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I. Rust
Rust is a modern programming language suitable for

systems programming with a heavy focus on safety and
concurrency. It gives the programmers strong memory
safety guarantees. To make programming in Rust even
safer beyond the mechanism provided by the compiler,
verifying the behavioral correctness of Rust programs is
desirable.

II. Prusti
Prusti is a verifier that allows verifying the behavioral

correctness of Rust programs [1]. Users can give specifica-
tions using annotations in the code. See Listing 1.

Prusti verifies the annotated Rust programs by translat-
ing them to the verification language of Viper [2], making
use of Viper’s verification infrastructure. Viper produces
an SMT formula describing the constraints of the user
given specifications and the program semantics, which is
then passed to an external solver.

1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[pure] // side-effects free
5 #[requires(x >= 0 && y >= 0)]
6 #[ensures(result >= 1)]
7 fn foo(x: i32, y: i32) -> i32 {
8 2 * x + y + 1
9 }

Listing 1: Example Rust program using integers with the
annotations specifying that the function foo is pure, as
well as a pre- and postcondition of the function. Other
types include other integer types (i*, u*, char), bool,
ref’s and composite types. As specifications one can also
express loop invariants, predicates, absence of panics, or
state specifications as fact declaring them #[trusted] [3].

Prusti currently supports all Rust integer types [4] and
their associated operations. To handle a larger class of
Rust programs, it would be beneficial to allow for the
verification of operations on floating-points and bitwise

operations. Such that Rust programs using types f32, f64
and bitwise operations such as &, |, ^ or << can be verified.
Support for these types and operations has been added to
Viper [5]. One core goal will be to give Prusti access to
these features.

III. Floating-Points
Floating-Points are widely used by programmers. Rust’s

speed and native safety features make it a suitable lan-
guage for many applications using FPs. Prusti should be
able to verify such programs, especially since programs
using FPs tend to be error-prone due to the idiosyncratic
behavior of FP operations. See Listing 2 and 3.

1 fn foo() -> () {
2 let x: f64 = 0.4 + 0.2;
3 if x == 0.6 {
4 unreachable!();
5 }
6 }

Listing 2: The statement in line 4 is unreachable, since
0.4 + 0.2 evaluates to 0.6000000000000001 under ad-
dition of the IEEE 754 64-bit floating points used by
Rust [6], [7].

Viper uses Z3 to solve SMT instances. Z3 adheres to
the SMT-LIB standard description of IEEE 754 floating-
points [8]. Support for this and other SMT-LIB types
has been added to the Viper intermediate language [5].
A core goal of this thesis is to make these SMT-LIB
types accessible to Prusti. This goal is twofold. First, it
involves collecting information from the Rust compiler and
encoding it into the Viper language. Second, it requires as-
sessing how the resulting implementation handles various
FP-specific behavior and devise methods for mitigating
possible problems.

Xsat is another SMT solver, which doesn’t directly rea-
son about FP semantics, but instead solves an equivalent
mathematical optimization problem [9], [10]. The cited
paper shows this method achieved 100% consistency with
SMT-solvers MathSat and Z3, as well as an avg. speedup of
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more than 700X on its limited benchmark (16 programs).
An extension goal is to explore how Prusti or Viper could
make use of Xsat to potentially exploit its speed.

1 fn bar(x: f64) -> f64 {
2 if x < 1.0 {
3 x
4 } else if x >= 1.0 {
5 -x
6 } else {
7 f64::NAN
8 }
9 }

Listing 3: If the input x of function bar is close to 1.0
the representation error may change the branch outcome
so that the mathematical form of the output is ambigu-
ous [11]. In addition, the else branch is reachable with
input f64::NAN.

Some errors, such as error propagation or the irregular
branching around a threshold from Listing 3 can only be
mitigated and some operations will always have execu-
tions with unstable behavior [11]. Heuristics have been
devised for finding inputs triggering such errors [12],[13].
On the other hand, a new approach using dynamic analysis
promises to ”detect more significant errors in real-world
code [...] and achieve several orders of speedups over the
state-of-the-art” [14]. An extension goal is to explore the
feasibility and benefits of adding such a verification tool
to Prusti/Viper.

Viper has a built-in type Rational for unbounded
rational numbers. All FPs except +inf, -inf and NaN can
be represented as a rational number. An extension goal is
to give Prusti the ability to model FPs as rational numbers
during the verification process.

IV. Bitwise Operations

Given the heavy focus on systems programming in
Rust’s design, a lot of Rust code is lower-level and uses
bitwise operations for speed, or to interact with devices.
Allowing for bitwise operations on bitvectors to be verified
would be an important addition to Prusti. Viper allows for
such verifications analogously to floating-points, using the
SMT-LIB type for fixed-size bitvectors [5]. Implementing
support for Rust programs using bitwise operations in
Prusti is a core goal of this thesis.

In many programs, bitwise operations and operations on
integers are used alongside each other. See Listing 4. Since
these types of operations pertain to different theories, their
interleaving poses questions about the approach on how
to apply them. While all operations are supported by the
bitvector theory, performance could be an issue compared
to integers. To asses this, different approaches to applying
the theories will be compared regarding efficiency and pre-
cision of analysis. Drawing from insights of this analysis,

the thesis will describe a methodology for handling bitwise
operations during the verification process as a core goal.

1 /// Calculates GCD using Stein's algorithm
2 fn gcd(&self, other: &Self) -> Self {
3 // ...
4 if m == 0 || n == 0 { return m | n; }
5 // find common factors of 2
6 let shift = (m | n).trailing_zeros();
7 // divide n and m by 2 until odd
8 m >>= m.trailing_zeros();
9 n >>= n.trailing_zeros();

10

11 while m != n {
12 if m > n {
13 m -= n;
14 m >>= m.trailing_zeros();
15 } else {
16 n -= m;
17 n >>= n.trailing_zeros();
18 }
19 }
20 m << shift
21 }
Listing 4: Implementation of gcd from the crate
num-integer [15]. Note that in lines 13/14 and 16/17
an integer operation and a bitwise operation are applied
alternatingly to m and n.

V. Core Goals
1) Collect a set of (real-world) Rust programs using

floating-points and bitwise operations.
2) Devise a methodology for handling bitwise operations

during the verification process.
3) Implement support for floating-points and bitwise

operations in Prusti.
4) Apply the proposed features to verify properties of

programs collected for 1).

VI. Extension Goals
5) Evaluate feasibility, benefits of possible approaches to

make Xsat accessible to Prusti/Viper for FP verifica-
tions.

6) Evaluate feasibility, benefits of possible approaches to
check for unstable behavior in FP programs.

7) Add manual proof support for non-linear arithmetic
using floating-points to Prusti.

8) Allowing FPs in Rust to be modeled as rational
numbers in Prusti.

9) Add support for the crate bitflags [16] and/or the
crate bitvec [17] for programs using bitvectors of
arbitrary length.
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