
Verifying Rust Programs Using
Floating-Point Numbers and Bitwise

Operations

Bachelor Thesis

Friedlos Lukas

September, 2021

Advisors: Vytautas Astrauskas, Dr. Christoph Matheja, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

The verification of floating-point and bitvector operations is notori-
ously difficult, and inefficient at best. Nonetheless, both features are
necessary in many applications. Hence, they should be supported by
a modern verifier such as Prusti. Prusti targets the Rust programming
language and is developed by the Programming Methodology Group
at ETH Zurich. It allows its users to verify whether Rust programs ad-
here to user given specifications. Although Prusti is already quite rich
in features and can verify a large set of programs, it does not support
the use of floating-points or bitwise operations as of yet. As part of this
thesis, support for these types and operations has been implemented
for Prusti, increasing the set of programs supported by the verifier.

The thesis elaborates on the difficulty of said verification problems and
shows example applications where verification does and does not suc-
ceed. It also describes a static analysis that helps determining the in-
teger variables that need to be internally modeled as bitvectors in the
verification process.

i

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Rust . 5
2.2 Viper . 6
2.3 Prusti . 6

2.3.1 The Verification Pipeline 7
2.3.2 Features and Usage . 7

3 Verification Challenges 9
3.1 Floating-Points . 9
3.2 Bitwise Operations . 11

4 Verifying Floating-Point Operations 15
4.1 Implementation . 15

4.1.1 Overview . 15
4.1.2 FloatFactory from the Silver Language 16
4.1.3 MIR to VIR . 17
4.1.4 VIR to Viper . 18

4.2 Verifying Programs . 19
4.2.1 Verification in Practice 19
4.2.2 Verifying Real-World Programs 20

4.3 Benchmarks . 22

5 Verifying Bitwise Operations 25
5.1 Preliminaries . 25
5.2 Towards an Efficient Use of the Bitvector Theory 26

5.2.1 Static Analysis for Determining Bitvector-Taint 26
5.2.2 Deficiencies and Other Possible Approaches 27

iii

Contents

5.3 Implementation . 29
5.3.1 The Silver BVFactory . 29
5.3.2 Changes to VIR . 30
5.3.3 Static Analysis Implementation 31
5.3.4 Determining Replacements of Tainted Expressions . . 32
5.3.5 Limitations . 33

6 Conclusion 35

Bibliography 37

iv

Chapter 1

Introduction

The use of floating-point numbers has proven to be error-prone over the
many years since hardware floating-point units in processors have become
widespread [14]. Subsequently, floating-point numbers have found common
use among programmers for various applications. Many errors stem from
the discrepancy between floating-point numbers and the real numbers they
are trying to approximate. Listing 1, for example, shows a Rust function
where a small rounding error in the addition of two floating-point numbers
leads to an error when assuming that floating-point numbers behave like
real numbers.

This ’unintuitive’ behavior makes it desirable to verify programs using floating-
point numbers in order to obtain reliable correctness guarantees. In the
past, Pen and paper proofs turned out to be an insufficient solution, since
they tend to be error prone themselves [5], they lack scalability and it re-
quires great expertise to construct them. Reasoning about floating-points
thus needs to be integrated in state-of-the-art verification tools.

Prusti is such a verification tool for the Rust programming language [1]
by the Programming Methodology Group at ETH Zurich. Users can verify
user-given specification, which are expressed on the level of the target lan-
guage itself. This makes the tool very accessible. However, it currently

1 fn foo() -> () {
2 let x: f64 = 0.4 + 0.2;
3 if x == 0.6 {
4 unreachable!();
5 }
6 }

Listing 1: Rounding causes 0.2 + 0.4 to evaluate to 0.6000000000000001,
making the if-branch unreachable.

1

1. Introduction

does not support the verification of floating-points and their operations.
This thesis describes how the verification of programs using such operations
was implemented in Prusti. It also shows practical limitations of verifying
floating-points in general, and those specific to this implementation.

Another feature Prusti is currently lacking is the verification of bitwise op-
erations (i.e. &, |, ˆ, <<, >>). These operations act on integers in the Rust
language (See Listing 2), but their verification requires the use of the the-
ory of bitvectors. Prusti currently models integer types as mathematical
(unbounded) integers. However, the corresponding theories of integer arith-
metic do not support bitwise operations. While the theory of bitvectors does
support these operations, it is significantly less efficient than the theory of
integers. They share some of the inefficiencies of floating-point verifica-
tion. Section 3.2 elaborates on these issues specific to the verification bitwise
operations via bitvectors. Hence, it is desirable to keep the more efficient
representation whenever possible. To this end, the thesis describes a static
analysis which determines which integer-variables to treat as bitvectors, and
which can remain integers for the verification. The implementation of said
analysis and other changes made to Prusti in order to make bitwise opera-
tion verifiable are described in Section 5.3.

1 /// Calculates GCD using Stein's algorithm
2 fn gcd(&self, other: &Self) -> Self {
3 // ...
4 if m == 0 || n == 0 { return m | n; }
5 // find common factors of 2
6 let shift = (m | n).trailing_zeros();
7 m >>= m.trailing_zeros();
8 n >>= n.trailing_zeros();
9 while m != n {

10 if m > n {
11 m -= n;
12 m >>= m.trailing_zeros();
13 } else {
14 n -= m;
15 n >>= n.trailing_zeros();
16 }
17 }
18 m << shift
19 }

Listing 2: Implementation of gcd from the Rust crate num-integer. Note
that in lines 11/12 and 14/15 an integer operation and a bitwise operation
are applied alternatingly to m and n.

2

The verification of both of these types of operations is an important part of
a modern verification tool. Floating-points are in wide use and their ver-
ification is desirable, especially in safety-critical applications. And given
Rust’s focus on systems programming, where low-level operations are com-
mon and perform vital safety-critical functions, the ability to verify bitwise
operations in a Rust program is arguably even more crucial.

Chapter 2 provides preliminary information about the programming lan-
guages, and verification frameworks relevant to this thesis. The difficulties
associated with the verification of floating-point and bitwise operations are
discussed in Chapter 3. Chapter 4 & 5 are concerned with the concrete
implementation for each type of operation in Prusti.

3

Chapter 2

Background

This Chapter gives an overview of the programming languages, libraries,
and verification frameworks this thesis is concerned with. Namely Rust, a
modern systems programming language, and Viper, a verification language
and infrastructure which can reason about a programs behavior. And Prusti,
which serves as a bridge between the two and let’s users verify Rust pro-
grams using Viper.

2.1 Rust
Rust is a modern programming language developed for systems program-
ming with a heavy focus on safety and concurrency. It gives the program-
mers strong memory safety guarantees.

Many programming errors, which have plagued programs in older lan-
guages, can’t occur in Rust. These errors include:

• Dereferencing a null pointer

• Not freeing memory after it’s no longer used

• Double-freeing memory

• Accessing a dangling pointer

This is achieved by Rust’s type system. It enforces a strong typing discipline
which rules out the various memory safety issues mentioned above.

The development in computing towards concurrency has also been addressed
in Rust by providing crucial thread-safety guarantees [21]. They include
data race freedom and not acquiring the lock before accessing the memory
it protects.

