other desirable properties. The reference implementa-
tion1 of the SCION protocol is written in the Go programming language.

VerifiedSCION is a research project which aims to verify SCION from the
high-level protocol design all the way down to the implementation. The
focus is on verifying safety, functional correctness, and security of the imple-
mentation of the SCION routers.

In this project, we verified memory safety for a crucial part of the SCION
border router using Gobra in the context of the VerifiedSCION project. For
verification, we specified part of the SCION source code and used Gobra
to prove that the code adheres to the specification. During our work on
verification, we also identified some shortcomings of Gobra and implemented

1https://github.com/scionproto/scion

1

https://github.com/scionproto/scion

1. Introduction

three new features to decrease specification overhead and verification runtime.
The first feature introduces a new preserves keyword, which is used
to specify that an assertion is both a precondition and a postcondition.
The second feature, the outline keyword, allows a sequence of code to
automatically be outlined by Gobra. Finally, the third feature introduces a
new processing step that splits the produced Viper program into multiple
smaller ones.

In Sec. 2, we present some concepts and tools that are important for this thesis.
Sec. 3 introduces the relevant parts of the SCION codebase and describes
how we approached the verification process. Sec. 4 then presents the three
features we added to Gobra. In Sec. 5, we present three examples from our
work. Finally, Sec. 6 discusses our results and presents statistics.

2

Chapter 2

Preliminaries

2.1 SCION

SCION [4] is a new internet architecture that aims at overcoming the routing
problems of the BGP protocol, while increasing the resilience against DDoS
attacks. In today’s internet, each router decides how to forward packets
based on a table of IP prefixes it maintains. Therefore, the internet service
providers (ISPs), which control the prefix tables of their routers, have full
control over which route their clients’ data takes.

Unlike current solutions, SCION packets specify not only the intended
destination of the packet but the full path of the packet through the network.
A path consists of a list of hops that the packet has to traverse to get to the
destination. Every such hop field contained in the packet header corresponds
to an autonomous system (AS). Therefore, each client has full control over
what path the packets should take. The header also contains info fields,
which store metadata for each path segment, e.g. a timestamp indicating
when the path segment expires.

Additionally, since the sender is responsible for picking the paths for its
packets, there is no need for long inter-domain routing tables and complex
longest IP prefix matching. This means forwarding packets is more efficient.
The router simply has to look at the next hop in the path, which it finds in
the header of the packet, and send it there.

The SCION architecture can be separated into a control plane and a data
plane. The task of the control plane is to discover paths and to make them
available to end hosts, essentially providing end-to-end paths through the
network. The data plane uses these paths to forward packets to the desired
destination.

This project will focus on verifying parts of the implementation of the border
router, which implements the packet forwarding logic of the dataplane. In

3

2. Preliminaries

particular, the code that we verify reads an incoming packet, checks whether
the header is valid, and extracts the next hop field from the header.

2.2 The Gobra Ecosystem

Gobra [2] is a modular verifier for Go programs and includes support for Go’s
built-in concurrency primitives, most prominently, channels and goroutines,
but also mutexes and wait-groups. Gobra is a frontend for Viper and encodes
annotated Go code to the Viper intermediate language, which is then verified
by the Viper backend.

If verification terminates successfully, Gobra shows a corresponding message.
Otherwise, if Viper returns a verification error, Gobra translates it back to
the level of Go code, such that the user knows on what line a problem has
occurred.

Gobra’s annotation consists of preconditions, postconditions, and loop invari-
ants. Preconditions and postconditions must be written before the method
definition and make up the method’s contract. Loop invariants are added
before loop statements.

Listing 2.1 shows an example of a Go function with annotations. The pre-
condition specifies that tha parameter x needs to be greater or equal to zero
when the method is called. The postcondition guarantees that the returned
value is equal to 2 * x. For verification to succeed, we add two loop in-
variants. These specify that res stays smaller or equal than 2 * x and that
res is equal to 2 * k.

1 requires x >= 0
2 ensures result == 2 * x
3 func foo(x int) (result int) {
4 k := 0
5 res := 0
6 invariant res == 2 * k
7 invariant res <= 2 * x
8 for k < x {
9 res = res + 2

10 k = k + 1
11 }
12 return res
13 }

Listing 2.1: Example of Go code with annotations.

Gobra uses modular verification. This means that each method is verified
independently from other methods. Therefore, for each method, Gobra
assumes the preconditions and tries to prove that the postconditions hold
after execution of the method body. If the method calls other methods, Gobra
simply assumes that their contracts hold.

4

2.2. The Gobra Ecosystem

2.2.1 Permission-Based Verification

Permission-based verification is used to verify memory safety. If a method
tries to read or modify a memory location, it requires permission to that
location. There are two types of permissions, read permission and write
permission. Multiple methods can hold read permission to a memory location
at the same time, as long as no other method holds write permission. If a
method holds write permission, no other method can hold read or write
permission to that location.

Gobra offers fractional permissions. To specify write access to a memory
location one can use acc(x.f), which is shorthand for acc(x.f, 1/1).
To state read permission, any fraction that is less than one can be used,
e.g. acc(x.f, 1/10). Permission assertions are used in preconditions and
postconditions to state that a method requires permission to a given memory
location or that it returns permission to it.

The example in Listing 2.2 shows a function foo which takes a pointer to an
int as an argument. The preconditions, on Line 1 and Line 2, specify 1/3rd
permission to x and that the value of x is 3. The method first calls bar,
which is defined on Line 11. bar requires and returns 1/6th permission to
x. Therefore, on Line 4, foo passes 1/6th permission to bar and keeps the
other 1/6th. Since foo keeps a fraction of the permission, Gobra can verify
that the value is not changed by bar. Because of that, the assertion on Line 5
verifies. baz on the other hand, which is called on Line 6, requires 1/3rd
permission to x. Therefore, foo passes every permission to baz. Since foo

does not keep any permission to x, Gobra cannot verify that x is not changed
and the assertion on Line 7 fails to verify.

1 requires acc(x, 1/3)
2 requires *x == 3
3 func foo(x *int) {
4 bar(x)
5 assert *x == 3 // verifies
6 baz(x)
7 assert *x == 3 // fails
8 }

9 requires acc(x, 1/6)
10 ensures acc(x, 1/6)
11 func bar(x * int)

12 requires acc(x, 1/3)
13 ensures acc(x, 1/3)
14 func baz(x *int)

Listing 2.2: Example of fractional permissions.

