
C++ Support in Envision

Bachelor Thesis Description

Lukas Vogel
luvogel@student.ethz.ch

March 12, 2013

Introduction

Envision is a development environment, that represents source code as a com-
bination of visual and textual components. It features a structured editor that
can represent source code using graphical notations. This approach is meant to
offer several advantages for developers such as easier code comprehension and
improved navigation. For example using Envision’s ability to display a visual
overview of a whole project can be benificial for developers getting familiar with
the project.

Envision currently supports a subset of Java. This includes a model for object-
oriented programs and flexible visualizations for this model. Furthermore these
visual components are already fully interactive. Envision aims to be an IDE
supporting the object-oriented paradigm for multiple languages and therefore
support for additional languages is desired.

This thesis focuses on extending Envision to support C++ code. More specifi-
cally the goal is to import C++ code. Regarding the large amount of features
C++ offers, this thesis aims to support only subset thereof. The focus lies on
simple C++ object-oriented programs. Some basic preprocessor functionality
should also be supported.

To achieve this task the project will use an existing parser framework, namely
clang1. The framework is nicely structured making it possible to use only parts
of it which is suitable for this project. Thanks to a big community clang is kept
up to date and supports the newest features of C++. The framework is used
in commercial environments and in the FreeBSD operating system. In addition
using this framework will also help to make this project more extensible in the
future.

1http://clang.llvm.org/

1

http://clang.llvm.org/


Core Tasks

• Get familiar with the clang framework and Envision.

• Add basic C++ code import functionality to Envision, this includes the
following tasks:

– Implement support for simple C++ language constructs such as classes,
methods, variables and code which is semantically comparable to
Java.

– Implement support for the following preprocessor directives: #in-
clude , #pragma once.

– Design the plugin/code such that it is easy to extend with more
language or preprocessor features.

– Handle unsupported features such that they result in warnings.

• Create and import a simple C++ program with several classes to show and
test the plugin’s functionality. This should cover all of the implemented
features.

Possible Extensions

• Add support for conditional compilation, this includes finding a suitable
tree representation of this inherently textual mechanism.

• Handle simple template constructs which are semantically comparable to
Java generics.

• Assure that unsupported code still will be translated in some internal
representation to be able to losslessly import and afterwards export code
to/from Envision.

Schedule

A tentative time schedule for the project (The week numbers represent the ISO
week numbers2):

• Week 10: Finish the project description and administrative tasks.

• Week 11: Get familiar with Envision and clang.

• Week 12-14: Implement a plugin which will work with simple C++ code.

• Week 14-15: Take semester break.

• Week 16-21: Finalize plugin to achieve all core tasks.

• Week 22-26: Work on Extensions.

• Week 26-32: Write the report and finalize the project and its extensions.

2http://en.wikipedia.org/wiki/ISO week date

2

http://en.wikipedia.org/wiki/ISO_week_date
http://en.wikipedia.org/wiki/ISO_week_date