Rust allows its users to write both low-level and high-level code with all the
conveniences of a modern programming language with zero-cost abstrac-

5

2. Background

tions [20]. As such, Rust presents itself as a suitable programming language
for both systems programming and high-performance applications, where
the use of both bitwise operations and floating-points are common. Reason-
ing about them is crucial for the verification of real-world Rust programs.
And it would allow the verification of the behavioral correctness of Rust
programs beyond the guarantees provided by the compiler.

2.2 Viper
The Programming Methodology Group has developed a Verification Infras-
tructure for Permission-based Reasoning known as Viper [15]. It consists of
its own intermediate verification language which serves as an abstraction to
make the underlying verification tools accessible. The purpose of this infras-
tructure is to facilitate the development new verification tools. By providing
a sound translation from programs in another programming language into
the Viper language, one can leverage the existing verification infrastructure
of Viper. A number of so-called front-ends for established programming lan-
guages (e.g. Go, Python, Rust, Java) have already been built and are still
being developed. A recent addition to the Viper language is the ability to
use floating-points and bitvectors [16].

2.3 Prusti
Prusti is a plug-in for the Rust compiler which allows the user to annotate
their program with functional specifications, which it then attempts to verify
[1]. Rust code and user given specifications are translated into Viper code,
which is then verified using the Viper infrastructure, and the verification
result is reported back to the user.

Since Rust’s type system has very strict rules about ownership and aliasing,
the guarantees provided by the Rust compiler can be leveraged and trans-
lated to Viper. This translation is done with the automated generation of a
so-called ’core proof’, concerned with the memory safety of the program [1].
Without this, these constraints would have be provided manually, since the
core-proof is a crucial part of any proof about the correctness of a program
which uses a heap and references.

Normally, the construction of such a ’core proof’ is done manually, which
is difficult and tedious, especially for non-experts. With the approach de-
scribed above, Prusti can lift a heavy burden off the shoulders of the person
who tries to verify a program. It allows its users to only concern themselves
with higher-level functional properties of the program, for which they can
write specifications on the level of Rust expressions. This greatly increases
the accessibility to a verification tool for the Rust language.

6

2.3. Prusti

2.3.1 The Verification Pipeline

Prusti takes a Rust file as file as input and first uses the Rust compiler to ex-
pands macros (functional specifications are given through macros, see List-
ing 3 line 4-6) and perform type checking.

From the Rust compiler, Prusti takes the MIR representation of the functions
in the given file which ought to be verified. MIR is an intermediate repre-
sentation used by the Rust compiler, where information about a program is
more extensive and accessible.

The MIR is subsequently encoded into VIR (Viper Intermediate Representa-
tion), which is Prusti’s own intermediate representation which mimics the
Silver language for Viper. This additional IR is used to perform various
analyses and optimizations specific to Prusti.

The VIR which results after optimizations is then translated to the Viper
language, which can be passed to Viper for the verification.

As a last step, the Viper verifier is called on the Viper program and the result
is reported back to the user.

2.3.2 Features and Usage

Here is an incomplete list of Prusti’s features:

• Prusti can check for the absence of panics. If panics such as panic!()
or unreachable!() are used in a program, Prusti will check whether
these statements are reachable and report an error if they might be.
See Listing 4 for an example.

• For assertions in a program of the form assert!(...), Prusti tries to
prove that the stated assertion always holds. It will report an error if
it fails to do so. See Listing 5.

• Functions can be annotated with pre- and postcondition of the form
#[requires(...)] and #[ensures(...)] respectively. The precondi-
tion is assumed to hold in the function body, while the postcondition
is tried to be verified by Prusti to hold at the end of any execution of
the function. See Listing 3 lines 5 and 6. If Prusti fails to verify, it is
reported that the postcondition might not hold.

• Functions can be designated as pure functions, i.e. that they terminate
and behave like mathematical functions. Pure functions can be desig-
nated by adding #[pure] before their declaration. Pure functions can
then be used for expressing pre/post-conditions and assertions.

7

2. Background

1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[pure] // side-effects free
5 #[requires(x >= 0 && y >= 0)]
6 #[ensures(result >= 1)]
7 fn foo(x: i32, y: i32) -> i32 {
8 2 * x + y + 1
9 }

Listing 3: Example Rust program with functional specifications to be verified
by Prusti, given as macros. The user given specifications are in lines 4-6. The
function is designated as side-effect free in line 4. An assumed precondition
is specified in line 5, and a postcondition to be asserted is found in line 6.

1 fn foo(b: bool) {
2 if b { unreachable!() }
3 }

Listing 4: Program where a panic is reachable. The panic statement in line
2 can obviously reached if b is true. Prusti will report that the statement
”might be reachable”.

1 fn foo(x: i64) {
2 let abs = if x < 0 {
3 -x
4 } else{
5 x
6 };
7 assert!(abs >= 0)
8 return abs
9 }

Listing 5: Rust program with an assertion to be verified by Prusti. The func-
tion foo returns the absolute value of a signed 64-bit integer. The assertion
in line 7 is verified to hold for any execution. Note that the same property
could be verified by adding the condition to be asserted as a postcondition
above the function declaration.

8

Chapter 3

Verification Challenges

The verification of programs using floating-points or bitwise operations is
notoriously difficult [14, 2], and many obstacles to fast verification have not
yet been overcome [13, 14]. Though some of their problems are shared and
have the same origin, there are also difficulties which are specific to floating-
points and bitwise operations respectively.

3.1 Floating-Points

Guarantees for programs using floating-points are generally rather low. This
is at least in part due to the difficulty of making precise analyses, stemming
from rounding and exceptions [5]. Related to this is the lack of algebraic
structure to be exploited for rewriting and simplifying expressions [13].
This, among other reasons, causes the formulas expressing the constraints
to be solved by an SMT-solver to be very large, and hence their verification
to be slow. This section expands on these issues pertaining to floating-point
verification.

Floating-point Errors Floating-points serve as an approximation to real
numbers. But their limited size makes them unable to accurately repre-
sent most of them. Consequently, floating-point operations are not closed,
meaning [4] :

1. Results may exceed the value of the largest floating-point value caus-
ing an overflow;

2. Results may be smaller than the smallest non-zero floating-point value
causing an underflow; and

3. Results may lie between two adjacent floating-point values causing it
to be imprecise and requiring rounding

9

3. Verification Challenges

Such errors can accumulate in the course of an execution leading to error-
propagation. These errors are inherent to floating-points and can only be
mitigated [3]. Though heuristics have been devised for finding specific in-
puts and input ranges which lead to a program execution where these errors
occur [23, 8]. Most approaches use static analysis based on interval arith-
metic or affine arithmetic [23]. Newer techniques for finding such inputs
using symbolic execution promise significant speedups compared to the es-
tablished methods [24]. On a brighter note, for many programs it may be
the case, that only a small set of inputs cause large errors of this nature [3].

Lack of Structure to Exploit An inherent theoretic obstacle to fast verifi-
cation of floating-point operations is the fact that many algebraic properties
of other number systems do not hold for floating-points [13]. E.g. addition
and multiplication are not associative. So (a + b) + c == a + (b + c)
does not hold in general for floating-points a, b, c. Therefore much fewer
expressions can be rewritten and simplified, compared to (for example) ra-
tional numbers. See Listing 6 for an example where a desired simplification
is not allowed.