2.2.2 Predicates

Predicates allow assertions to be parameterized and named. They can have
any number of parameters and can be recursive. In Listing 2.3, a predicate

5

2. Preliminaries

sliceAcc is defined which parameterizes access permission to all elements
in a slice of integers.
1 pred sliceAcc(slice []int) {
2 forall i int :: 0 <= i && i < len(slice) ==> acc(slice[i])
3 }

Listing 2.3: A predicate that asserts write permission to all elements in a slice.

As seen in Listing 2.4, predicates can also be used as preconditions and
postconditions. In Gobra, a predicate instance and its body are not the
same. To use the assertion that is contained in the predicate, it first has to
be unfolded. This replaces the predicate instance with the actual assertion.
Analogously, when a predicate is folded the assertion is replaced by an
instance of the predicate, which in our example means that the method
passes the permissions to the elements in the slice to the predicate, thereby
causing the assertion on Line 13 to fail.
1 requires sliceAcc(slice)
2 ensures sliceAcc(slice)
3 func foo(slice []int) {
4 // this assertion fails , predicate needs to be unfolded first
5 assert forall i int :: 0 <= i && i < len(slice) ==> acc(slice[i])

6 // to get permission to the slice elements we need to unfold
7 unfold sliceAcc(slice)

8 // now the assertion holds
9 assert forall i int :: 0 <= i && i < len(slice) ==> acc(slice[i])

10 // to satisfy the postcondition we must fold it again
11 fold sliceAcc(slice)

12 // now the assertion no longer holds
13 assert forall i int :: 0 <= i && i < len(slice) ==> acc(slice[i])
14 }

Listing 2.4: Example of a predicate being undolfed and folded.

2.3 Viper

Viper [3], which stands for Verification Infrastructure for Permission-based
Reasoning, is a language and collection of tools developed at ETH Zurich. The
Viper infrastructure provides a simple, sequential, object-based, imperative
programming language and two back-ends, one based on symbolic execution
and one based on verification condition generation.

Viper is used to verify partial correctness of program statements, which
means that verification guarantees that the properties specified at a program
state hold if that program state is reached. For example, postconditions of a
method are guaranteed to hold if a call to that method terminates.

A Viper program consists of five types of top-level declarations, which we
call members of said Viper program:

6

2.3. Viper

• Fields have a name and a type. Each object has all fields. A field
of an object can only be accessed if the method holds the required
permission.

• Methods have input and output parameters, preconditions, postcon-
ditions, and optionally a body. Methods can modify the program
state.

• Functions have input parameters, one return value, preconditions, and
postconditions. They can have a body containing a single expression,
which can read but not modify the program state.

• Predicates have input parameters and a body. They are typically used
to abstract over assertions.

• Domains have a name and a body containing a number of domain
functions followed by a number of domain axioms. They can contain
type parameters and are useful to introduce custom types.

7

Chapter 3

Methodology

3.1 Verification Goals

There are two kinds of properties that we have verified:

• Memory Safety, i.e., no data races, no illegal heap memory accesses, no
indices that are out of bounds when accessing an array

• Functional Specification, i.e., methods produce the desired result

The main focus was on verifying memory safety. In some cases, functional
specification is needed to allow verification of memory safety. For example, if
an index used to access an element in an array is computed during runtime,
functional specification is required that states that the calculated index is
always in bounds of the array.

In order to fix the scope of the project, we selected a set of methods to verify
and formulated a set of assumptions. Namely, we assumed that the SCION
crossover feature is not used and that the incoming packets are well-formed
and correctly parsed. In addition, we assumed that functionality provided by
third-party libraries is correctly implemented.

3.2 Codebase

The SCION codebase1 is structured into several packages and currently
depends on over 50 third-party libraries. We focused on the implementation
of the router, which takes on a crucial role in the dataplane of the SCION
architecture.

We worked on the scionPacketProcessor.process method which in-
vokes over ten other methods. These methods are responsible for parsing the

1https://github.com/scionproto/scion

9

https://github.com/scionproto/scion

3. Methodology

path of the packet, validating the packet length, validating different values in
the packet header, and modifying the header. In this thesis, we managed to
verify the first three methods called from process and their dependencies.

The first called method is scionPacketProcessor.parsePath. It is re-
sponsible for decoding the current hop field and info field from the header,
validating them, and constructing a packet with error information if a prob-
lem occurs. The second method, validatePktLen, checks if the packet pay-
load has the expected length. updateNonConsDirIngressSegID, which is
the third method called by process, updates the value of the info field and
stores it in the packet header.

Fig. 3.1 shows the call graph of the parsePath method. It directly calls four
methods. GetCurrentHopField and GetCurrentInfoField decode the
hop field and info field from the packet header. Then, validateHopExpiry

and validateIngressID use the decoded hop field and info field to vali-
date the timestamp and ingress ID of the packet.

The call graph contains all methods that we specified and verified. In
addition, we specified 22 stubs, which are method signatures annotated with
the corresponding specification but without the body, for methods in the
SCION codebase that were out of scope to verify.

The router implementation heavily relies on the gopackets library2, which
provides packet decoding functionality. In order to use the methods and data
types from the library, we specified 8 interfaces and 26 method stubs.

sPP.process

sPP.parsePath

Raw.GetCurrentHopField

Raw.GetHopField

HopField.DecodeFromBytes

Raw.GetCurrentInfoField

Raw.GetInfoField

InfoField.DecodeFromBytes

sPP.validateHopExpiry and sPP.validateIngressID

sPP.currentHopPointer sPP.packSCMP

Raw.SetInfoField

InfoField.SerializeTo

Raw.SetHopField

HopField.SerializeTo

scmpPacker.prepareSCMP

Figure 3.1: Call graph of scionPacketProcessor.process, where sPP stands for
scionPacketProcessor

3.3 Verification Process

The goal of the verification is to prove memory safety of the parsePath

method. We mostly focused on this task, as some issues with the verifier
2https://github.com/google/gopacket

10

https://github.com/google/gopacket

3.3. Verification Process

arose, e.g. lack of support for standard library methods and missing support
for global variables. One big problem was the performance of the verifier,
this slowed down work since it could take a long time for the verifier to
complete one verification run.

