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ETH Zürich

May 28, 2017



Contents

1 Introduction 4
1.1 Viper overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Manual Investigation 7
3.1 Selecting test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Interpretation of measurements . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Enabling Z3 Sequences in Viper 9
4.1 Replacement of the previous functions . . . . . . . . . . . . . . . . . . . . 9
4.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Code changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Silicon classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Silicon resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 Silver classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.4 Silver resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Experimental Procedure 15
5.1 Testing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Selecting test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Interpretation of Experimental Results 18
6.1 Matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Mismatching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Non-termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Conclusion 25

8 References 26

2



A Z3 examples 28

B Declaration of originality 32

3



1 Introduction

1.1 Viper overview

The Viper Project is a collection of tools for software verification, aiming to allow ver-
ification of programs with persistent state, using reasoning in the style of separation
logic [1]. It is based on the intermediate language Silver [2]. From there, the pro-
gram is translated to the SMT1 solver level, where the program will be checked for it’s
correctness. This can either be done by the verification condition generation back-end
Carbon [3], or by the symbolic execution engine Silicon [4]. Carbon will translate the
program further into another intermediate language, Boogie [5], which then uses the Z3
SMT solver [6] for verification. Silicon, in turn, uses Z3 directly.

1.2 Motivation

The power of an SMT solver is determined by the theories it incorporates. These include
among others first order logic or linear arithmetic. Many further theories exist, and
for software verification an important one is the theory of sequences. Sequences can
represent connected data structures such as arrays or lists. As most meaningful programs
contain such structures, it follows that Viper should incorporate such a theory. In the
case of Silicon, this theory has so far been encoded via first-order axioms by Silicon itself.
Z3 did not provide a theory of it’s own. However, in version 4.5.0 [7] Z3 has received its
own sequence theory.

Silicon’s current sequence implementation can show incompleteness regarding se-
quences. Incompleteness means that the verifier is not able to prove the correctness of
some actually correct programs. One approach to a possible solution of these weaknesses
is to replace the current theory by the one of Z3.

1.3 Goal

This project modifies the existing Silicon implementation, such that it uses the new
sequence theory provided by Z3. It also experimentally compares its performance and
completeness to the existing approach. Baseline for this comparison was the Viper test
suite, a collection of Silver files which cover multiple functional aspects of Viper. We
investigated small Silver examples by hand in a first step and in a second step changed
the implementation of sequences in Silicon. Lastly, we checked the new implementation
with the Viper test suite and evaluated the results.

1Satisfiability Modulo Theory
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2 Preliminaries
In this section we will introduce Viper’s architecture and discuss the aspects of the
software which are most important for this thesis.

Figure 1: Overview of Viper’s architecture [8]

2.1 Silver

Silver is the intermediate language of Viper. It reads very much like normal code,
however it can be annotated to include contracts, meaning pre- and postconditions for
methods and invariants for loops. These provide Viper with the information on what
conditions should hold to consider the program correct.

In the most basic cases, Silver files are just collections of methods which should be
verified. However, Silver also allows the definition of other constructs, such as predicates
and functions. It is also possible to define domains, which are a way to define custom
object types with fields and their own functions.

2.2 Z3

Z3 is Viper’s SMT solver, based on the SMT-LIB 2.0 standard [9]. It is used in both of
the possible back-ends of Viper and is effectively the heart of the verification. It uses a
stack of user provided formulas and tries to find a model that satisfies all of these.
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Z3 supports the definition of custom types, internally called sorts, and functions. A
function is similar to a method in programming. It has a name, possibly several inputs
of given sorts, and an output of a specific sort. They are however not implemented
with statements. To determine their output, they have to be supported with assertions.
These allow the user to specify what output is expected under some given conditions.

Listing 1 shows an example of such a function with a quantified assertion. In it, we
define the function foo, which takes an integer and returns an integer. The assertion
specifies that for all values of x, foo should return zero if x is negative, and 1 if x is
non-negative. The pattern is used to determine when Z3 should actually instantiate
the assertion, in this case whenever there is an expression of the form foo x. Without
the assertion following the function declaration Z3 is free to choose any value for the
function.

1 (declare -fun foo (Int) Int)

2 (assert (forall ((x Int)) (! (and

3 (=> (< x 0) (= (foo x) 0))

4 (=> (>= x 0) (= (foo x) 1)))

5 :pattern ((foo x))

6 )))

Listing 1: Example SMT2 code quantified function.

2.3 Silicon

Silicon is one of Viper’s back-ends, using a symbolic execution approach. To determine
if assertions of a method in a Silver file hold, Silicon assumes the method’s preconditions
and all the knowledge it gathers by symbolically executing the statements up to the assert
statement. After that it adds the negation of the assertion to the collected constraints
and checks if these are now unsatisfiable. If that is the case, the assertion must hold.