1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[requires(x != 0.)]
5 fn foo(x:f64) {
6 assert!(x * (1./x) == 1.); // Does not hold
7 }
8 fn main() {}

Listing 6: Although the assertion in line 6 holds for some instantiations of
the variable x, it does not hold in general.

A major source for such issues arising when working with floating-points
are the special values NaN, Inf, -Inf, as well as the non-uniqueness of 0 (i.e.
+0/−0). Although they allow for a more convenient usage of floating-
points, since less interrupts are thrown in the execution of operations, they
can easily lead to program crashes at another point of a programs execution,
or allow for unintuitive execution paths (See Listing 7).

NaN also breaks the reflexivity of comparison operators. Since any com-
parison to NaN evaluates to False, so does f64::NAN == f64::NAN, single
handedly making equality non-reflexive. See Section 4.2.1 for a mitigation
technique.

10

3.2. Bitwise Operations

1 fn foo(x: f64) -> f64 {
2 if x < 1.0 {
3 x
4 } else if x >= 1.0 {
5 -x
6 } else {
7 unreachable!() // actually reachable!
8 }
9 }

Listing 7: One might think that the cases < 1.0 and >= 1.0 cover all cases.
But note that the else-branch in line 6 is in fact reachable. If the function
foo is called with f64::NAN, the branch is taken and the program would
crash.

Large Formulas Most practical limitations stem from the fact, that the SMT
solver has to resort to bit-blasting when dealing with floating-points. Bit-
blasting means that floating-point numbers are considered as bitvectors, and
all possible assignments of the bits are considered. This results in huge for-
mulas for the solver to resolve, resulting in long runtimes for the verification,
even for relatively simple programs.

Another reason for large formulas is difficulty of rewriting and simplifying
expressions involving floating-points described in the previous paragraph.

Conclusion There is little mathematical structure which can be exploited
when reasoning about operations on floating-point [7], and a prover is most
often forced to resort to bitblasting to solve constraints on a program using
floating-points.

3.2 Bitwise Operations

Bitwise operations (see Table 3.1) act on fixed-sized bitvectors. Integers of
both the signed and unsigned type are such bitvectors of fixed size. When
this thesis refers to bitvectors, it means fixed-sized bitvectors, particularly of
the size of standard integers (8, 16, 32, 64 and 128-Bit).

The verification of integer arithmetic is much easier for solvers to handle,
since constraints can more easily be rewritten and simplified, resulting in
shorter formulas for an SMT-solver. With bitvectors, however, the possi-
bilities for rewriting is limited, and doing so very often does not reduce the
problem size sufficiently [9, 14]. This is mainly because the algebraic proper-
ties of integers lend more opportunity for simplification and reorganization
of constraints than the structure of the bitvector semantics.

11

3. Verification Challenges

Table 3.1: Bitwise Operations

Operation Rust Operator Description
BitAnd & Bitwise And
BitOr | Bitwise Or
BitXor ˆ Bitwise Xor
Shl << Bitwise Left-Shift
Shr >> Bitwise Right-Shift

In addition, more research and development has been made for solving in-
teger constraints than constraints on bitvectors, and the mentioned disad-
vantage of bitvectors may at be least partially mitigated by new techniques
and insights from research into the latter, resulting in more powerful appli-
cations [9].

Since integer constraints can be handled more efficiently than bitvector con-
straints, but both may be needed to formulate constraints on integers (e.g.
both a standard arithmetic operation and a bitwise operation are applied to
te same integer variable) the question arises as to how to use the two theories in
combination? The goal in resolving this issue to resort to bitvector minimally
in order to reduce the size of the constraint-formulas.

We can therefore say, there are two main difficulties when trying to verify
programs using bitwise operations:

1. The mingling of the theory for integers and the theory for bitvectors.

2. Lack of exploitable structure for rewriting constraints resulting in large
formulas.

Note though, that the first issue is directly linked to the second one, for
reasons mentioned above.

1 ...
2 let x: u32 = 1 << 5;
3 let y: u32 = x + 1;
4 ...

Listing 8: Code snippet where the variable x comes into contact with both a
bitwise operation and an arithmetic integer operation.

Bitvectors and Integers: Two Colliding Theories Since we have some op-
erations (+, -, . . .) which we would like to verify in the theory for integers
and some operations (&, |, . . .) which we have to verify in the theory for
bitvectors, and these two sets of operations act on the same objects (inte-
gers), the question arises how we handle situations where the two collide,

12

3.2. Bitwise Operations

see Listing 8. Section 5.2 presents a methodology for handling this issue and
elaborates on it further.

Large Formulas The main issue with bitvector verification is that the for-
mulas to solve grow exponentially with the number of variables. An SMT-
solver often would take an unreasonable amount of time to solve a formula,
or chokes prematurely if the given formula is too large. The only way to
combat this is with rewriting and simplification techniques of the formulas
themselves.

Modern solvers employ a range of rewriting and simplification techniques
to reduce the size of the formula to solve. And they make a significant effort
to achieve this [22].

Newer techniques, together in combination with traditional ones, can achieve
magnitudal speedups for quantified bitvector formulas [22].

Another approach is to evaluate the constraints lazily and breaking them
up in smaller parts. Such a technique not only achieved a speedup, but
managed to solve some constraints where the eager rewriting techniques
and wholesale evaluation failed [9].

Techniques developed by research are often developed for one specific SMT-
solver, and take a long time to find their way into other deployed SMT-
solvers, if at all.

13

Chapter 4

Verifying Floating-Point Operations

Floating-point numbers are widely used by programmers in various applica-
tions. They serve as an accessible approximation to the real numbers. Apart
from their use in scientific applications and in data science, they also find
uses in safety-critical systems, e.g. in aerospace or medical devices. Rust is
generally a suitable programming language for safety-critical system, given
its design as a modern systems programming language. Its speed, porta-
bility and native safety features concerning memory errors provide a good
foundation for the next generation of applications of the aforementioned
kind. Programs using floating-points tend to be error prone due to the id-
iosyncrasies of the floating-point semantics, and the unintuitive behavior
of floating-point operations arising from them (see Section 3.1 for exam-
ples). Prusti should be able to verify programs which use floating-points
and thereby giving the programmers additional guarantees about the func-
tional behavior of a program in addition to the safety guarantees provided
by the Rust compiler. This chapter describes how the verification of floating-
points and their operations is implemented in Prusti. It also explores the
limits of the described implementation’s capabilities.

4.1 Implementation

4.1.1 Overview

The goal of the implementation is to allow the verification of Rust Programs
which use Rust’s native floating-points f32 and f64 and some of their asso-
ciated operations.

Rust floating-point types follow the IEEE 754 standard for floating-points
[10] and it uses the ’round to nearest, ties to even’ rounding mode. Viper
uses Z3 as its SMT solver (Section 1.3) to check the whether the specifications
hold for a given program. Z3 supports the SMTLib standard [6] for IEEE

15

4. Verifying Floating-Point Operations

floating-points [19]. With the pull request #428 [16] to the Silver language
repository (back-end of Viper) this feature of Z3 has been made accessible
in the Viper verification infrastructure.