3.3.1 Bottom-Up Approach

We decided to work in a bottom-up manner because when verifying one
method, it makes sense to know the preconditions of the methods that are
called. Otherwise, many changes may have to be performed whenever the
specification of a called method is added or edited. In addition, a method
can only be considered verified when the contract of all called methods are
fixed and they all successfully verify themselves. We, therefore, consider it
most efficient to first verify all dependencies of a method before writing the
contract for it.

One disadvantage of the bottom-up approach is that, when verifying a
method, we might pick a postcondition that is too weak. This occurs if
the caller requires more guarantees after the function call than the verified
method returns in its postconditions. A simple example is a method re-
quiring permission to some memory location but not returning it in the
postconditions. Such a mistake is only discovered later when the caller is
verified.

Nonetheless, we started verifying the leave nodes in our dependency graph.
A central part of verifying memory safety is specifying which access permis-
sions every method requires to perform its actions. In most cases, methods
require read access to some of the arguments and write access to others. For
arguments of type array, methods usually require access to a subset or all
elements in that array. In those cases, access permissions can be specified
using quantified permission, as shown in Listing 3.1. The method has two
preconditions. The first one specifies write permission to a field. The second
one uses a forall quantifier to state that the method requires write permission
to elements in the array with an index greater or equal to 0 and less than the
length of the array. This means the method requires access to all elements in
the array. The two postconditions make sure that the permissions are given
back to the caller.

1 requires acc(&s.BaseEmbedded.PathMeta)
2 requires forall i int :: 0 <= i && i < len(b) ==> acc(&b[i])
3 ensures acc(&s.BaseEmbedded.PathMeta)
4 ensures forall i int :: 0 <= i && i < len(b) ==> acc(&b[i])
5 func (s *Raw) SerializeTo(b []byte) error

Listing 3.1: Example of quantified permission

11

3. Methodology

3.3.2 Handling Predicates

Predicates allow an assertion to be named and parameterized. This is a
useful technique to (1) group multiple assertions, (2) decrease the number of
preconditions and postconditions by replacing multiple assertions with one
predicate, (3) formulate invariants that need to hold at multiple locations,
and (4) decrease the verification overhead.

Even though we used predicates to handle invariants, they were most help-
ful in decreasing verification overhead and therefore improving verification
runtime. Assertions that rely on quantified permissions, e.g. to formulate
access permissions to all structs in an array, can significantly increase the ver-
ification burden. Especially in cases where quantified assertions are needed
by a method only because a called method requires them, we observed that
abstracting the quantified permissions via a predicate often lead to shorter
verification times. We believe that this is because the verifier then performs
fewer quantifier instantiations during verification. In that situation, we sim-
ply put the assertion into its own predicate and use the predicate instance
instead. This gives us much more control over when the verifier is supposed
to consider the actual assertion and when it is just supposed to pass the
predicate around.

Predicates are also heavily used when it comes to specifying methods of
an interface. In that case, we introduced predicates to abstract over the
permissions required for the methods of that interface. Then, for each
structure implementing that interface, we instantiated the predicate with the
concrete assertions required by the method implementations.

3.3.3 Outlining

Large and complex methods can quickly cause long verification times. Espe-
cially if multiple predicates need to be unfolded or folded, there are many
loops, or there are many array accesses. This did happen a few times during
our work because the code was not written with verification in mind. To
decrease complexity and runtime in such cases, we split up the method body
into multiple methods, essentially splitting up the complex problem into
smaller units, without changing the semantics of the program. By specifying
preconditions and postconditions for each smaller unit we can manage the
scope of complex assertions and avoid accumulation of assertions that are no
longer needed, thereby decreasing the overall verification burden.

We used outlining when verifying the scmpPacker.prepareSCMP method,
splitting it up into a total of seven methods, each with its preconditions
and postconditions. This made both complexity and verification time more
managable.

12

3.4. Library Specification

3.4 Library Specification

The router implementation heavily relies on the gopacket library3. To verify
the code that makes use of this library, we added specification to all interfaces
and methods that are used by the border router implementation. However,
verifying the actual implementation of the library is out of the scope of the
project, and as such we assume it is correct.

For example, Listing 3.2 shows the SerializableLayer interface defined
in the gopacket library which we added to gopacket/writer.gobra.
On Line 2, we declare an abstract predicate Mem. This predicate must be
defined by all structures that implement the interface and should assert
access to all memory locations it uses.

The interface contains two methods. From looking at implementations of the
LayerType function, we know that it is pure and returns a global constant,
therefore, the method does not require any memory permissions.

For the SerializeTo method, we do not know the exact implementations,
so we added over-approximated specification. This is why, on Line 3 and
Line 5, the method requires and returns full access to all memory locations
specified in the Mem predicate. Furthermore, the method takes an argument
b of type SerializeBuffer, which is also an interface defined by the
library with a Mem predicate. On Line 4 and Line 6 we require and return
permission to the memory of the SerializeBuffer.

The second argument, which is of type SerializeOptions, is a structure
defined in the library that contains two boolean fields. Both fields are on the
stack and not on the heap. Therefore we can access them without specifying
memory permissions.

1 type SerializableLayer interface {
2 pred Mem()

3 requires Mem()
4 requires b.Mem()
5 ensures Mem()
6 ensures b.Mem()
7 SerializeTo(b SerializeBuffer , opts SerializeOptions) error

8 pure LayerType () LayerType
9 }

Listing 3.2: SerializableLayer interface defined in writer.gobra in the gopackets library

3https://github.com/google/gopacket

13

https://github.com/google/gopacket

Chapter 4

Added Features

During our work on VerifiedSCION, we used Gobra to verify complicated
and large pieces of code. As expected, we faced several minor and a few
major issues. For example, we noticed that many methods have assertions
that are used both as a precondition and as a postcondition, which lead
us to introduce a new keyword to decrease specification overhead in cases
where an assertion is supposed to hold before and after a method execution
(Sec. 4.1).

One major problem was performance. To decrease verification runtime, we
manually moved some pieces of code into new methods with their own
specification, which we call outlining. To simplify outlining, we decided to
introduce another keyword that can be used to tell Gobra to move a piece of
code with a given contract to a new method (Sec. 4.2).

Additionally, we realised that the Viper programs created by Gobra can be
very long. We added a feature that creates multiple smaller Viper programs
for verification rather than one large program. These smaller programs can
then be verified in parallel (Sec. 4.3).