To verify a program, Silicon interfaces with Z3. It generates the constraints that
should hold in a method and uses Z3 to check their satisfiability. The first part of the
constraints it provides to Z3 is the so called preamble. It sets up configuration parameters
for Z3 and also produces the definitions of sorts that are not contained in Z3, for example
sets and sequences. It also contains the function definitions and axioms for these types.
Following this, it generates code for the functions and predicates.

Afterwards, Silicon verifies all methods in a given Viper file. When it encounters an
error in a method, it stops verification of that method and continues on the next. This
means, that not all errors may be found in a file, but if there are none, it is guaranteed
to be true.

2.4 Sequences

So far, Silicon has used sequences which are implemented in a style analogous to the
example in listing 1. The sequence type is a custom sort defined by Silicon, and the
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functions are custom defined functions which all have quantified assertions to define
their behavior.

The sequences implemented by Z3 are based on a constructor. The constructor can
take any sort sort known to Z3, be it built-in or custom defined. This creates a new
sort. The functions are built in and .

3 Manual Investigation
The first step of the project was to investigate a very short and simple Viper example
containing sequences. We translated it to SMT2 code and then transcribed it to the
new syntax by hand. Silicon was executed with the Viper file as input to generate the
Z3 code equivalent to it. This Z3 code was then manually rewritten to use the new
sequence syntax of Z3, using the information from Z3’s online sequence tutorial [10].
This phase was used as a first step towards understanding the new implementation, and
to gather first statistics for performance and possible improvements in completeness over
the existing implementation.

3.1 Selecting test cases

For the manual investigation, short examples from the Silicon and Silver issue trackers
on Bitbucket were considered. This is due to the fact, that Z3 code can get relatively
long and unreadable even for medium sized examples.

Eventually, we chose the method m04simplified from Silver issue 80 [11], found on
Silver’s issue tracker. It can also be found on the statistics gathering repository of this
project [13]. It contains some sequence functions which could be replaced easily, and it
exhibits erroneous behavior. The following list shows what functions were used:

• Declaration

• $Seq.singleton

• $Seq.length

• $Seq.contains

• $Seq.equal

• $Seq.length

3.2 Measurements

During this phase, we investigated if Z3’s new sequence theory could provide the support
to deliver correct results where the current version couldn’t. We also compared the
execution time of Z3 with both variants. To create the original version of the SMT2 code,
Silicon was run with –z3LogFile command line argument, which allows the specification
of a file which will contain all interactions of Silicon with Z3. To produce the modified
file, we searched the file created in the previous step for all occurrences of the string
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"$Seq", which yields all places where a sequence was used. These places where then
edited to produce semantically equivalent code. However, the preamble was not edited.

To check if the program is now executed correctly, we used the fact that Silicon’s
verification result is based on unsatisfiability, and that the method code is located at the
very end of the SMT2 file. After Z3 assumes the negation of the assertion that should
be checked, the check of satisfiability should return a negative result. The result of this
check is emitted by Z3. Therefor, we could verify if the new implementation solves the
behavior by simply running Z3 with the modified code again and checking if it returns
unsat.

To evaluate the performance we executed Z3 several times with both the original and
the modified SMT2 files as input. Because this test is only a few lines long and the veri-
fication time of one run is only very short, we chose a large number of runs to eliminate
possible noise, in this case 5,000 times. The base tool for the time measurement was the
Powershell Measure-Command cmdlet [12]. This cmdlet executes a given command and
measures its execution time. The measureManual.py script [13] uses this cmdlet to run
Z3 with both the original and modified SMT2. For each run it parses the timing output
of Measure-Command and eventually sums them up and emits them into a csv file.

3.3 Interpretation of measurements

Running Z3 with the modified SMT2 file as input yielded the same output compared to
using the original file. This means that the new Z3 sequences cannot solve this method’s
problem specifically. From this we concluded, that certainly not all problems will be
solved by the new implementation.

The results of the performance measurements can be seen in table 1. As we can see,
the difference in execution time is negligible with only 1 second over the course of 3
minutes of total execution time over 5,000 runs. This is not surprising, considering the
small relative number of statements changed in the SMT2 file. In table 2 we can see the
corresponding numbers.

Version Execution time in sec

Original 181.4

Modified 180.1

Table 1: Total run time of 5,000 ex-
ecutions of Z3 with a given version of
m04simplified.

Total statements 140

Changed statements 8

Changed functions 16

Table 2: Number of (changed) state-
ments during manual investigation.

The conclusions from this phase of the project are, that there will be cases that did
not verify in Silicon so far and still won’t do so using the new theory. The next steps
were the enabling of the new theory and automatic testing on larger examples.
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4 Enabling Z3 Sequences in Viper
To support the new sequence theory, several changes to the code of Silicon had to be
made. This section will describe these changes, and explain how the previously supported
mathematical functions were replaced.