The implementation described in this thesis makes this new functionality of
the Viper back-end accessible to Prusti. To produce a valid Viper program
corresponding to a given Rust program with Prusti specification syntax,
Prusti takes the MIR form of the program from the Rust compiler, produces
its own Viper Intermediate Representation (VIR), before converting the VIR
to a Viper program. See 2.3.1 for details. In order to encode floating-points
in Viper, the implementation interjects itself in these two stages. Specifically
when creating the VIR from the MIR, and when converting the VIR-AST to
Viper. Maybe include a graphic outlining what is done at each conversion.

4.1.2 FloatFactory from the Silver Language
The change to the Silver language mentioned above added AST nodes repre-
senting various floating-point types and their associated functions [16]. This
makes the SMTLib theory for floating-points accessible in the Viper back-
end. In the course of writing the implementation for Prusti minor bugs in
the aforementioned pull request where found and remedied by Vytautas
Astrauskas [17, 18].

Most important to our usage of this new functionality is Silver’s FloatFactory
class, which let’s us create SMTLib-Floats, and operate on them. See Ta-
ble 4.1 for an overview of the floating-point operations provided by the
FloatFactory.

A FloatFactory(mant: Int, exp: Int, roundingMode: RoundingMode) is
created by providing it with the mantissa and exponent size of a float type,
as well as the rounding mode we wish to use. In Listing 9 you can see an
example of a specific FloatFactory being created.

1 FloatFactory(52 , 12, RoundingMode.RNE)

Listing 9: Creation of a FloatFactory for 64-bit floating-points using the
”Round to nearest, ties to even” rounding mode. Note that 64-bit floating-
points have 52 bits for the mantissa, 11 bits for the exponent, and 1 bit for the
sign. So the sign bit is to be included in the number of bits of the exponent.

16

4.1. Implementation

Used Features Comments

from_bv
Create floating-point from a bitvector. Used in the
creation of a floating-points constant.

neg
Invert a floating-point. Is called whenever a unary
minus operation is applied to a floating-point vari-
able or constant.

isNaN
Checks whether a floating-point represents a NaN-
value. Calls to is_nan are intercepted and converted
to calls of this FloatFactory-function.

add, sub, mul, div
Arithmetic operations defined by the IEEE standard
on two floating-points. Rust uses of +, -, * and / are
converted to calls of these functions.

min, max
Min/Max of two floating-points. Used analogously
to isNaN.

eq, leq, geq, lt,
gt

Comparison operators on floating-points. They are
called analogously to the arithmetic operations.

Unused Features Comments

abs
Absolute value of a floating-point. Calls could be
intercepted analogously to min/max.

isZero,
isInfinite,
isNegative,
isPositive

Currently unused, but they are accessible Prusti.
May be used for rewriting equivalent expressions, or
to intercept calls to equivalent built-in functions.

Table 4.1: Overview of the functions on floating-points provided by the FloatFactory.

4.1.3 MIR to VIR

In this step, the aim is to take the information from the MIR provided by the
Rust compiler, and encode it into the Viper Intermediate Representation VIR.
The variables of a Rust program with type f32 or f64 are encoded in VIR as
floats as well. To this end, a new type for floating-points has been added to
VIR. See Listing 10.

Additionally a new kind of constant expression has been added to VIR in
order to represent the floating-point constants which appear in the MIR.
See Listing 11 how constant floating-points are encoded in VIR. There are
constant types for both of the two sizes of Rust floating-points (f32 & f64),
where the actual value of the constant is encoded as a u32 or u64 respectiv-
ley. The concrete value will be converted to a bitvector first, before we can
convert it to a float again in Viper at a later stage. That’s why the represen-
tation as a bit-pattern was chosen already at this stage.

The built-in functions on floating-points is_nan, min and max are manually
intercepted and encoded as VIR-expression which are translated to calls to

17

4. Verifying Floating-Point Operations

the corresponding functions of the FloatFactory in the next stage where
VIR is translated to Viper.

1 pub enum Type {
2 ... // Previously existing types
3 Float(FloatSize),
4 }
5

6 pub enum FloatSize {
7 F32,
8 F64,
9 }

Listing 10: VIR float type. The Rust type f64 corresponds to the VIR type
Type::Float(FloatSize::F64).

1 pub enum Const {
2 ... // Previously existing kinds of constant expressions
3 Float(FloatConst),
4 }
5

6 pub enum FloatConst {
7 FloatConst32(u32),
8 FloatConst64(u64),
9 }

Listing 11: VIR Const expression for floating-points, where u32/u64 hold
the bit-pattern of the float it represents. E.g. 1.0: f32 is represented as
Const::Float(FloatConst32(1065353216)).

4.1.4 VIR to Viper
A unary or binary operation on floating-points is converted to their respec-
tive function call of an appropriate FloatFactory (depending on the size of
the floats).

Constant floating-points are first converted to a bitvector. The BVFactory
(See Section Section 5.3) function from_nat is called on the u32/u64 value of
the FloatConst (See Listing 11). This is followed by a call of the FloatFactory
function from_bv on the bitvector.

18

4.2. Verifying Programs

4.2 Verifying Programs

In general, the verification of programs using floating-points is difficult and
slow. The reasons for which are both practical and theoretical (Section 2.3.1).
This chapter deals with how these difficulties can and cannot be mitigated
in this particular implementation.

4.2.1 Verification in Practice

In general, programs which use f32 were much easier and faster to verify
than programs using f64. While this is unsurprising, it is noteworthy that
for some programs, it was not possible to verify it with f64’s, but verified
easily after changing types to f32.

Especially programs using division on floating-points are near impossible to
verify (in reasonable time). Even a very simple program as the one in List-
ing 12 did not finish verification after an hour. Interestingly enough, when
changing the precondition to 1. < x && x < 1.1 the verification terminates
successfully after a few seconds. Faster termination with strict inequalities
has been observed in other programs as well. Whether this is due to the
specific implementation in Prusti, or inherent to the SMT-solver was not
explored in the course of this thesis.

1 #[requires(1. <= x && x <= 1.1)]
2 #[ensures(result >= 0.)]
3 fn foo(x:f32) -> f32 {
4

5 return 1. / x
6

7 }
Listing 12: Simple Rust function using only one floating-point division.

Section 2.3.1 mentions some theoretic obstacles to verifying programs with
floating-points. In particular the non-reflexivity of equality comparisons
of floating-points. In practice, one seems to be able to restore the reflex-
ive property of the equality comparisons ==, <= and >= easily by assuming
floats not to be NaN. See Listing 13 below. The function refl asserts the
reflexivity of said comparison operations, while is_not_nan is used to for-
mulate the mentioned assumption as a precondition. Note that the function
is_not_nan(x) is functionally equivalent to !x.is_nan(). But the built-in
function core::f32::<impl f32>::is_nan cannot be used in specifications
since its implementation is impure. In general, calls to is_nan are possible,
and they are translated to calls of the isNAN function of the FloatFactory.

19

4. Verifying Floating-Point Operations

1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[requires(is_not_nan(a))]
5 fn refl(a:f32) {
6 assert!(a == a);
7 assert!(a <= a);
8 assert!(a >= a);
9 }

10

11 #[pure]
12 fn is_not_nan(a:f32) -> bool {
13 f32::NEG_INFINITY <= a && a <= f32::INFINITY
14 }

Listing 13: This program verifies the reflexivity of comparison operators of
32-bit floating-points under the assumption that they are not NaN.