4.1 Specification Keywords

Memory safety is a desired property for all programs. In Gobra, memory
safety must be guaranteed before functional specification can be added.
Verifying memory safety mostly consists of arguing about permissions to
heap memory locations to prove the absence of data races, illegal heap
memory accesses, array accesses that are out of bounds, etc. Most methods in
the data plane require access to some memory locations, use them in the body,
and finally give the permissions back to the caller. This is a common pattern,
methods that modify the program state require access to heap locations
and return the permissions after execution for further use. Therefore, most

15

4. Added Features

method contracts contain assertions specifying the same access permissions
both as preconditions and as postconditions. This results in many duplicate
lines and copy-pasting of assertions.

To avoid this, we introduced a new keyword that can be used in method spec-
ification to state that an assertion is both a precondition and a postcondition.
The new keyword decreases specification overhead. It allows one assertion
to be used to form a contract rather than a precondition and an identical
postcondition, increasing readability and maintainability.

The design is straightforward: Gobra treats the new preserves keyword
as syntactic sugar for a precondition and a postcondition with the same
assertion, translating it into a precondition and a postcondition in the Viper
program.

For methods that contain loops, most of those assertions also have to
be included as invariants. We also considered a design that includes a
preserves_everywhere keyword that extends the preserves keyword
by also including the assertions as loop invariants for all loops in the method
body, similar to context_everywhere in VerCors [5].

However, this introduces a tricky problem for nested loops if the assertion
states read permission to a memory location. Since preserves_everywhere

adds the same invariant to the inner loop as the outer loop, the outer loop has
to give all permission away to the inner loop and can therefore not guarantee
that the memory location was not modified. Therefore, we decided against
this design.

A future design could allow the user to give names to assertions in the
method specification. Then, the name of the assertion can be used in loop
invariants to decrease the permission amount. This way, for each nested loop
the permission amount can be modified without copy-pasting the assertion
multiple times.

4.2 Outline

Large and complex methods can be tricky to verify. It can take a long time to
verify a method which contains multiple loops, calls several other methods,
uses many heap memory accesses, or requires folding and unfolding of
predicates. In such a case, the verifier has to keep track of many memory
locations, permissions, and assertions to create many complex reasoning
steps for the verification to succeed.

As discussed in Sec. ??, it can help to manually split these methods up
into smaller ones. This can reduce the number of assertions and permis-
sions the verifier has to keep track of, since each smaller method is verified
independently.

16

4.2. Outline

The problem is that manual outlining requires the code to be rewritten as
part of the verification process. This can introduce errors by accidentally
changing the semantics of the program, which we want to avoid.

To simplify outlining of code, we introduce a new keyword that can be
used to tell Gobra to automatically outline a sequence of statements into
a function with a given contract. This allows code to be outlined without
manual modification of the codebase, which eliminates the risk of accidental
changes to the semantics of the program.

4.2.1 Design

We introduce a new outline keyword which is followed by a sequence
of statements in parentheses. Gobra will move these statements into a
new method. Like all methods, the created method needs a contract that
specifies the required preconditions and the provided postconditions. The
preconditions and postconditions for the new method can be written before
the outline keyword.

1 func main() {
2 x := 1
3 y := 4

4 requires y == 4
5 ensures y == 7
6 outline (
7 y += 3
8 z := x * 2
9)

10 sum := x + y + z
11 }
12

Listing 4.1: Example usage of the
outline feature

1 func main() {
2 x := 1
3 y := 4
4 y, z = outlined(x, y)
5 sum := x + y + z
6 }

7 requires y == 4
8 ensures y == 7
9 func outlined(x, y int)(int , int) {

10 y += 3
11 z := x * 2
12 return y, z
13 }
14

Listing 4.2: Example after Gobra-to-Gobra transfor-
mation

This allows outlining of code without manually changing the program. Gobra
automatically infers the arguments and return values of the new method
from the statements in the outlined block. The current implementation has
some limitations:

• Exceptional controlflow, namely return, break, continue, and goto

statements in the outlined code are not supported

• The specification cannot contain old expressions

• Usage of old expressions in the outlined body is not supported

• Usage of the & operator to take the address of a variable is not allowed

The first limitation exists because a return statement in outlined code
causes the created method to return rather than the method that contains

17

4. Added Features

the outline keyword, which is wrong behaviour. Additionally, Gobra infers
which values to return from the outlined code and inserts return statements
to do so. If the code was allowed to include return statements they would
interfere with the ones added by Gobra.

A future implementation could support return statements by implementing
a mechanism to inform the original method that the outlined code returned,
e.g. by adding an additional return value that states whether the encountered
return statement was added by Gobra or was already included in the
original code.

The second limitation stems from the fact that the old expression causes heap
dependent expressions to be evaluated in the initial state of the corresponding
method. Variables are not heap-dependent, therefore the old expression has
no effect on them. The third limitation is caused by the context difference of
the method containing the outline block and the created method. An old

expression in the outline block that should be evaluated in a state before the
outline block does not work, because once the outlined code is moved to a
method, the referenced context no longer exists.

Future designs could include a new keyword that acts like the old keyword
on variables rather than heap-dependent expressions.

The fourth limitation is due to the way the feature is implemented. Currently,
the variables defined outside the outlined code block and used inside are
passed to the created method as arguments. These arguments are treated
as exclusive by Gobra, meaning that it is not allowed to take the address of
these values. This could also be supported by a future design, e.g. by always
passing the pointer to functions and dereferencing whenever the value is
used.

4.2.2 Encoding

The outline feature was implemented as a Gobra-to-Gobra-transformation.
This means that the function is created before the code is translated into
the Viper intermediate language. In the current design, the user does not
state what parameters the outlined function takes or what it returns. That
information is inferred from the body of the outlined function.

Listing 4.1 shows an example usage of the outline keyword. Listing 4.2
presents the same code after the Gobra-to-Gobra translation. The statements
in the outline block are moved to a new method. The specification written
before the outline keyword is moved to the new method. Gobra automatically
identifies which variables must be passed to the function and which values
must be returned. In Listing 4.2 on Line 4, the call to the new method is
inserted by Gobra. The variables x and y are passed as arguments, y and

18

4.3. Chopping

z are returned. On Line 12 is the return statement, which is also inserted by
Gobra.

To identify all variables that need to be passed to the outlined function as
arguments, we first scan through the outlined code and find all variable
usages. Of those variables, we filter out the variables that have been defined
inside the outlined block. All variables defined before and used in the
outlined code must be passed to the method as arguments. For example, in
Listing 4.1, x and y must be passed to the function, because they are defined
outside the outline block on Line 2 and Line 3, and used in the outlined code
on Line 8 and Line 7, respectively.

