Supporting Sequence Axiomatization on the SM'T Solver
Level for the Viper Project
Project Description

Lukas Schar
Supervisors: Arshavir Ter-Gabrielyan, Peter Miiller
ETH Ziirich, Switzerland

November 26, 2016

1 Introduction

The Viper framework! is an automatic deductive software verifier striving to achieve
a good compromise between interactivity and full automation. Users benefit from an
SMT solver for automatic verification of formulas, yet they only need to provide code
annotations instead of full proof assistance. The annotated code is translated into the
intermediate language Silver, from which it can be translated further by multiple back
ends to the SMT solver level.

The power of this solver is based on the theories it incorporates, which include for
example first order logic and linear arithmetic. For program verification, sequences are
another interesting theory. They can represent the concept of connected data structures
such as arrays or lists, and are therefore often used.

Viper uses the Z3 SMT solver? in a version which does not use such a sequence
theory. Instead it encodes sequences as partially axiomatized mathematical functions.
Unfortunately, this implementation has some weaknesses regarding completeness and
performance. However, the Z3 solver has recently been upgraded with its own sequence
and string theory. The goal of this project is to investigate the problems of Viper’s
current approach based on the previous version of the Z3 solver and compare its per-
formance with the new interface of Z3, and use the newly provided functionality of
73 to possibly present a more stable solution, which improves performance as well as
completeness.

"http:/ /viper.ethz.ch
https://github.com/Z3Prover/z3
3http://risedfun.com/Z3/tutorial /sequences



2 Core Goals

The current implementation of sequence support in the Viper framework encodes se-
quences as a set of partially axiomatized mathematical functions which are passed on to
Z3. This encoding is incomplete, meaning automated verification of correct Viper pro-
grams is not ensured. It also leads to performance problems, as the heavily used universal
quantification of the sequence axioms can introduce intricate triggering problems, caus-
ing strange performance drops. The first part of the project will investigate the sequence
axioms and the interfaces used in Viper to comprehend the current implementation and
to develop a better understanding of some present problems.

The next step will be collecting several Viper programs that exhibit problems which
can be traced back to the current sequence implementation. These programs can be
used to further understand the problems of the axiomatization, as they provide tangible
examples for the complications the current implementation produces.

Following this the new Z3 sequence support will be studied. We will try to improve
the programs collected in the previous part of the project by manually encoding them
with the new interface. This will improve the understanding of the interface and might
highlight some of its potential restrictions. At this point we will also perform first
evaluations by comparing Z3’s execution time of the manually encoded programs to the
execution time with the current implementation.

As the last major part of the project, we will alter Silicon, Viper’s existing symbolic
execution engine, to use the new Z3 support instead of the existing encoding. To conclude
the project, we will compare this variant with the original Silicon back end with respect
to execution time and memory footprint using the Viper test suite as input.

In short, this project will cover:

e Understanding the existing sequence axioms and interfaces.

e Collecting problematic Viper examples which include sequence axioms.

e Understanding the Z3 interface for sequences, manually encoding simple examples.
e Evaluating these Z3 encoded examples based on runtime.

e Modifying the current symbolic execution engine for native sequence support in
73.

e Collecting statistics on performance changes to evaluate the new implementation.

3 Extensions

e Finding heuristics for deciding when to use sequence axioms or Z3’s built-in se-
quences in concrete situations.

e Investigate the sequence encoding of Carbon (Viper’s Verification Condition Gen-
eration back end).



e Improve debugging support for sequences.

e Enhance array support.

4 Schedule
Task Estimated time
Finding/Encoding problematic examples with sequences in Viper | 3/4 month
Manually encoding examples with Z3 sequences 1/2 month
Preparing the initial project presentation 1/4 month
Evaluating the encoded Z3 examples 1/4 month
Modifying Silicon and implement new interface 1 month
Collecting statistics for different sequence approaches 1/4 month
Extensional tasks 2 months
Writing report 3/4 month
Preparing the final project presentation 1/4 month
6 months