4.2.2 Verifying Real-World Programs

Angle Difference So far the only publicly available Rust code that uses
floating-points successfully verified with our extension of Prusti is a solu-
tion given for an algorithm which should calculate the angle difference of
two bearings given in degrees. It was posted on the rosettacode web page
1. Provided with two angles given as floating-points, the program should
return the difference in angle in a range from −180 to 180. See Listing 15.

In order to reach some successful verification, the original code had to be
modified, and an assumption about the input angles had to be added. See
Listing 15. First, in line 12, the original code from the solution is left as a
comment. This code had to be replaced with line 13 since there is no support
for the floating-point modulo operator provided by the FloatFactory. It is
not part of the SMT-Lib theory for floating-points, since it is also not part
of the IEEE standard for floating-points. The definition of the Rust modulo
on floating-points can be seen in Listing 14 2. So if one were to be able to
mimic the truncation, the Rust modulus for floating-points could be imple-
mented for Prusti. To remedy this, a precondition is added to the function
angle_difference in line 9 which ensures that the difference between the
two given angles is already reduced. The same precondition also ensures
that no special floating-point values are passed as arguments. Consider-
ing these modifications, the informative value of this verification about the
behavior of the original program is questionable.

1https://www.rosettacode.org/wiki/Angle_difference_between_two_bearings
2Source corde: https://doc.rust-lang.org/src/core/ops/arith.rs.html#583

20

https://www.rosettacode.org/wiki/Angle_difference_between_two_bearings
https://doc.rust-lang.org/src/core/ops/arith.rs.html#583

4.2. Verifying Programs

1 x % y = x - (x / y).trunc() * y

Listing 14: Definition of the Rust modulo on floating-points.

1 extern crate prusti_contracts;
2 use prusti_contracts::*;
3

4 #[pure]
5 fn is_reduced(angle: f32) -> bool {
6 -360. < angle && angle < 360.
7 }
8

9 #[requires(is_reduced(bearing2 - bearing1))]
10 #[ensures(-180. <= result && result <= 180.)]
11 pub fn angle_difference(bearing1: f32, bearing2: f32) -> f32 {
12 // let diff = (bearing2 - bearing1) % 360.0; original code
13 let diff = bearing2 - bearing1;
14 if diff < -180.0 {
15 360.0 + diff
16 } else if diff > 180.0 {
17 -360.0 + diff
18 } else {
19 diff
20 }
21 }

Listing 15: Rust implementation of ”Angle difference between two bearings”
from rosettacode.

Additionally, the program from Listing 15 is one of the programs which
verify successfully with f32’s, but if the type annotations are replaced with
f64 the verification fails. It fails with the error ”the post-condition might not
hold” referring to line 10.

Uniform Distribution In the Prusti Crate probability 3 one can find a
number of suitable functions to test the implementation on. It contains var-
ious utilities for calculating with probabilities as the name suggests. The
structs and functions are fairly simple, and mathematical properties they
ought to adhere to are well known. It also finds public use with an average
of about 50 downloads per day.

The part of this crate which was given the most effort to verify was its imple-
mentation of the distribution function for continuous uniform distributions

3https://crates.io/crates/probability

21

https://crates.io/crates/probability

4. Verifying Floating-Point Operations

4. You can see the function and the relevant struct in Listing 16. Trying to
verify whether the return values of the function are in fact in the codomain
of a distribution function, which is (0, 1). The verification could never be run
to completion in reasonable time. Changing the size of the floating-points
to 32-bit, or weakening the post-condition and using strict inequalities (e.g.
-0.1 < result && result < 1.1), or both, made no discernible impact on
the runtime of the verification.

1 struct Uniform {
2 a:f64,
3 b:f64,
4 }
5

6 #[requires(d.a < d.b)]
7 #[ensures(0. <= result && result <= 1.)]
8 fn distribution(d:Uniform, x: f64) -> f64 {
9 if x <= d.a {

10 0.0
11 } else if x >= d.b {
12 1.0
13 } else {
14 (x - d.a) / (d.b - d.a)
15 }
16 }

Listing 16: Implementation of continuous uniform distributions from the
probability crate.

4.3 Benchmarks

Function Arguments In order to determine how the number of arguments
to a function impacts the runtime of verification, a set of tests where run
using the benchmarking tool of Prusti. The benchmarked functions all used
three 32-bit floating-point numbers, which where either arguments to the
function with the assumption that they are larger or equal to 0.0, or random
floating-point constants between 0.0 and 100.0. The function returns the
sum of all these floating-points and verifies, that their sum is larger or equal
to 0.0. See Listing 17.

4https://github.com/stainless-steel/probability/blob/master/src/
distribution/uniform.rs

22

https://github.com/stainless-steel/probability/blob/master/src/distribution/uniform.rs
https://github.com/stainless-steel/probability/blob/master/src/distribution/uniform.rs

4.3. Benchmarks

1 #[ensures(result >= 0.0)]
2 fn foo_0() -> f32 {
3 let _0: f32 = 85.70717120125501;
4 let _1: f32 = 44.66243410754219;
5 let _2: f32 = 16.569445079123557;
6 let _acc0: f32 = _0 + _1;
7 let _acc1: f32 = _acc0 + _2;
8 return _acc1
9 }

10

11 ...
12

13 #[requires(_0 >= 0.0)]
14 #[requires(_1 >= 0.0)]
15 #[ensures(result >= 0.0)]
16 fn foo_2(_0: f32, _1: f32) -> f32 {
17 let _2: f32 = 9.540560509896267;
18 let _acc0: f32 = _0 + _1;
19 let _acc1: f32 = _acc0 + _2;
20 return _acc1
21 }
22

23 ...
Listing 17: Two functions of the benchmark described above.

Results:

No. of Ar-
guments

Avg[s] Var

0 0.423 0.00099
1 1.133 0.00006
2 14.957 84.9956
3 14.2199 0.18493

Note the large variance in runtime for the function with only two arguments
passed. This result corresponds to the function in line 16 from Listing 17.
Initial suspicion that this is caused by a bug in the benchmarking tool could
be dismissed by running the test directly, measuring the verification time via
the shell. For 40 runs in this setup the verification time varied between 5 and
260 seconds. For functions with only one argument and three arguments,
the verification times were consistent. We currently have no explanation for
this behavior, and its causes could be investigated in future work.

23

4. Verifying Floating-Point Operations

The benchmarking performed in the course of this thesis is limited, and
further benchmarking would be helpful in finding which kinds of programs
can be verified efficiently.

Conclusion Although the implementation works, and self-made programs
(see the tests in prusti-test/verify/[pass,fail]/floats/*) are correctly
verifiable in reasonable time, the verification of most actual programs in use,
which surpass a trivial level of complexity do not seem to be able to be
verified in a reasonable amount of time.

24

Chapter 5

Verifying Bitwise Operations

5.1 Preliminaries
Fixed-sized integers of both the signed and unsigned type are bitvectors. So
Prusti already supports some bitvectors, as well as some operations on them
which can be verfied using the SMT-theory for integers. However, for some
of the operations which can be performed on integers, a different theory
is needed to handle their verification. In particular, these are the bitwise
operations (Table 3.1). See also Table 5.1 for which theory supports which
operations.