Deciding what values to return requires more code analysis. All variables
defined in the outlined code and used outside of the outlined block have to be
returned. To find these, we search for statements that declare new variables
in the outlined code, e.g. z in Listing 4.1 has to be returned, because it is
defined in the outline block on Line 8. However, all variables that are defined
before and modified in the outlined sequence must be returned as well. In
our example in Listing 4.1, y is returned because it is modified in the outline
block, on Line 7. We therefore identify for each variable that is passed as an
argument if it is ever modified in the outlined code, and if so, return it.

Once we know all variables that need to be passed to the function and all
variables that need to be returned, we can create the new method, add the
specification provided before the outline keyword, move the code into the
method and add a call to the method where the outline keyword was. Gobra
does all of that before the code gets translated to the Viper intermediate
language.

4.3 Chopping

Gobra translates Go code and specification to a program in the Viper inter-
mediate language, which is then verified by the Viper infrastructure. Such
a Viper program can be big, resulting in long verification times. For exam-
ple, when verifying dataplane.gobra, which contains about 600 lines, the
resulting Viper program is over 8000 lines long.

The Viper program contains various kinds of members, including methods,
functions, predicates, fields, and domains. Naturally, the program contains
many members, e.g. domains, that are used only by a subset of other
members. Therefore, we expect that the verifier often has to keep track of
assertions, permissions, etc, that are only sporadically used. We experimented
to identify whether it is beneficial to output not one, but multiple Viper
programs that each only contain the members that are used.

19

4. Added Features

This means that for a simple Go program that contains a few methods and a
main function that uses all the other methods, Gobra still creates one single
Viper program, because the main function is the only one that is not called
by any other function.

However, when verifying a package that defines methods that can be used
by a client, Gobra outputs a Viper program for each method that is called
from outside the package.

Another advantage of creating multiple Viper programs, instead of one, is
that verification of the smaller programs can happen in parallel, which we
expect to decrease verification time.

4.3.1 Algorithm

The process of splitting up one Viper program into multiple ones consists of
four steps: (1) finding all dependencies in the Viper program and constructing
the corresponding dependency graph, (2) identifying the strongly connected
components in said graph and the dependencies between them, (3) finding
all root components with no incoming edges and all components it depends
on, and (4) creating a Viper program for each such root component and its
dependencies.

To construct the dependency graph for the Viper program we analyze the
whole program and identify all members. For each such member, we add
a vertex to the dependency graph and store the relationship between the
vertex and the member in a map. Once the graph contains a vertex for each
member, we find the dependencies between them. See Listing 4.3 for the
corresponding pseudocode.

For each method or function, we check if the specification contains calls to
functions, references to predicates, or uses domain types. We also search
for domains used in argument types and return types. Furthermore, we
scan the body for calls to other methods or functions, and identify references
to predicates. Similarly, we check for each predicate which functions and
domains it depends on, for each field, if the type is a domain, and for each
domain, if it depends on other domains. All these dependencies are added
to the dependency graph by adding an edge between the corresponding
vertices.

20

4.3. Chopping

def create_dependency_graph(viper_program):
dependency_graph = Graph ()
vertex_member_map = Map()
// add a vertex for each member in the program
for (member in viper_program.all_members):

// create a vertex
vertex = new Vertex(member.name)
// store the corresponding member in a map
vertex_member_map.add(vertex , member)
// add it to the graph
dependency_graph.add_vertex(vertex)

// add an edge for each dependency in the program
for (member in viper_program.members):

for (usage in find_usages(member)):
dependency_graph.add_edge(member.name , usage.name)

return dependency_graph , vertex_member_map

Listing 4.3: Creation of the dependency graph.

At this point, the dependency graph can contain many cycles. All vertices
that appear in a cycle depend on each other and should therefore end up in
the same Viper program. Such subgraphs where all nodes can reach each
other are called strongly connected components.

Therefore, we can apply Tarjan’s strongly connected component algorithm [6]
to find all strongly connected components, as seen in Listing 4.4. The algo-
rithm then outputs a directed acyclic graph in which the vertices represent
strongly connected components, which contain one or more vertices from the
initial dependency graph, and the edges represent the dependencies between
the components.

def find_strongly_connected_components(dependency_graph):
// run tarjan 's algorithm to get a directed acyclic graph
// containing all strongly connected components
// and the dependencies between them
sccDAG = tarjan_scc_algorithm(dependency_graph)
return sccDAG

Listing 4.4: Usage of Tarjan’s algorithm to obtain a directed acyclic graph of stronly connected
components.

We then find all components that have no incoming edges in the acyclic graph,
as shown in Listing 4.5. Components with no incoming edges contain the
members that are not used by any other member from a different component.
These are the root components for which we generate one Viper program
each.

def find_root_components(sccDAG):
roots = List()
// find all components with no incoming edges
for (component in sccDAG):

if (indegree(component) == 0):
roots.add(component)

return roots

Listing 4.5: Identification of root components.

Once the root components are known, we have to find the dependencies for

21

4. Added Features

each such component. This means that for each root, we must find all other
components in the acyclic graph that it depends on. We use depth-first search
starting from each of the roots to find all components that are reachable from
it and therefore are dependencies of it. This leaves us with an array of root
components together with their dependencies, which can be seen in Listing
4.6

def find_root_dependencies(sccDAG , roots):
subtrees = List()
// for each root , run depth first search
// to find all reachable components
for (root in roots):

dependencies = find_reachable_DFS(root , sccDAG)
// note that root is also contained in dependencies
subtrees.add(dependencies)

return subtrees

Listing 4.6: Identification of dependencies of each root component.

The last step is then to translate these roots and their dependencies into Viper
programs, as in Listing 4.7. We iterate over the root components and the
components it depends on to find all vertices of the initial dependency graph
that need to be translated into Viper. Once all vertices are known, we use
the map from the first step to look up the members that correspond to these
vertices. Finally, we combine all these members into a Viper program.

def translate_to_Viper(subtrees , vertex_member_map):
viper_programs = List()
// iterate over all roots with their dependencies
for (subtree in subtrees):

viper_program = ViperProgram ()
// iterate over all components in that subtree
for (component in subtree):

// iterate over all vertices in that component
for (vertex in component):

// translate vertex back to member
member = vertex_member_map.lookup(vertex)
viper_program.add_member(member)

viper_programs.add(viper_program)
return viper_programs

Listing 4.7: Translation of subtrees to Viper programs.