4.1 Replacement of the previous functions

Silicon provides 12 functions and a declaration syntax for sequences of all types. Ad-
ditionally, there is the range function specific to integer sequences, which returns a
half-open interval. To provide an adequate replacement, each of those needs to be im-
plemented using the Z3 interfaces. Table 3 gives an overview of each function and how
it was replaced. Note that native support in this table means that it is enough to re-
place the function name which Silicon provides with the equivalent Z3 function name
to get semantically equivalent code. Possible support, on the other hand, means that
the function can be replaced by a construct of different Z3 sequence functions to reach
a semantically equivalent result.

Silicon function name Support by Z3 Notes

$Seq.append native via ”seq.++”

$Seq.empty native via ”as seq.empty (Seq $Type$)”

$Seq.equal native via ”=”

$Seq.length native via ”seq.len”/aliased in Z3

$Seq.singleton native via ”seq.unit”

Declaration possible implemented by Z3 sort alias

$Seq.build possible unused in Silicon

$Seq.contains possible aliased in Z3

$Seq.drop possible

$Seq.index possible implemented axiomatized

$Seq.range possible implemented axiomatized

$Seq.sameuntil possible unused in Silicon

$Seq.take possible

$Seq.update possible

Table 3: Overview of function support

The functions which have native support are replaced by their Z3 counterpart (which
can be seen in the notes column of table 3) directly, except for $Seq.length. The way it
and the other non-native functions are implemented will be explained in the following
passage. For each of these functions (except for $Seq.range), there is either a small code
example or the new axiomatization in appendix A. We also provide a small comparison
of all functions following the explanations.
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$Seq.length

Theoretically, $Seq.length is easily replaced by the function seq.len provided by Z3.
However, using it directly with the $Seq.range function caused problems, which we will
discuss in section 4.2. To avoid those, we rewrote the axiomatization of $Seq.length such
that it always returns the same value as seq.len would.

Declaration

Although the declaration of sequences is natively supported in Z3, its syntax is prob-
lematic for Silicon. Therefor, rather than replacing the current syntax used to declare
a sequence, we use Z3’s feature to define a sort. The command define-sort allows us to
use a custom sort symbol as another name for another sor in Z3 [14]. This makes Z3 use
the existing declaration as an alias of its native sequences.

$Seq.build

Even though $Seq.build is not used currently in Silicon, it would be possible to use
seq.++ and seq.unit to construct a sequence generated from a sequence and a single
element.

$Seq.index

This function can’t be replaced directly, because Z3’s equivalent, seq.at, does not return
the value of the element at a specified position, but instead returns a sub-sequence of
length one at that position. To solve this problem, $Seq.index is not replaced but instead
it’s axioms are rewritten. We introduce a new helper function, which returns the element
of a length one sequence. We then let $Seq.index return the value of that helper function
on the sub-sequence at the given position.

$Seq.update

This function is supposed to return a new sequence with the same contents as the
sequence provided as argument, with the exception of the specified element, which should
be changed. There is no Z3 function that can provide this functionality. The closest is
seq.replace, but this replaces the first occurrence of a specified element. However, the
seq.extract function can be used in conjunction with seq.++ and seq.unit to construct
a new sequence by concatenating the parts before and after the element that should be
updated together with the length one sequence of the new value at the updated position.

$Seq.contains

Even though there is a function seq.contains in the Z3 syntax, it behaves slightly different
to the one of Silicon. In the original version of Silicon, $Seq.contains checks if a single
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element is contained in a sequence. The Z3 implementation checks if a given sequence
is a sub-sequence of another. Another issue is that $Seq.contains is also used in the
axiomatization of $Seq.range, which leads to problems similar to the one we faced when
replacing $Seq.length. To solve both issues, we again used an axiomatized approach: We
didn’t change the function itself, but instead replaced the axiomatization.

$Seq.take and $Seq.drop

There are no functions to create a sequence based on another sequence’s beginning or
ending. It is nevertheless possible to do achieve the same result with seq.extract. The
function seq.extract allows to create a subsequence of a given sequence, starting from a
given offset and including a specified number of elements. To replace $Seq.take, we can
extract as many elements as we want to take, starting from position zero. If instead
we want to drop, we extract from the offset given, and take as many elements that are
following it, which is the length of sequence minus the offset. However, there appears
to be non-deterministic behavior when using extract with some values. This will be
discussed in section 4.2.

$Seq.sameuntil

This function is currently not used in Silicon, but it would still be possible to implement
it using the function seq.prefixof together with seq.extract. They allow us to create a
shortened sequence and check if the result is the prefix of another sequence.

$Seq.range

For this function, there is no simple replacement in the Z3 syntax and we had to reuse
the axiomatized approach. We didn’t change the function’s representation in Z3 code
and the axiomatization has stayed the same. Because we didn’t change the code to use
the functions for length or contains, the only sequence functions used in the axioms, no
adjustments had to be made to the axioms. Since we added the alias for the declaration
of a sequence, the return type did not have to be changed as well. Because of this, this
function’s code has seen no changes, but still returns a Z3 native sequence instead of the
one that Silicon had provided so far.

Example

Listings 2 and 3 show an example of semantically equivalent code. As one can see, not
all functions change, which is because of the reasons mentioned in the previous passages.