Table 5.1: Operations Supported by Theory [11, 12]

Operation Integer Theory Bitvector Theory
Add 3 3

Sub 3 3

Mul 3 3

Div 3 3

Neg 3 3

Mod 3 7

Abs 3 7

Geq/Leq 3 3

Gt/Lt 3 3

Not 7 3

BitAnd 7 3

BitOr 7 3

BitXor 7 3

Shl 7 3

Shr 7 3

25

5. Verifying Bitwise Operations

There exists an established SMT-theory for fixed-sized bitvectors [11], which
will be used to verify bitwise operations in the implementation decribed in
this chapter. So when this chapter mentions bitvectors, it always refers to
bitvectors of fixed size.

Since it is much faster to verify programs with integers (See Section 3.2), we
would like to treat bitvectors as integers whenever possible without resort-
ing to the SMT-theory for fixed-sized bitvectors.

The following section describes a naive methodology which determines all
variables and constants which are directly or indirectly affected by bitwise
operations, in order to treat them as bitvectors during verification. Fur-
thermore, it explains the changes which had to be made to Prusti to make
bitvector verification possible, including the concrete implementation of the
static analysis in Prusti.

5.2 Towards an Efficient Use of the Bitvector Theory

5.2.1 Static Analysis for Determining Bitvector-Taint
The motivation for this analysis is the desire to use bitvectors sparingly
for efficiency reasons. So instead of treating all integers as bitvectors in
a program as soon as a bitwise operation appears, this approach allows
integers to remain integers if they do not come into contact with a bitwise
operation either directly or indirectly.

So the goal is to determine which integers are used in a bitwise operation
or come into contact with such an operation transitively.

In the following description we make the following simplifications: All vari-
ables are references to be dereferenced by a field of a certain type. There is
only one size of integer and each function of a program is treated separately.
The following procedure is applied to each function of a program:

We hold a set T of variables which are tainted by bitwise operations.

1. Iterate through the statements of the function.

• If a statement contains a bitwise operation, add the operands to
T .

• If a tainted variable is connected through a binary operation or an
assignment to other variables, add them to T .

2. If |T | has increased since the beginning of step 1, repeat step 1. Else
return T .

3. Pass through the statements, changing all dereferences of the variables
in T .

26

5.2. Towards an Efficient Use of the Bitvector Theory

Example In this example, the variable declarations are left out. All vari-
ables are references to a certain type. And the values they refer to are ac-
cessed via the correct field beginning with val_type. So if _x is a variable
referring to an integer, the integer is accessed with _x.val_int.

1 method foo() {
2 _0.val_int := 1
3 _1.val_int := 2
4

5 _2.val_int := _0.val_int << 4
6 _3.val_int := _1.val_int + 1
7 _4.val_int := _2.val_int + 1
8 }

Changes to the set of tainted expressions by iteration:

1. _0 is added to T in line 5, since it’s an operand of the bitwise shift
operation.

2. _2 is added in line 5 since the right side contains taint. And in line 7
the variable _4 get added to T due to the taint in the right-hand side
of the assignment.

3. No additions to the tainted variables. T = {_0, _2, _4 }.

After changing the dereferences, the program looks like this:

1 method foo() {
2 _0.val_bv := 1
3 _1.val_int := 2
4

5 _2.val_bv := _0.val_bv << 4
6 _3.val_int := _1.val_int + 1
7 _4.val_bv := _2.val_bv + 1
8 }

5.2.2 Deficiencies and Other Possible Approaches
The methodology describe above is obviously a naive. It is sound, since it
moves everything directly or indirectly affected by the bitvector theory in its
realm. But given the fact that bitvector verification is slow, a method which
minimizes its use is more desirable.

Another (naive) solution would be to simply convert integers to bitvectors
before a bitwise operation, and convert it to an integer after the operation.
Informally, the idea is to remain in the realm of the integers with brief excur-
sion to the bitvectors theory for the bitwise operations. See Listing 18 for an
example. This naive approach could be improved by omitting ’unnecessary’

27

5. Verifying Bitwise Operations

conversions (e.g. if bitwise operations are applied subsequently, one could
omit the two conversions between the operations). To determine the abso-
lutely necessary conversions a static analysis is needed to determine where
conversions are to be placed.

This approach may not be desirable either, since these conversions are costly
and it is questionable if it would result in better runtimes.

1 ...
2 let x: u8 = 13;
3 let y: u8 = x & 2;
4 ...

Pseudo-code containing the needed conversions:
1 ...
2 x = 13
3 y = toInt(toBV8(x) & toBV8(2))
4 ...

Listing 18: Example of using conversions to handle bitwise operations and
integers clashing

Speculation: More efficient approaches are to be found somewhere between
these two methods. The goal of such an approach should probably be to
limit the spread of taint, by finding well placed conversion which hinder the
wide spread of taint to such an extent that it would reduce the runtime of
the verification. See Listing 19. To find this balance a considerable amount
of empirical analysis on runtimes would be required.

1 let v: u8 = 42;
2 let w: u8 = 1;
3 let x = v + w;
4 let y = x - 1;
5 let z = v << 2;
6 assert!(z & 1 == 1);

Listing 19: Example of how bitvector-taint can affect a whole program even
though it is highly local. Line 5 adds v and z. Then in line 3 v affects w
and x. And line 4 finally adds y to the tainted variables. So all variables are
marked to be bitvectors, but only z ’needs’ to be for the BitAnd operation
in line 6. So instead of tainting all variables, two conversions would suffice.
Note also that v << 2 could be replaced with v * 2 * 2.

28

5.3. Implementation

Used Features Comments

from_int, from_nat
Create bitvector from a signed/unsigned in-
teger. Used to convert constant integers to
bitvectors.

neg Unary minus.
add, sub, mul, udiv Arithmetic operations on bitvectors.
and, or, xor, not Bitwise operations on bitvectors.

shl, lshr, ashr
Shift operators, where logical right shift (lshr)
is used on Rust’s u* integers and arithmetic
right shift (ashr) i* integers.

Unused Features Comments
to_int, to_nat Conversion to a signed/unsigned integer.

nand, nor, xnor
Bitwise operations with no equivalent operator
in Rust.

Table 5.2: Overview of the functions on bitvectors provided by the BVFactory

5.3 Implementation
Apart from the implementation of the static analysis in Section 5.3.3, this
implementation’s general approach is analogous to the implementation for
floating-point numbers in Section 4.1.

5.3.1 The Silver BVFactory
The change to the Silver language mentioned in the implementation for
floating-point functionality also added AST nodes representing SMT-Lib
fixed-sized bitvectors and their associated functions [16]. Such bitvectors are
created using the BVFactory class. It is also through this class that on access
the functions operating on bitvectors. A BVFactory(size: Int) is created
by providing it with the size of the bitvector. The functions on bitvectors
provided by the factory can be found in Table 5.2.

29

5. Verifying Bitwise Operations

5.3.2 Changes to VIR

A new type has been added to the VIR-AST for bitvectors of the sizes of the
built-in integers of Rust. See Listing 20 below. Note that expressions of this
type are only created as part of the later described static analysis. This is in
contrast to the floating-points, which are encoded directly from the MIR.

1 pub enum Type {
2 ... // Previously existing types
3 Bitvector(BVSize),
4 }
5

6 pub enum BVSize {
7 BV8,
8 BV16,
9 BV32,

10 BV64,
11 BV128,
12 }

Listing 20: VIR bitvector type. The enum variants of BVSize correspond to
the sizes of native integers in Rust.