When all four steps are implemented they can be called one after the other
to complete the chopping algorithm, as shown in Listing 4.8

def chopper(viper_program):
// dg stands for dependency_graph
// vmm stands for vertex_member_map
dg, vmm = create_dependency_graph(viper_program)
sccDAG = find_strongly_connected_components(dg)
roots = find_root_components(sccDAG)
subtrees = find_root_dependencies(sccDAG , roots)
programs = translate_to_Viper(subtrees , vmm)
return programs

Listing 4.8: Full chopping algorithm.

22

4.3. Chopping

4.3.2 Evaluation

One major goal of the chopping feature is to decrease verification time. In
theory, since the different Viper programs that are created can be verified
in parallel, verification runtime should significantly decrease with the new
chopping feature. Unfortunately, after finishing our implementation, we
realised that Silicon, the backend verifier that Gobra uses, does not support
parallel execution. Therefore, we are forced to verify the Viper programs
sequentially, which can introduce more overhead than the smaller program
sizes can compensate. Until the implementation of Silicon is updated to
support parallel execution, there is nothing we can do to reach the expected
runtime decrease.

Table 4.1 shows the results of our benchmark tests. All tests were executed
on a warmed-up JVM on a Microsoft Surface Pro 4 with a 2.2 GHz 4-Core
Intel Core i7 CPU and 16 GB of RAM, running Windows 10 and OpenJDK
11. The test cases include well-known algorithms and datastructures. We
also include test cases which contain specification errors and implementation
errors. Each test case was executed five times, shown is the mean execution
time in miliseconds. As expected, the version with the new chopping feature
is still slower in some cases due to the lack of parallelism.

To get a rough estimate of how fast Gobra would be if parallel execution was
supported, we verified dataplane.gobra, as specified in commit b7621631,
and collected the time spent on each Viper program to verify. The total
time required to verify dataplane.gobra with the new feature was around
25 minutes, whereas verification without the chopping feature takes five
minutes and thirty seconds. However, the longest verification time spent on
a single Viper program created by the chopper is 94 seconds. Therefore, with
a sufficient amount of cores, verification of dataplane.gobra takes only
94 seconds, instead of five and a half minutes, when verification of all Viper
programs generated by the chopper is done in parallel.

1https://github.com/jcp19/VerifiedSCION/commit/
b76216363fa5158d383bde218bad16e6a8c78ee5

23

https://github.com/jcp19/VerifiedSCION/commit/b76216363fa5158d383bde218bad16e6a8c78ee5
https://github.com/jcp19/VerifiedSCION/commit/b76216363fa5158d383bde218bad16e6a8c78ee5

4. Added Features

Testcase Chopped Single Difference
binary search tree 15942 21255 -5313
dense sparse matrix 23949 23075 874
dutchflag 3315 3049 266
heapsort 23424 27346 -3922
list of interfaces 3635 2246 1389
parallel search replace 85181 109221 -24040
parallel sum 94227 140061 -45834
relaxed prefix 12539 13182 -643
zune 2612 1655 957
impl errors/binary search tree 17421 15037 2384
impl errors/dense sparse matrix 22946 16845 6101
impl errors/dutchflag 3211 2224 987
impl errors/heapsort 24930 28985 -4055
impl errors/list of interfaces 3704 1598 2106
impl errors/parallel search replace 73821 69735 4086
impl errors/parallel sum 72640 74295 -1655
impl errors/relaxed prefix 4731 4314 417
impl errors/zune 2151 1286 865
spec errors/binary search tree 15720 17298 -1578
spec errors/dense sparse matrix 25985 20876 5109
spec errors/dutchflag 2583 1886 697
spec errors/heapsort 24469 29099 -4630
spec errors/list of interfaces 3584 1879 1705
spec errors/parallel search replace 69275 95064 -25789
spec errors/parallel sum 86214 104541 -18327
spec errors/relaxed prefix 9352 10290 -938
spec errors/zune 2612 1554 1058

Table 4.1: Results of the benchmark tests. Each testcase was executed five times both with and
without the new feature. Shown are the mean execution times in miliseconds.

24

Chapter 5

Examples

In this section, we show and explain a few examples of specification that we
encountered during our work. The first example shows specification of a
method with postconditions that depend on the returned error value. In the
second example, we show a method that only verifies with an assertion that
we added. Finally, the third example shows an implementation proof.

5.1 Error-Dependent Guarantees

Listing 5.1 shows a method stub ToDecoded that is responsible for convert-
ing a Raw structure to a Decoded structure. We only specified the stub
without verifying the body. Nonetheless, we know from the implementation
that the method requires access to the slice of bytes stored in s.Raw, which
we specify on Line 1 and Line 2. The interesting parts of this example are the
two postconditions on Line 3 and Line 4, which guarantee access to the re-
turned decoded value and access to its Mem predicate, if the returned error
value is nil. This is a common pattern. Often when an error is returned,
the method has not fulfilled its purpose, which in this case means that the
decoded structure might not have been created.
1 preserves acc(&s.Raw)
2 preserves bytesAcc(s.Raw)
3 ensures err == nil ==> acc(decoded)
4 ensures err == nil ==> decoded.Mem()
5 func (s *Raw) ToDecoded () (decoded *Decoded , err error)

Listing 5.1: Method stub with guarantees depending on the error value.

5.2 Required Proof Aannotation

Listing 5.2 shows the relevant parts of the GetInfoField method, which
decodes the info field specified by the index passed as an argument. On
Line 8, idx is used to compute the index of the byte slice where the info field

25

5. Examples

data starts. Then, on Line 10, a subslice is created with the bytes needed for
decoding on Line 14. To guarantee that the calculated indices are in bounds
of the slice, we added functional specification on Line 2 and Line 3. Line 4
specifies permission to all elements in the s.Raw byte slice.

info.DecodeFromBytes, called on Line 14, requires access to all elements
in the slice passed as an argument, subslice in this case. Interestingly,
without the assertion on Lines 11-13, the call does not verify, because Gobra
cannot prove permission to all elements in the subslice slice.

We added the assertion on Lines 11-13 to help Gobra verify that all elements
in subslice are also contained in s.Raw, to which access is guaranteed
by unfolding bytesAcc(s.Raw), and that the method has permissions to
them. With that assertion the call to info.DecodeFromBytes verifies.