1 (declare -sort $Seq <Int >)

2 ; ... Many lines of preamble

3 (define -const s1 $Seq <Int >)

4 (assert ($Seq.equal s1 ($Seq.range 0 3)))

5 (assert (= ($Seq.length s) 3))
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6 (assert (= ($Seq.index s 0) 0))

7 (assert ($Seq.equal

8 s1 ($Seq.append s1 ($Seq.empty <Int >))))

9 (assert ($Seq.contains s1 1))

10 (assert ($Seq.equal s1 ($Seq.take 3)))

11 (assert ($Seq.equal ($Seq.drop s1 2) ($Seq.singleton 2)))

12 (assert ($Seq.equal s1 ($Seq.update s 1 1)))

Listing 2: Example smt2 code with old sequences

1 (define -sort $Seq <Int > () (Seq Int))

2 ; ... Many lines of preamble

3 (define -const s1 $Seq <Int >)

4 (assert (= s1 ($Seq.range 0 3)))

5 (assert (= ($Seq.length s) 3))

6 (assert (= ($Seq.index s 0) 0))

7 (assert (= s1 (seq.++ s1 (as seq.empty (Seq Int )))))

8 (assert ($Seq.contains s 1))

9 (assert (= s1 (seq.extract s 0 3)))

10 (assert (= (seq.extract s 2 (- ($Seq.length s1) 2)) (seq.unit 2)))

11 (assert (= s1

12 (seq.++

13 (seq.extract s 0 1)

14 (seq.unit 1)

15 (seq.extract s 1 (- ($Seq.length s1) 1))

16 )))

Listing 3: Example SMT2 code with new sequences

4.2 Issues

During the implementation, two main issues came to light. The first was the problematic
use of Z3’s sequence methods in forall quantified assertions.

1 (assert (forall ((min Int) (max Int) (v Int) ) (! (and

2 (=> ($Seq.contains ($Seq.range min max) v) (and

3 (<= min v)

4 (< v max)))

5 (=> (and

6 (<= min v)

7 (< v max)) ($Seq.contains ($Seq.range min max) v)))

8 :pattern ( ($Seq.contains ($Seq.range min max) v))

9 )))

Listing 4: Old contains axiom for $Seq.range

Consider listing 4. It is one of three axioms that describe the $Seq.range function and
it states that all integers between the minimum and maximum value are contained in
the range, and all values contained in the range have to be between the minimum and
maximum. It would be easy to replace all three occurrences of $Seq.contains with the
new seq.contains method, however when doing so, Silicon is not able to verify the simple
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example of listing 5. By introducing wrapper functions for used in the range function
(c.f. Appendix A), this behavior was eliminated.

1 method m (s : Seq[Int])

2 requires s == [0..3)

3 ensures 2 in s

4 {}

Listing 5: Example for irregular behavior when using new functions

The second issue was the indeterminate behavior of seq.extract when extracting from
offsets that are negative or larger than the length of the sequence we want to extract
from; the same happens also if the number of elements we want to extract is out of these
bounds. Listing 6 shows an example where this behavior can be observed.

1 (declare -const s (Seq Int))

2 (declare -const t (Seq Int))

3 (declare -const u (Seq Int))

4 (declare -const i Int)

5 (assert (= s (seq.++ (seq.unit 1) (seq.unit 2) (seq.unit 3))))

6 (assert (= t (seq.extract s 0 i)))

7 (assert (= u (seq.extract s i (- 3 i))))

8 (assert (not (= s (seq.++ t u))))

9 (check -sat)

10 (get -model)

Listing 6: Example for irregular behavior of seq.extract

It defines three integer sequences and an integer which will be used as an index for the
extraction. We define s to be the sequence of consecutive integers one, two and three
and the sequences t and u are extracts from said sequence, one starting from zero and
taking i elements, the other starting at element i and extracting as many as are left in
the sequence.

We then want to prove that the concatenation of those extracts is equal to the original
sequence. For that we assume that s and the concatenation of t and u are not equal and
we expect that Z3 is not able to find a model that satisfies these constraints. However,
Z3 will output a model in which the index i is negative and the sequences t and u are
sequences of random numbers. This is something that could not be solved during this
project. It’s consequences will be discussed in section 6.

4.3 Code changes

This section will outline which parts of Silicon’s code base had to be changed in order to
enable the new sequence theory. We will briefly list what problems had to be solved in
the source classes and resource files of Silicon and Silver to implement the new sequence
interface. The actual changes can be found on the Bitbucket repositories of this project
[15–17].
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4.3.1 Silicon classes

Silicon’s classes contain the logic on how to emit the SMT2 code. The modifications
to the code include the changes to actually emit the new functions, and adjustments to
the order in which collections are defined in the SMT2 file. This was necessary to avoid
problems with the aliasing used for the sequence declarations. Additionally to the listed
changes, we also renamed the unit test classes (apart from SiliconTests.scala), such that
they would not be executed during testing.