I order to represent constant bitvectors, a new type of constant expression
has been added as well. See Listing 21 below. The bit-pattern of a constant
bitvector is stored as an unsigned integer of the same size.

1 pub enum Const {
2 ... // Previously existing kinds of constant expressions
3 Bitvector(BVConst),
4 }
5

6 pub enum BVConst {
7 BV8(u8),
8 BV16(u16),
9 BV32(u32),

10 BV64(u64),
11 BV128(u128),
12 }

Listing 21: VIR Const expression for bitvecotrs, where the unsigned inte-
ger in the BVConst enum hold the bit-pattern of the bitvector it represents.
The bitvector constants in the final viper program are created by a call to
from_nat on these unsigned integers.

30

5.3. Implementation

Unary and binary operations on bitvectors are then turned into calls of the
respective function from an appropriately sized BVFactory when the VIR is
translated to the Viper language. Here the size of the bitvectors is needed to
create the factory. This information is taken from the type.

5.3.3 Static Analysis Implementation

The broad approach to implementing the analysis goes as follows:

1. Run analysis on each method after optimizations.

2. Modify method according to the result of the analysis.

3. Store relevant information in the Encoder-struct.

4. Add new predicates

5. Add new fields

All code relevant to this implementation is located in bitvector_analysis.rs.
Its main component is the BVAnalysis-struct and its associated functions in
impl BVAnalysis, as well as other helper functions. See the BVAnalysis-
struct fields and their purpose int the code in Listing 22.

1 pub struct BVAnalysis {
2 // Method to be analyzed
3 method: CfgMethod,
4 // Map from all tainted fields and variables to their replacements
5 replacements: HashMap<Expr, Expr>,
6 // New fields which are used in the replacements
7 pub new_fields: HashSet<Field>,
8 // New predicates for predicates called on tainted variables
9 pub new_predicates: HashSet<String>,

10 }
Listing 22: Declaration of the BVAnalysis-struct.

The static analysis is performed after optimizations have been performed
on a method in procedure_encoder.rs. This is done by creating a new
BVAnalysis-struct and calling its get_new_method function with the method
to be analyzed. This functions fills the fields of the BVAnalysis-struct and
returns the method with the appropriate replacements performed. The anal-
ysis itself can be performed by calling the struct’s run method. There is a
call to this function inside get_new_method as well.

The analysis follows the description of the analysis in the previous section
and takes the following form in Rust code:

31

5. Verifying Bitwise Operations

1 let mut continue_analysis = true;
2 while continue_analysis {
3 let pre_size = self.replacements.len();
4 for blk in &basic_blocks {
5 for stmt in &blk.stmts {
6 self.check_stmt(&stmt);
7 }
8 }
9 continue_analysis = pre_size < self.replacements.len();

10 }

The function check_stmt matches the given statement and checks the state-
ments substatements and/or expressions with check_stmt and check_expr
respectively. The only statement-kind given special treatment are assign-
statements. If the right-hand side of the assignment is tainted, the left-hand
side and its replacement are added to the replacements-map.

The function check_expr matches the given expression, and if it is a bit-
wise binary operation, is adds the subexpressions and their replacements to
replacements.

5.3.4 Determining Replacements of Tainted Expressions

The replacement type is determined by the reference type of the tainted local
variable. Say the analysis determines, that _x.val_int is tainted. And _x
has type TypedRef(u32), the replacement is _x.val_bv32, where _x now has
type TypedRef(bv32). In the same turn _x with its new type is also added as
a replacement for the old _x. And bv32 with type Bitvector(BVSize::BV32)
is added to new_fields.

For composite types such as tuples or structs, constructing correct replace-
ments gets more involved. With tuples, for example, the string describing
the reference type of the variable has to be correctly altered. Say, we have a
variable _x of the following type:

1 Ref(tuple2$u8$u8)

And we found that the field use _x.tuple_0 is tainted. We need to get the
index of the tainted tuple value from the field name, in this case 0. So the
type of the first element of the tuple has to be changed, such that the the
replacement variable has the following type:

1 Ref(tuple2$bv8$u8)

For structs the same has to be done, but instead of an index we have to
work with the name of the struct field. This part of the implementation was
not built to completion by the end of the thesis. The main difficulty lies in

32

5.3. Implementation

the correct string manipulation and especially for more nested structs and
tuples, the implementation crashes regularly.

5.3.5 Limitations
The implementation is ripe with errors and regularily fails in testing. Espe-
cially the use of composite types such as structs and enums often results in
errors, because of the difficulty of extracting and propagating the necessary
information from nested fields to construct all the correct replacements. The
thesis failed to engineer a complete and error-proof way of doing this. This
and the lack of sophistication in the methodology for handling the com-
bined use of the integer and bitvector theory suggests a new approach and
implementation is desirable in the long term.

33

Chapter 6

Conclusion

Verifying programs using floating-points and bitwise operations is hard, and
the verification process of both is lacking in efficiency.

Concerning floating-points operations, the implementation written as part
of this thesis allows Prusti to verify programs using native floating-points.
In practice however, it proves to be very difficult to arrive at meaningful
guarantees about the behavior of said floating-points. This is due to the
idiosyncrasies of floating-points, causing their verification to be very ineffi-
cient.

The support for bitwise operations is still lacking and not ready for de-
ployment. The static analysis described in this thesis can be used for the
verification of programs using bitwise operations. But future work may find
better ways of handling the combined use of bitvectors and integers in veri-
fication. But even with a more efficient verification technique, an implemen-
tation may face the same limitations as encountered with floating-points.

The current verification tools still require research and improvement to allow
for practically efficient verification of floating-points and bitwise operations.
An empiric study into which kinds of operations/programs are efficiently
verifiable and which are practically impossible to verify at the current state
of verification tools may also be the subject of future work.

35

Bibliography

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), volume 3,
pages 147:1–147:30. ACM, 2019. doi:10.1145/3360573.

[2] Peter Backeman, Philipp Rümmer, and Aleksandar Zeljić. Interpo-
lating bit-vector formulas using uninterpreted predicates and pres-
burger arithmetic. Formal Methods in System Design, May 2021.
URL: https://doi.org/10.1007/s10703-021-00372-6, doi:10.1007/
s10703-021-00372-6.

[3] Tao Bao and Xiangyu Zhang. On-the-fly detection of instability prob-
lems in floating-point program execution. SIGPLAN Not., 48(10):817832,
October 2013. URL: https://www.cs.purdue.edu/homes/xyzhang/
Comp/oopsla13.pdf, doi:10.1145/2544173.2509526.

[4] Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. Automatic detec-
tion of floating-point exceptions. 48(1):549560, January 2013. URL:
https://people.inf.ethz.ch/suz/theses/TV-thesis.pdf, doi:10.
1145/2480359.2429133.

[5] Sylvie Boldo and Jean-Christophe Filliatre. Formal verification of
floating-point programs. In 18th IEEE Symposium on Computer Arith-
metic (ARITH ’07), pages 187–194, 2007. URL: https://www.lri.fr/
˜filliatr/ftp/publis/caduceus-floats.pdf, doi:10.1109/ARITH.
2007.20.