1 preserves acc(s)
2 preserves idx >= 0
3 preserves (MetaLen + idx*path.InfoLen)+path.InfoLen < len(s.Raw)
4 preserves bytesAcc(s.Raw)
5 ensures err == nil ==> infoField != nil && acc(infoField)
6 func (s *Raw) GetInfoField(idx int) (inf *InfoField , err error) {
7 unfold bytesAcc(s.Raw)
8 infOffset := MetaLen + idx*path.InfoLen
9 info := &path.InfoField {}

10 subslice := (s.Raw)[infOffset : infOffset+path.InfoLen]
11 assert forall i int :: 0 <= i && i <= len(subslice) ==>
12 &(s.Raw)[i + infOffset] == &subslice[i]
13 && acc(& subslice[i])
14 if err := info.DecodeFromBytes(subslice); err != nil {
15 fold bytesAcc(s.Raw)
16 return nil , err
17 }
18 fold bytesAcc(s.Raw)
19 return info , nil
20 }

Listing 5.2: Method that only verifies with an added assertion.

5.3 Implementation Proof

Listing 5.3 contain an implementation proof used by Gobra to verify that
Raw implements the Path interface.

Lines 1-4 contains the definition of the Raw structure, which contains another
structure of type Base and a slice of bytes. The Path interface is shown
on Lines 5-13. We added an abstract Mem predicate and over-approximated
specification to all methods.

Lines 14-18 define the Mem predicate for the Raw structure. It asserts permis-
sion to both fields and all elements in the bytes slice.

The implementation proof is shown on Lines 19-30. For Raw to implement
Path, all preconditions of the interface methods must imply the preconditions
of the implementations, and the postconditions of the implementations must

26

5.3. Implementation Proof

imply the postconditions of the interface methods. This is why on Line 21 we
unfold the Mem predicate required by the specification on Line 7, which then
implies the preconditions of the SerializeTo implementation on Line 33.
Then, by folding the Mem predicate on Line 23, the postconditions of the
implementation imply the postconditions of the interface definition on Line 9.
Therefore, the SerializeTo method of the Raw structure is a behavioural
subtype of the SerializeTo method of the Path interface.

The reasoning for the DecodeFromBytes method is analogous. Therefore,
Gobra can prove that Raw implements the Path interface.

1 type Raw struct {
2 BaseEmbedded Base
3 Raw []byte
4 }

5 type Path interface {
6 pred Mem()

7 preserves Mem()
8 preserves forall i int :: 0 <= i && i < len(b) ==> acc(&b[i])
9 SerializeTo(b []byte) error

10 preserves Mem()
11 preserves forall i int :: 0 <= i && i < len(b) ==> acc(&b[i])
12 DecodeFromBytes(b []byte) error
13 }

14 pred (r *Raw) Mem() {
15 acc(&r.Raw) &&
16 acc(&r.BaseEmbedded) &&
17 bytesAcc(r.Raw)
18 }

19 (*Raw) implements slayers.Path {

20 (r *Raw) SerializeTo(b []byte) (err error) {
21 unfold r.Mem()
22 err = r.SerializeTo(b)
23 fold r.Mem()
24 }

25 (r *Raw) DecodeFromBytes(b []byte) (err error) {
26 unfold r.Mem()
27 err = r.DecodeFromBytes(b)
28 fold r.Mem()
29 }
30 }

31 preserves acc(&s.BaseEmbedded.PathMeta)
32 preserves forall i int :: 0 <= i && i < len(b) ==> acc(&b[i])
33 func (s *Raw) SerializeTo(b []byte) error

34 preserves acc(&s.Raw)
35 preserves acc(&s.BaseEmbedded)
36 preserves bytesAcc(s.Raw)
37 preserves forall i int :: 0 <= i && i < len(data) ==> acc(&data[i])
38 func (s *Raw) DecodeFromBytes(data []byte) error

Listing 5.3: Interesting part of the implementation proof for Raw and Path.

27

Chapter 6

Results

6.1 Verified Properties

During our work verifying the implementation of the SCION border router,
we focused on verifying memory safety for the process method of the
scionPacketProcessor. This requires all methods directly or indirectly
called by the parsePath method to also be memory safe. Therefore, we
started proving memory safety for methods at the bottom of the call graph
and worked our way upwards. The router implementation also depends on
methods in other packages of the SCION codebase. We added specifications
without verifying the body for these methods, because they are not in the
scope of this thesis. This allowed us to verify all methods in a bottom-up
manner and finally prove memory safety for the parsePath method.

Two of the methods indirectly called by parsePath are responsible for
extracting the current hop field and the current info field from the header
of a SCION packet. The hop field and info field are contained in the header
of the packet in a slice of bytes. To decode these values, these two methods
calculate where the relevant data is encoded in the slice. Computation of
these indices happens during runtime. Therefore, to verify memory safety we
had to add functional specification to guarantee that these calculated indices
are within the bounds of the slice.

The GetInfoField method shown in Listing 6.1 is one such method. The
index is calculated on Line 8 and used on Line 10 to access the slice. On
Lines 1-2, permissions to the slice of bytes and all elements in it are as-
serted as preconditions. These permissions are returned to the caller as
postconditions on Lines 5-6. On Line 10, calculated indices are used to create
a subslice. For this line to be memory safe, the lower index infOffset,
which is calculated on Line 8 where both MetaLen and path.InfoLen are
positive integer constants, must be greater or equal to zero. This is satisfied
if the parameter idx is greater or equal to zero. Therefore, we add the

29

6. Results

precondition on Line 3 to guarantee this. Additionally, the upper index
infOffset+path.InfoLen must be less than the length of the slice. To
enforce this, we add the precondition on Line 4.

1 requires acc(&s.Raw)
2 requires forall i int :: 0 <= i && i < len(s.Raw) ==> acc(&(s.Raw)[i])
3 requires idx >= 0
4 requires MetaLen + idx*path.InfoLen+path.InfoLen < len(s.Raw)
5 ensures acc(&s.Raw)
6 ensures forall i int :: 0 <= i && i < len(s.Raw) ==> acc (&(s.Raw)[i])
7 func(s *Raw)GetInfoField(idx int) (infoField *InfoField , err error)
8 infOffset := MetaLen + idx*path.InfoLen
9 info := &InfoField {}

10 subslice := (s.Raw)[infOffset : infOffset+path.InfoLen]
11 if err := info.DecodeFromBytes(subslice); err != nil {
12 return nil , err
13 }
14 return info , nil
15 }

Listing 6.1: GetInfoField method with functional specification for index calculation.