TermToSMTLib2Converter.scala : Responsible for generating Z3 code. The changes
here are necessary to actually emit the new function syntax.

Sequences.scala : Responsible for Z3 code specific to sequences, such as loading axiom
templates and declaring the sort. The changes here replace the definition of the
Silicon generated sequences with an alias command, which maps the current syntax
to the Z3 native sequences.

DefaultMasterVerifier.scala : Responsible for the general flow of verifying a file.
The changes in this class cause sequences to be defined after other types. This is
necessary because aliasing will not work if we for example want to define sequences
of sets, and sets are not defined yet.

Note that it is not a problem to define, for example, a set of sequences before
defining the sequence. This is because Silicon’s sets are not based on a constructor
like Z3’s sequences. If we define the type Set<$Seq<Int>>, to Z3 this is just one
long name of a sort. It does not realize that these are nested types for Silicon.
The problems only start when $Seq<Int> is used as a sort for a function and it
is not yet defined. However, the first usage of this type happens when the axioms
are defined. At this point, all sorts have already been defined.

SiliconTests.scala : Unit test which runs the Viper test suite. The changes here lead to
the reduced size of the test suite. Now, instead of verifying all test cases contained
in Silver’s resource folder, the unit test will only verify cases which are located in
the sequencesuite directory.

4.3.2 Silicon resources

Silicon’s resources contain the template files from which the axioms of the sequence
functions are generated. As we have seen in section 4.1, it is not possible to remove all
existing axioms. The files in this category had to be changed, so that they emit the new
axioms.

4.3.3 Silver classes

Silver was only slightly modified to allow collection of timing statistics for the different
phases of execution without having to rely on the execution of unit tests.
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4.3.4 Silver resources

No files were modified, however several test cases were duplicated and the new folder
sequencesuite was created. This allows the testing of a test suite reduced to the relevant
cases (c.f section 5.3).

5 Experimental Procedure
This section describes how the new Z3 sequence theory was compared to the axiomatized
approach provided by Silicon with the Viper test suite. The results of the measurements
will be presented and analyzed in section 6.

5.1 Testing system

5.1.1 Hardware

CPU Intel(R) Core(TM) i7-5500U @2.4GHz

RAM 8.00 GB

OS Windows 7 Professional (64 Bit)

5.1.2 Software

Silicon (reference) forked at commit 51a0afd, changed up to commit c881666 [15]

Silicon (new version) forked at commit 51a0afd, changed up to commit ed76d51 [16]

Silver forked at commit e5aebac, changed up to commit fcc9e0e [17]

Z3 version 4.5.0 [18]

Python version 3.6.1 [19]

Powershell version 2.0 [20]

IntelliJ IDEA version 2017.1 [21]

Nailgun version 9.2.0 SNAPSHOT [22]
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5.2 Selecting test cases

The Viper project provides a large number of test cases which cover multiple aspects
of the verifier. In this section we discuss the way it was used to test the new sequence
implementation in Silicon.

Not all test cases are useful for comparing the new implementation to the original.
Obviously only those that contain sequences may show significant differences. For all
other cases the two back-ends should produce the same output. To select the interesting
cases, IntelliJ IDEA’s project search function was used. All Silver test files in Silver’s
and Silicon’s test resource folder were searched for the string ”Seq[”. This returns the
list of all files in which a sequence was defined.

Note that this may not include every case containing sequences. Listing 7 shows that
it is possible for a test to contain sequences without explicit declarations. However, we
still obtained a wide selection of cases.

1 method m(x : Int)

2 requires x < 0

3 ensures ! (x in [0..10))

4 {}

Listing 7: Silver example containing sequences without explicit declaration.

We removed some cases from the resulting list, since they are expected to fail at
the type checker level, and therefore no actual verification would take place during
Silicon’s execution. We also removed a case that fails in the current version of Silicon.
Additionally, several cases are ignored or canceled during the testing in the used reference
version of Silicon. These cases were excluded as well. This leaves us with 166 cases to test
with. As an addition to that, a small extra case was written to test the update function,
because barely any of the other cases contained applications of it. The selected test cases
can be found in the AllTests directory on the same repository where the measurement
scripts are located [13].

Test name # lines # methods

0071.sil 207 5

0120a.sil 82 1

binarySearchSeq.sil 28 1

foralls.sil 40 6

issue 0142.sil 37 3

list insert.sil 108 1

RingBufferRd.sil 133 6

test list.sil 56 2

tree delete min no assert.sil 76 1

update.sil 20 1

Table 4: First set of tests.
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From this list, we selected a small subset of tests which we investigated in more detail.
Table 4 shows which cases these are, as well as some information on them. This smaller
set allowed for a very focused evaluation based on different factors, such as number
of methods and used sequence functions. The files are also located on the repository
mentioned in the previous paragraph in the directory SampleSet. Note that they are
also contained in the AllTests directory.