[6] M. Brain, C. Tinelli, P. Ruemmer, and T. Wahl. An automat-
able formal semantics for ieee-754 floating-point arithmetic. In
2015 IEEE 22nd Symposium on Computer Arithmetic, pages 160–167,
2015. URL: http://smtlib.cs.uiowa.edu/papers/BTRW15.pdf, doi:
10.1109/ARITH.2015.26.

37

http://dx.doi.org/10.1145/3360573
https://doi.org/10.1007/s10703-021-00372-6
http://dx.doi.org/10.1007/s10703-021-00372-6
http://dx.doi.org/10.1007/s10703-021-00372-6
https://www.cs.purdue.edu/homes/xyzhang/Comp/oopsla13.pdf
https://www.cs.purdue.edu/homes/xyzhang/Comp/oopsla13.pdf
http://dx.doi.org/10.1145/2544173.2509526
https://people.inf.ethz.ch/suz/theses/TV-thesis.pdf
http://dx.doi.org/10.1145/2480359.2429133
http://dx.doi.org/10.1145/2480359.2429133
https://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
https://www.lri.fr/~filliatr/ftp/publis/caduceus-floats.pdf
http://dx.doi.org/10.1109/ARITH.2007.20
http://dx.doi.org/10.1109/ARITH.2007.20
http://smtlib.cs.uiowa.edu/papers/BTRW15.pdf
http://dx.doi.org/10.1109/ARITH.2015.26
http://dx.doi.org/10.1109/ARITH.2015.26

Bibliography

[7] Martin Brain, Cesare Tinelli, Philipp Ruemmer, and Thomas Wahl.
An automatable formal semantics for ieee-754 floating-point arith-
metic. In 2015 IEEE 22nd Symposium on Computer Arithmetic, pages 160–
167, 2015. URL: http://smtlib.cs.uiowa.edu/papers/BTRW14.pdf,
doi:10.1109/ARITH.2015.26.

[8] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and
Alexey Solovyev. Efficient search for inputs causing high floating-point
errors. SIGPLAN Not., 49(8):4352, February 2014. URL: https://doi.
org/10.1145/2692916.2555265, doi:10.1145/2692916.2555265.

[9] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and
Cesare Tinelli. A tale of two solvers: Eager and lazy approaches to bit-
vectors. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification, pages 680–695, Cham, 2014. Springer International Publish-
ing.

[10] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008), pages 1–84, 2019. doi:10.1109/IEEESTD.
2019.8766229.

[11] SMT-Lib Initiative. Smt-lib theory of fixed sized bitvectors, 2021. URL:
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.
shtml.

[12] SMT-Lib Initiative. Smt-lib theory of integers, 2021. URL: https://
smtlib.cs.uiowa.edu/theories-Ints.shtml.

[13] Wonyeol Lee, Rahul Sharma, and Alex Aiken. Verifying bit-
manipulations of floating-point. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’16, page 7084, New York, NY, USA, 2016. Association for
Computing Machinery. URL: https://theory.stanford.edu/˜aiken/
publications/papers/pldi16b.pdf, doi:10.1145/2908080.2908107.

[14] David Monniaux. The pitfalls of verifying floating-point com-
putations. ACM Trans. Program. Lang. Syst., 30(3), May 2008.
URL: https://hal.archives-ouvertes.fr/hal-00128124/file/
floating-point-article.pdf, doi:10.1145/1353445.1353446.

[15] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Check-
ing, and Abstract Interpretation, pages 41–62, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

38

http://smtlib.cs.uiowa.edu/papers/BTRW14.pdf
http://dx.doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1145/2692916.2555265
https://doi.org/10.1145/2692916.2555265
http://dx.doi.org/10.1145/2692916.2555265
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://theory.stanford.edu/~aiken/publications/papers/pldi16b.pdf
https://theory.stanford.edu/~aiken/publications/papers/pldi16b.pdf
http://dx.doi.org/10.1145/2908080.2908107
https://hal.archives-ouvertes.fr/hal-00128124/file/floating-point-article.pdf
https://hal.archives-ouvertes.fr/hal-00128124/file/floating-point-article.pdf
http://dx.doi.org/10.1145/1353445.1353446

Bibliography

[16] Viper Development Team. Pull request 428: Backend support for smtlib
types (particularly bitvectors and floats), 2020. URL: https://github.
com/viperproject/silver/pull/428.

[17] Viper Development Team. Pull request 527: Fix encoding of fp.min
and fp.max and add a test, 2021. URL: https://github.com/
viperproject/silver/pull/537.

[18] Viper Development Team. Pull request 537: Fix bvlshr name and add
a test, 2021. URL: https://github.com/viperproject/silver/pull/
537.

[19] Z3 Development Team. Z3. floatingpoint module documenta-
tion, 2021. URL: https://z3prover.github.io/api/html/ml/Z3.
FloatingPoint.html.

[20] Aaron Turon. Abstraction without overhead: traits in rust, 2015. URL:
https://blog.rust-lang.org/2015/05/11/traits.html.

[21] Aaron Turon. Fearless concurrency with rust, 2015. URL: https://
blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html.

[22] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura.
Efficiently solving quantified bit-vector formulas. In Formal Methods in
Computer Aided Design, pages 239–246, 2010.

[23] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei. A genetic al-
gorithm for detecting significant floating-point inaccuracies. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 529–539, 2015. URL: https://damingz.github.io/
papers/icse15.pdf, doi:10.1109/ICSE.2015.70.

[24] Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and
Zhendong Su. Detecting floating-point errors via atomic conditions.
Proc. ACM Program. Lang., 4(POPL), December 2019. URL: https://
doi.org/10.1145/3371128, doi:10.1145/3371128.

39

https://github.com/viperproject/silver/pull/428
https://github.com/viperproject/silver/pull/428
https://github.com/viperproject/silver/pull/537
https://github.com/viperproject/silver/pull/537
https://github.com/viperproject/silver/pull/537
https://github.com/viperproject/silver/pull/537
https://z3prover.github.io/api/html/ml/Z3.FloatingPoint.html
https://z3prover.github.io/api/html/ml/Z3.FloatingPoint.html
https://blog.rust-lang.org/2015/05/11/traits.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://damingz.github.io/papers/icse15.pdf
https://damingz.github.io/papers/icse15.pdf
http://dx.doi.org/10.1109/ICSE.2015.70
https://doi.org/10.1145/3371128
https://doi.org/10.1145/3371128
http://dx.doi.org/10.1145/3371128

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Verifying Rust Programs Using Floating-Point and Bitwise Operations

LukasFriedlos

Zurich, 16.08.21

	Contents
	Introduction
	Background
	Rust
	Viper
	Prusti
	The Verification Pipeline
	Features and Usage

	Verification Challenges
	Floating-Points
	Bitwise Operations

	Verifying Floating-Point Operations
	Implementation
	Overview
	FloatFactory from the Silver Language
	MIR to VIR
	VIR to Viper

	Verifying Programs
	Verification in Practice
	Verifying Real-World Programs

	Benchmarks

	Verifying Bitwise Operations
	Preliminaries
	Towards an Efficient Use of the Bitvector Theory
	Static Analysis for Determining Bitvector-Taint
	Deficiencies and Other Possible Approaches

	Implementation
	The Silver BVFactory
	Changes to VIR
	Static Analysis Implementation
	Determining Replacements of Tainted Expressions
	Limitations

	Conclusion
	Bibliography

