
Verification Of Practical Go Programs
Bachelor Thesis Project Description

Luca Halm
Supervised by Prof. Dr. Peter Müller, Felix Wolf, João C. Pereira

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction

Go [1] is a compiled, concurrent, statically typed pro-
gramming language designed by Google. It was designed
to simplify the development of software for multiprocessor
and network systems. Several companies use Go to provide
parts of their service, including Google itself, Netflix, and
Dropbox.

The Go programming language is accompanied by a
sophisticated testing library. Nonetheless, Go programs
still suffer from various kinds of bugs that jeopardize
memory safety and functional correctness.

Software verification can help in reducing the risk of
unexpected software faults by proving that the program
behaves according to some formal specification.

Gobra [2] is a modular verifier for Go programs and
includes support for Go’s built-in concurrency primitives,
most prominently, channels and goroutines, but also mu-
texes and wait-groups. Gobra works on Go code that is
annotated with preconditions, which must hold before the
function gets invoked, postconditions, which must hold
after the function execution, and proof annotations. Gobra
then encodes the annotated source code to a program
in the Viper [3] intermediate verification language which
gets processed by the Viper toolchain. If verification is
successful, the user gets a corresponding message, and in
case of a verification failure, Gobra translates the Viper
error message back to an error message at the Go level.

The main goal of the project is to evaluate and improve
Gobra’s ability to verify large Go projects. To that end, we
will verify a crucial part of the Go implementation of the
SCION [4] protocol. SCION is a new internet architecture
designed and developed at ETH Zürich. SCION was devel-
oped to be less vulnerable to attacks and to significantly
decrease the chance of severe disruptions of the internet.
We will verify SCION code in multiple steps. First, the
SCION code that we verify needs to be annotated with
access permissions to prove memory safety. Then, a func-
tional specification can be added. Finally, Gobra can be
used to prove the given specification’s correctness. Since
the SCION project has a large codebase and is used in
practice, we expect that the part that we will verify in
the context of this project will utilize all the features that

Gobra has to offer.
So far, Gobra has not been applied to a real-world

software project of considerable size. Therefore, we do
expect some challenges to arise during the project, for ex-
ample missing type implementations for runes and floats,
or difficulties in handling third-party libraries. Gobra does
have features to support libraries, however, they have not
yet been stress tested. We also expect that Gobra can be
greatly improved in terms of productivity by reducing the
annotation overhead. For instance, consider nested loops,
where the loop invariants of the outer loop often need to be
copied to the inner loop. Similarly, many assertions occur
as pre- and postconditions and thus have to be copied
multiple times. In both of these examples, duplication of
annotations can be avoided by introducing a new keyword.

Fig. 1. Call graph of the SCION code to be verified

II. Context
SCION is a new internet architecture that aims to

improve on most of the problems that the current internet
has, in particular, routing problems with the BGP protocol
or DDoS attacks. Unlike current solutions, SCION packets
specify not only the intended destination of the packet
but also the paths that can be taken by the packet in the
network. A path consists of a list of hops that the packet
has to traverse to get to the destination. Because the
sender is responsible for picking the paths for its packets,
there is no need for long inter-domain routing tables and
complex longest IP prefix matching. Therefore, forwarding
packets is more efficient because the router simply has to

1



look at the next hop in the path of the packet and send it
there.

The SCION architecture can be separated into a control
plane and a data plane. The task of the control plane
is to discover paths and to make them available to end
hosts, essentially providing end-to-end paths through the
network. The data plane uses these paths to forward pack-
ets to the desired destination. This project will focus on
verifying parts of the implementation of the data plane. In
particular, the code that we will verify reads an incoming
packet, checks whether the header is valid, extracts the
next hop from the path, updates the header, and forwards
the packet to the next hop.

III. Goals

The overarching goal of this thesis is to verify a sub-
stantial part of the SCION data plane. Furthermore, we
take this opportunity to improve the productivity of Gobra
when applied to real code.

1) First, we will apply Gobra on an interesting small
part of the data plane (around 100 lines of Go code).
The chosen part should satisfy that the insights
gained from verifying that code can be extrapolated
to the rest of the data plane. During this process,
we will compile a list of features that are useful in
terms of productivity, or necessary, for Gobra to be
applied to real code of considerable size. The goal
is not to list every such feature but in particular,
those features which we will add in the scope of this
thesis. A preliminary list, without the case study
being done, inspired by existing features or other
verification tools, is as follows:

• More fine-grained control over when definitions
of functions and predicates are unrolled. This
reduces the number of facts the verification
backend has to deal with.

• Support for multiple specifications for a single
function to give the user the choice between
specifications of different complexity.

• Different options for specification propagation.
For example, we could introduce a keyword that
specifies that an assertion is a precondition as
well as a postcondition, or that an assertion is
part of all invariants of a method.

• Support for inlined code specifications to avoid
moving code into separate methods. For verifi-
cation, moving code into separate methods has
the advantage of simplifying the individual proof
obligations, but it significantly changes the code.

• A feature to split an encoded Viper program
into several different Viper programs. The aim
is to reduce the number of domain and function
definitions for each individual resulting Viper
program.

• A search engine for lemmas.

2) The second goal is to implement the most relevant
features on the list resulting from the first goal.

3) The third goal is to verify memory safety, race
freedom, and crash safety on a section of the code
responsible for packet manipulation and forwarding,
as shown in figure 1. Additionally, we will pick and
verify suitable data structure invariants. We will
add assumptions to keep the verification within the
scope of a bachelor thesis. For example, we will
assume that all paths have type SCION and that
the crossover functionality is never used. We will
document all assumptions and discuss their impact
in our report. Furthermore, we allow us to modify
the code if it is needed for the verification process.

4) The fourth goal is to add functional specification to
a small part of the data plane and to document the
process of coming up with both the specification and
the verification result.

5) The last goal is to evaluate our solution. We will in-
vestigate which language features the verifier spends
a lot of time on and if this overhead can be easily
avoided by slightly modifying the code or the speci-
fication. Furthermore, we will analyse the impact of
different verification approaches on the verification
process, in particular, verification time and specifi-
cation difficulty.

IV. Extension Goals
1) The first extension is to come up with I/O con-

tracts and verify them. I/O specifications are used
to specify which packets are allowed to be sent to
the network. I/O specifications are useful to verify
that an implementation adheres to a protocol.

2) The second extension goal is to implement more of
the features of the list resulting from goal 1 and not
implemented in goal 2.

3) The last extension goal is similar to the first two
core goals, but with a focus on IDE features. We will
come up with a set of IDE features that improve pro-
ductivity and implement the most relevant features
into the Gobra IDE. Furthermore, we will textually
evaluate the benefits of our additions.

References
[1] Google LLC. Go programming language. [Online]. Available:

https://golang.org/
[2] ETH Zürich. Gobra. [Online]. Available: https://www.pm.inf.

ethz.ch/research/gobra.html
[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper:

A verification infrastructure for permission-based reasoning.
[Online]. Available: http://pm.inf.ethz.ch/publications/getpdf.
php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf

[4] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat,
SCION: A Secure Internet Architecture. Springer International
Publishing AG, 2017.

2

https://golang.org/
https://www.pm.inf.ethz.ch/research/gobra.html
https://www.pm.inf.ethz.ch/research/gobra.html
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf

	Introduction
	Context
	Goals
	Extension Goals
	References