5.3 Measurements

We were mainly interested in the timing statistics of the actual verification phase of
Silicon, however we also compared the preceding phases, which are parsing, type-checking
and translation. Note that translation is the name of the phase, but that name is chosen
a bit isn’t ideal, as this phase is only used to filter the provided program based on
command-line arguments. Additionally, we are interested in the pure execution time of
Z3, since the verification time of Silicon includes interactions between Z3 and Silicon.
The phase timings are put out by Silicon when executed, the execution time of Z3 is
gathered by running it separately. Lastly, we wanted to investigate the memory usage
of Z3 when using the new version, and compare it to the original version’s memory
footprint.

To collect this data, we used the script nailgunTest.py [13]. It gathers the timings
in nanoseconds for each version of Silicon separately. It launches a nailgun server that
is supported with a fat jar file of the chosen version of Silicon. This creates a JVM that
stays open until aborted. The script then runs the main class of Silicon with arguments
set to produce named SMT2 files and to only utilize one CPU core. We only use one core
to eliminate indeterminacies that could emerge from parallel execution. This also assures
that all methods are verified by one instance of Z3 and therefor all logging information is
passed into one file, which can later be verified by Z3 directly. We also pass an argument
to set Z3’s timeout to a value of several seconds. This makes sure that the execution
will eventually terminate, should something go wrong with the verification.

Using nailgun eliminates the startup time of the JVM. Because the JVM is kept
running, the dynamic compiler will tune the optimization during the multiple executions
of a test. Therefor, we run each test 30 times to eliminate the noise produced by the
optimization. After this, we run another 10 runs, whose output will be written to files.
From there the script will later collect and average the timings.

To gather the timing information of Z3’s execution time, the script runs the Pow-
ershell Measure-Command cmdlet, which measures in microseconds. For each case, the
SMT2 file generated earlier in the run is executed 10 times and the runtime measured
and averaged. The results are compiled and then written to a csv file.

For measuring the completeness of the implementation, sbt’s test task [23] was used,
which runs Silicon’s unit tests. The unit test SiliconTests.scala verifies all Viper files
located in Silver’s test resource directory sequencesuite. These files can be annotated
to inform the test suite that certain errors are expected. The unit test then classifies a
case as successful if it satisfies these annotations, or if it verifies as correct if there are
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no annotations. Otherwise the case is considered a failure. The script sbtTest.py runs
sbt and parses the output. It produces a csv file containing the results of running sbt
test for both versions of Silicon.

To collect the information on memory usage, we used Z3’s built in statistics tool.
The command (get-info :all-statistics) from Z3 will print out a set of statistics,
which also contain the maximum amount of memory used in megabytes. To gather these
statistics, we used the memoryTest.py [13] script. It runs a test case through Silicon to
create the SMT2 code, which is saved to a file. The script then edits the file to include
the statistics command at the end of execution. Z3 is then executed with the edited file
as input, and the out put is parsed to extract the maximum memory usage. The script
runs 10 executions and averages their memory. Afterwards it emits them in a csv file.

6 Interpretation of Experimental
Results

In this section we present the results of the experiments of section 5 and interpret their
meaning. We also discuss possible reasons for some of the results.

For this discussion, we distribute the tested cases in three different groups, based on
the correctness of their verification. The first group contains all test cases for which the
result of the verification matches between both versions of Silicon. The second group
contains the cases for which the result of the verification did no match. The last group
consists of cases, for which Z3 runs into non-termination when it is queried by the new
version of Silicon. The distribution of these cases can be seen in table 5.

Status # of cases % of cases

Matching 150 89.8
Mismatching 12 7.2
Non-terminating 5 3.0

Total 167 100

Table 5: Number of cases in each category of verification status.

6.1 Matching results

From the 167 cases we evaluated, a total of 150 returned the same result in the new
version of Silicon as in the reference version. Included in those are the 10 tests we chose
to investigate in more detail. We will first look into the results of these tests. The overall
results will be considered afterwards.
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Sample set

Pre-verification time

Phase Geometric mean of relative time

Parsing 105.22%
Type-checking 99.13%
Translation 99.77%

Table 6: Geometric means of relative time of the new version of Silicon compared to the
original version for different phases (sample set).

The evaluation of the three phases preceding verification revealed, that the elapsed
time for each phase is very similar in both tested versions of Silicon. The relevant data
can be seen in table 6. These results suggest, that the pre-verification times are not
affected by the changes of the sequence implementation.

Verification time

Figure 2: S-curve: Relative difference in verification time of the new version of Silicon
compared to the reference implementation (sample set).

Figure 2 shows how the verification time of the new version of Silicon compares to
the original version. It also shows the relative execution time of Z3 when it is executed
independently with an SMT2 file generated by the new version of Silicon. The geometric
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mean of the relative verification time of Silicon is 101.79%, the geometric mean of the
relative pure verification time of Z3 is 103.08%.