6.2 Statistics

In total, we were able to successfully specify and verify memory safety for 27
methods, including the parsePath method. Furthermore, we specified 22
methods in different packages of the SCION project which get called by the
data plane implementation but are out of scope to verify for this thesis. The
router implementation also depends on the gopacket library1, for which
we had to add and specify eight interfaces and 26 method stubs.

Table 6.1 shows the number of methods verified, the number of method stubs
specified, and the number of lines of specification added to each file.

6.3 Gobra

We used Gobra to verify memory safety of the parsePath method. The
parsePath method plays an important role in the implementation of the
SCION border router. It is the first method called from the process method,
responsible for processing every scion packet that reaches the border router.
Both these methods are implemented in dataplane.gobra. Therefore, we
spent most of our time verifying the code in that file.

One major challenge during our work was verification performance. A few
times when we started to verify a new method, Gobra did not terminate
within two hours. We found that using predicates instead of quantified per-
mission assertions and outlining for large methods are two helpful techniques
to decrease verification runtime.

1https://github.com/google/gopacket

30

https://github.com/google/gopacket

6.3. Gobra

File VM SS LoS
gopacket/base.gobra 0 4 20
gopacket/decoded.gobra 0 8 31
gopacket/layers/base.gobra 0 2 12
gopacket/layertype.gobra 0 2 6
gopacket/parser.gobra 0 2 14
gopacket/writer.gobra 0 8 22
lib/slayers/path/hopfield.gobra 2 0 10
lib/slayers/path/infofield.gobra 2 0 10
lib/slayers/path/scion/base.gobra 0 7 34
lib/slayers/path/scion/decoded.gobra 1 3 33
lib/slayers/path/scion/raw.gobra 7 4 129
lib/slayers/scion.gobra 7 7 106
lib/slayers/scmp.gobra 0 1 11
lib/slayers/scmp msg.gobra 0 0 6
pkg/router/dataplane.gobra 8 0 348
Total 27 48 792

Table 6.1: Overview of the number of verified methods (VM), number of specified method stubs
(SS), and number of lines of specification (LoS) per file.

In this section, we show how we used predicates and outlining to verify
dataplane.gobra. By using these two techniques, verification time for
dataplane.gobra, as specified in commit 83370182, was five and a half
minutes. We show the effect of each technique by an example and by
observing how verification time increases when the technique is not applied.

The first technique was using predicate instances instead of quantified per-
mission assertions. For example, on line 1345 of dataplane.gobra, we use
a predicate scion.bytesAcc, which can be seen in Listing 6.2, to state that
the updateSCIONLayer method requires access to all elements in a slice of
bytes. The predicate simply contains a forall quantifier specifying permission
to all elements. If we replace the predicate instance with the actual assertion,
verification no longer completes within two hours.

1 pred bytesAcc(data []byte) {
2 forall i int :: 0 <= i && i < len(data) ==> acc(&data[i])
3 }

Listing 6.2: The predicate used to encapsulate quantified permission assertions.

2https://github.com/jcp19/VerifiedSCION/commit/
8337018da441048f9bd64a94e745bde86ec76b14

31

https://github.com/jcp19/VerifiedSCION/commit/8337018da441048f9bd64a94e745bde86ec76b14
https://github.com/jcp19/VerifiedSCION/commit/8337018da441048f9bd64a94e745bde86ec76b14

6. Results

We used the second technique when verifying the prepareSCMP method.
The prepareSCMP method is over 70 lines long, calls more than 14 other
methods, and requires unfolding and folding of two predicates. Before we
applied outlining, verification of this method did not terminate within two
hours. Since we did not know what part exactly caused the verification to
take this long, we outlined seven blocks of code into their own methods,
which we specified and verified in isolation.

However, even though outlining seemed to work in the beginning, we are still
facing issues with the prepareSCMPHelper5 method. We can verify the
method and its contract if we remove the call to it from the prepareSCMP

method body. Verification also succeeds if the call to prepareSCMPHelper5

is added back and the body of it is commented out, without changing
the specification. However, if both, the body of the prepareSCMPHelper5

method and the call to it, are left in the code, verification no longer terminates
within 2 hours. Unfortunately, we have no explanation for this odd behaviour.

Even though we managed to keep verification time low by using predicates
and outlining, we still encountered a few statements that cause the verification
to not terminate within two hours. Table 6.2 contains all such statements
and where they occur. For these statements, neither using predicates nor
outlining helped to keep verification runtime within two hours.

Statement causing long verification time Line in dataplane.gobra
quote := make([]byte, quoteLen) 859
var scionLayer@ slayers.SCION 896
decoded := make([]gopacket.LayerType, 5) 909

Table 6.2: Statements that cause verification to not terminate within two hours.

32

Bibliography

[1] Google LLC. Go programming language. [Online]. Available: https:
//golang.org/

[2] ETH Zürich. Gobra. [Online]. Available: https://www.pm.inf.ethz.ch/
research/gobra.html

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A ver-
ification infrastructure for permission-based reasoning. [Online].
Available: http://pm.inf.ethz.ch/publications/getpdf.php?bibname=
Own&id=MuellerSchwerhoffSummers16.pdf

[4] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: A Secure
Internet Architecture. Springer International Publishing AG, 2017.

[5] University Of Twente. The vercors verifier. [Online]. Available:
https://vercors.ewi.utwente.nl/wiki#introduction

[6] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM JOUR-
NAL ON COMPUTING, vol. 1, no. 2, 1972.

33

https://golang.org/
https://golang.org/
https://www.pm.inf.ethz.ch/research/gobra.html
https://www.pm.inf.ethz.ch/research/gobra.html
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf
https://vercors.ewi.utwente.nl/wiki#introduction

	Contents
	Introduction
	Preliminaries
	SCION
	The Gobra Ecosystem
	Permission-Based Verification
	Predicates

	Viper

	Methodology
	Verification Goals
	Codebase
	Verification Process
	Bottom-Up Approach
	Handling Predicates
	Outlining

	Library Specification

	Added Features
	Specification Keywords
	Outline
	Design
	Encoding

	Chopping
	Algorithm
	Evaluation

	Examples
	Error-Dependent Guarantees
	Required Proof Aannotation
	Implementation Proof

	Results
	Verified Properties
	Statistics
	Gobra

	Bibliography

