
Termination Analysis of Heap-Manipulating
Programs by Abstract Interpretation

Master’s Thesis Project Description

Lukas Neukom
Supervised by Dr. Caterina Urban

1 Introduction

Turing proved in 1936 that the Halting Problem is undecidable. A common approach to
relax the problem is to allow ”unknown” as a result. This means that the problem can
now be solved but the challenge is to return ”unkown” as seldom as possible.

Since termination guarantees are very important for software reliability much research
has been done to develop practical termination provers. Over the last decades powerful
termination provers such as AProVE [2], Ultimate Automizer [1] and FuncTion [3] have
been developed. Since 2003 there exists an annual termination competition1 which
features categories such as termination of term rewriting, termination of java bytecode
programs, termination of C programs and more.

FuncTion is a static analyzer which is able to infer piecewise-defined ranking functions
for programs written in a C-like language. It is based on abstract interpretation, a
mathematical theory of sound approximation of the semantics of a computer program.

2 Core Goals

FuncTion currently provides only limited support for proving termination of heap-
manipulating programs. The core goal of this project is the development of a new static
analysis based on abstract interpretation for proving termination of heap-manipulating
programs.

A major difficulty is that the termination often depends on the shape of the heap
which might be an unbounded structure. For example, the program shown in Listing 1
creates an infinite number of possible heaps.

List createList(int n) {

List l = null;

while (n > 0) {

l = new List(l);

1http://termination-portal.org/wiki/Termination_Competition

1



--n;

}

return l;

}

Listing 1: Creating a acyclic singly linked list

This means that an analysis has to summarize the heap while still retaining informa-
tion needed for termination. Another problem is that languages with pointer arithmetic
have undefined behavior for memory unsafe programs (e.g. out-of-bound writes on ar-
rays). Because of this some simplifications will be made and in a first step, we will only
consider programs where termination depends on the size of an array or a singly linked
list. The core goals of the project include the following steps:

Literature Get an idea of the state-of-the-art termination analysis methods and heap
abstractions.

Examples Collect interesting examples and find arguments for their termination (or
non termination) to see what information needed as part of the abstraction. One such
example is shown in Listing 2.

void traverseList(List l) {

while (l != null) {

l = l->next;

}

}

Listing 2: Traversing a singly linked list

This program terminates on acyclic singly linked lists since the length of the list
pointed to by l decreases in each iteration. Typical programs that follow this pattern
are min, max, contains, fold, reduce, etc. A more complicated example, which finds a
solution to a specific instance of Josephus problem2, is shown in Listing 3.

List josephus(List l) {

while (l != l->next) {

l->next = l->next ->next;

l = l->next;

}

return l;

}

Listing 3: Josephus problem

The original assumption for the input of this counting-out game is that the input is a
cycle. But the algorithm terminates for every possible input. Since either the length of
the list decreases if l points to a node not contained in a cycle or the size of the cycle
decreases. This example poses the additional problem that the structure of the heap is
changed during execution.

2https://en.wikipedia.org/wiki/Josephus_problem

2



Design and formalization of the termination analysis Based on the examples we will
develop an abstraction which can be used to prove termination for programs with the
mentioned simplifications.

We are investigating an approach similar to the termination analysis currently imple-
mented in FuncTion. Using a backwards analysis sufficient preconditions are searched
for a program to terminate. We are working on a heap abstraction that allows us to
reason about cyclic and acyclic portions of singly linked lists. The designed termination
analysis then has to be formalized.

Implementation The termination analysis is then implemented in FuncTion. This
includes extending the parser with needed constructs for heap manipulation.

Experimental evaluation As last step the implemented termination analysis will be
compared to state-of-the-art termination analyzer such as APoVE and Ultimate Atom-
izer.

3 Possible Extensions

Termination depending on values A possible extension is the set of program where
termination depends on values stored in the heap. Examples are shown in Listing 4 and
5.

int A[3] = {0, 0, 0};

while (A[2] < 10) {

A[2]++;

}

Listing 4: Program where termination depends on a value of the array

void traverseList(List l) {

while (l->value != 5) {

l = l->next;

}

}

Listing 5: Program where termination depends on a value of the list

This means that we have to extend our abstraction to be able to reason about the
possible values stored in the heap.

Other data structures Another extension is to generalize the analysis to other data
structures such as doubly linked lists, trees or graphs. Listing 6 shows an example
program that finds the minimum in a binary search tree. Example graph algorithms are
breath-first search, shortest path, etc.

int min(Node n) {

while (n->left != null) {

n = n->left;

3



}

return n->value;

}

Listing 6: Minimum in a binary search tree

Pointers Another extensions is to allow pointers together with pointer arithmetic as in
C or C++. Since memory unsafe programs can have undefined behavior those programs
would have to be checked for memory safety first. Listing 7 shows an example where
accessing a location outside of an arrays boundary results in undefined behavior3.

int A[4] = {0, 1, 2, 3};

int *p = arr + 5;

Listing 7: Memory unsafe program in C++

Other liveness properties Another extensions is to generalize the analysis to other
liveness properties, in particular guarantee (”something good occurs at least once”),
recurrence (”something good occurs infinitely often”) or persistence (”something good
eventually happens continuously”) properties [4].

References

[1] Matthias Heizmann et. al. Ultimate automizer with smtinterpol. In TACAS, pages
641–643, 2015.

[2] Thomas Ströder, Cornelius Aschermann, Florian Frohn, Jera Hensel, and Jürgen
Giesl. Aprove: Termination and memory safety of c programs. In TACAS, pages
417–419, 2015.

[3] Caterina Urban. FuncTion: An abstract domain functor for termination (competition
contribution). In TACAS, pages 464–466, 2015.

[4] Caterina Urban and Antoine Miné. Proving Guarantee and Recurrence Temporal
Properties by Abstract Interpretation. In VMCAI, pages 190–208, 2015.

3http://en.cppreference.com/w/cpp/language/ub

4