These values suggest that the performance of the new version is very similar to
the reference version. However, there are some cases which show remarkable differ-
ences. We investigated the source code of the two most extreme cases, list insert.sil and
tree delete min no assert.sil, in an attempt to suggest possible reasons for this behavior.

Both cases contain very similar applications of sequence functions. The biggest
difference is the complexity of the used predicates and magic wands. It is possible, that
the sequence functions interact poorly with these magic wands.

Memory usage

Figure 3: S-curve: Relative difference of maximum memory usage of Z3 when verifying
a test with the new version of Silicon compared to the reference implementation (sample
set).

The investigations of the memory usage of Z3 show overall very similar values for both
versions. The geometric mean of the relative amount of memory used in the new version
is 103.54%. Nevertheless, we see the same outliers we observed during the evaluation of
the verification time.
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Phase Geometric mean of relative time

Parsing 103.30%
Type-checking 98.43%
Translation 97.41%

Table 7: Geometric means of relative time of the new version of Silicon compared to the
original version for different phases (all matching tests).

All tests

Pre-verification time

The measurements over all matching test cases were very similar to the sample set. As
we can see in table 7, the geometric mean for each phase is very close to 100%. This
suggests, that the results from the sample set are not arbitrary, but actually relevant,
and that these phases were actually not affected by the changes.

Verification time

Figure 4: S-curve: Relative difference in total verification time of the new version of
Silicon compared to the reference version (all matching tests).

Figure 4 shows the relative difference in verification time from the new version of Silicon
compared to the original. As we can see, there are again large outliers in both directions.
To compare the overall performance of the new system, we consider the geometric mean
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of the relative execution time of the modified version of Silicon, which in this case is
114.07%.

Figure 5: S-curve: Relative difference in runtime of Z3 when verifying with the new
version of Silicon compared to the old (all matching tests).

Figure 5 shows the relative differences in runtime for all matching cases. We once
again get a similar curve form. The geometric mean of the relative execution time is
131.89%. This is significantly higher than the value we got for the total verification
phase time in the previous paragraph.

This difference can be explained by the interaction time between Silicon and Z3. The
measurements showed that the difference between the total verification time of Silicon
and the pure Z3 verification time is usually several 100 milliseconds for both versions of
Silicon. This happens no matter how long Z3 takes to verify. For very short tests, this
time can be quite significant and the pure execution time becomes insignificant, which
leads to similar relative times, which means less relative difference.
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Memory usage

Figure 6: S-curve: Relative difference of maximum memory usage of Z3 when verifying
a test with the new version of Silicon compared to the reference implementation (All
matching tests).

The investigation of the memory usage over all matching tests show a behavior compara-
ble to the behavior of the verification time. We get the same outliers and overall a very
similar curve form. The outliers don’t go as high as the times, though. The geometric
mean of the relative memory usage is 104.53%. This suggests that overall, the memory
usage is not largely different between both versions of Silicon.

6.2 Mismatching results

The results for 12 cases were not the same in the modified version of Silicon compared
to the reference version. For these cases we omit the performance analysis. We do this
because Silicon stops verification of a method in case of an assertion it can’t verify. This
means that the parts that actually get verified could be much shorter in the failing case,
especially for large methods. Instead we investigate the cases to find possible reasons
why they failed.
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The failing cases are:

• 0076.sil

• arrays quickselect rec.sil

• arrays quickselect rec index-shifting.sil

• issue 0060.sil

• issue 0176.sil

• linked-list-predicates.sil

• linked-list-qp-append.sil

• linkedlists.sil

• test2.sil

• testTreeWand.sil

• testTreeWandE1.sil

• tree delete min heuristics.sil

A reappearing reason of failure is the inability to preserve loop invariants or guarantee
them on entry. In each of these cases, there is a index function involved, which could
mean that the new implementation of it is not perfect yet.

In the case linked-list-predicates.sil multiple postconditions including take and drop
operations fail. The same is true for the case linkedlists.sil. It is possible that the
implementation of these functions somehow causes problems. This could also be related
to the issues we faced in section 4.2.

Another reason of failure seems to be the insufficiency of access permission. It is pos-
sible that the new implementation of sequences interacts badly with the implementation
of permissions.

6.3 Non-termination

The cases in this category behave normal when using the original Silicon sequence im-
plementation, however they don’t terminate when running sbt test with the new se-
quence implementation. There are also some cases that only sporadically show the
non-terminating behavior, or don’t show it at all if they are not run through sbt test but
verified by Silicon directly. This non termination hints at a matching loop, a recursive
instantiation of the same axioms, somewhere during the execution. These cases were
also not considered for performance evaluation, we instead investigated the cases and
tried to find possible reasons for the non-termination. The tests in this category are the
following:

• issue 0124.sil

• issue 0139.sil

• testTreeRecursive.sil

• tree delete min(2).sil

• tree delete min.sil
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We could not find a distinct feature that is used in these cases, which other cases
of the test suite don’t use. However, they all have quantified assertions or recursive
functions, which could be a possible cause.

Looking at the cases which only sometimes terminate showed, that the SMT2 code
of a non-terminating case only differs slightly from the terminating case. The case
tree delete min.sil terminated when using Silicon directly and restricting it to one core.
When verified with sbt test, the only method of the test was assigned to the fourth core
of the test system. In this case, Silicon uses different suffixes for the variables it uses
in Z3. For example, the variable x@0@01 was now called x@0@04. This was the only
difference in the code.

We can only speculate why this small change leads to non-termination. It could be
that the different name of the variable changes the heuristics of Z3 and this makes it not
avoid the matching loop. The influence of variable names on execution time in Z3 has
been shown before [24], perhaps the detection of matching loops is affected similarly.

7 Conclusion
We modified Silicon and replaced all used sequence functions with equivalent functions or
combinations thereof in the new Z3 syntax. We also investigated the new implementation
with respect on performance and completeness.

We investigated the time consumption of the different phases of Silicon and compared
how they change in the new implementation. As expected, the measured differences in
the pre-verification phases were very minor, and can probably be attributed to noise.
This assumption is strengthened by the fact that no code concerning these phases was
changed.

For the actual verification times, the experiments have shown outliers in both di-
rections. There are cases that are verified significantly faster when using the modified
version of Silicon. However, there are also many cases for which the new solution is
much slower than the existing implementation. We have also seen that the overall per-
formance seems to be slower, since the geometric mean of the relative execution time
of the new version compared to the reference version is significantly over 100%. The
average memory usage stayed about the same for both versions of Silicon.

We also saw that the new implementation shows weaknesses regarding completeness.
There are some cases which do not verify as expected or do not even terminate with
the new version of Silicon. The reasons for this behavior have not been fully uncovered,
however, we have discussed some of the possible reasons. The further investigation of
these problems could be the entry point for future work.
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A Z3 examples
For the following sections we assume s1 and s2 to be sequences of integers and x to be
an integer.

If the axiomatization is shown, it will be a generic example where the type of the
sequence is called $Type$. To get the code for integers, for example, all occurrences of
$Type$ have to be replaced with Int.

Declaration

The new way to declare a sequence of a type looks as follows:
(declare-const s1 (Seq $Type$))

Since we can’t change to this syntax due to problematic interactions with other code
Silicon produces, we change the definition of the custom sort; instead of declaring a new
sort, we make it an alias for Z3’s native sequences:

Old definition

(declare-sort $Seq<$Type$>)

New Definition

(define-sort $Seq<$Type$> () (Seq $Type$))

$Seq.build

In this example we want to assert that s2 equals s1 concatenated with x.

Original code

(assert ($Seq.equal s2 ($Seq.build s1 x)))

New code

(assert (= s2 (seq.++ s1 (seq.unit x))))

$Seq.index

Since the code emitted for this function has not changed, the new helper function and
axiomatization will be listed.

Helper function

(declare-fun $Seq.get ((Seq $Type$)) $Type$)
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New axiomatization

(assert (forall ((xs (Seq $Type$)) (i Int)) (!

(=

($Seq.index xs i)

($Seq.get (seq.at xs i)))

:pattern (($Seq.index xs i))

)))

assert (forall ((xs (Seq $Type$))) (!

(and

(= (seq.unit ($Seq.get xs)) xs)

(seq.contains xs (seq.unit ($Seq.get xs)) ))

:pattern (($Seq.get xs))

)))

$Seq.update

In the following example we assume that s1 and s2 are integer sequences and x is a
integer. We want to assert, that s2 equals s1 except for position x, which should be
updated to 5.

Original code

(assert ($Seq.equal s2 ($Seq.update s1 x 5)))

New code

(assert (= s2

(seq.++

(seq.extract s1 0 x)

(seq.unit 5)

(seq.extract s (+ x 1) (- (seq.len s) x))

)))

Note that we use the possibility of concatenating multiple sequences at once of Z3’s
append function.
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$Seq.contains

Since the emitted code for this function has not changed, the new axiomatization will
be listed.

New axiomatization

(assert (forall ((xs (Seq $Type$)) (x $Type$)) (!

(=

($Seq.contains xs x)

(seq.contains xs (seq.unit x)))

:pattern (($Seq.contains xs x))

)))

$Seq.take

In this example we want to assert that s2 is equal to the first x elements of s1.

Original code

(assert ($Seq.equal s2 ($Seq.take s1 x)))

New code

(assert (= s2 (seq.extract s1 0 x)))

$Seq.drop

In this example we want to assert that s2 is equal to s1 dropping the first x elements.

Original code

(assert ($Seq.equal s2 ($Seq.drop s1 x)))

New code

(assert (= s2 (seq.extract s1 x (- (seq.len s1) x))))
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$Seq.sameuntil

In this example we want to assert that s1 and s2 are equal up to position x.

Original code

(assert ($Seq.sameuntil s1 s2 x))

New code

(assert (seq.prefixof (seq.extract s1 0 x) s2))
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B Declaration of originality
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