
C++ Support in Envision

Bachelor Thesis

Lukas Vogel

Supervisors: Dimitar Asenov, Prof. Dr. Peter Müller
Chair of Programming Methodology

ETH Zürich

September 3, 2013

Abstract

Envision is a programming environment, which uses textual and visual elements to
represent source code. It aims to support various object-oriented languages. Thanks to its
plug-in based structure Envision can easily be extended.

In this thesis we extend Envision with a plug-in to import C++ code. For this we use
Clang and translate from Clang’s AST to Envision’s model. This includes mapping the
text based modularity system of C++ and the preprocessor constructs found in C++ to
Envision’s tree based model. The plug-in we present is able to import a variety of C++
code constructs with limited support for preprocessor constructs. It is a first step towards
developing Envision using Envision itself.

We evaluate the plug-in in terms of features as well as in terms of performance. In
addition to that we provide guidelines on how to improve this plug-in in respect to its
features and its performance for future extensions.

i

Contents

Contents ii

1 Introduction 1
1.1 Motivation . 1
1.2 Clang . 1
1.3 Challenges . 2

2 Envision’s model and Clang’s AST 3
2.1 Overview . 3
2.2 Differences between Clang’s AST and Envision’s model 4

2.2.1 Textual versus tree based nature . 4
2.2.2 Switch statements . 4
2.2.3 Lambda expressions . 4
2.2.4 Types . 5

3 Plug-in design and implementation 6
3.1 Clang interface . 6
3.2 Classes specific to Clang . 7
3.3 Plug-in design . 8
3.4 Manager classes . 8
3.5 AST visitors . 9

3.5.1 Recursive AST visitor . 9
3.5.2 Declaration and Statement visitor . 10
3.5.3 Expression visitor . 10
3.5.4 Template argument visitor . 11

3.6 Handling of unsupported code . 11
3.6.1 Error codes . 12

3.7 Using the plug-in . 13
3.7.1 Compilation databases . 13
3.7.2 Testing . 13
3.7.3 Importing C++ projects . 14

4 Evaluation 16

ii

Contents

4.1 C++ support status . 16
4.1.1 Feature completeness . 16
4.1.2 C++11 features . 18
4.1.3 Preprocessor . 18
4.1.4 Templates . 18
4.1.5 Friend methods . 19
4.1.6 Member initializers . 19
4.1.7 Implicit nodes . 20

4.2 Performance . 21

5 Future extensions 23
5.1 Comments . 23
5.2 Preprocessor directives . 24
5.3 AST nodes . 24

5.3.1 General steps . 25
5.3.2 Expressions . 25
5.3.3 Declarations . 26

5.4 Multi threading . 28

6 Conclusion 29

A Importing Envision’s code 30

References 32

iii

1 Introduction

Envision is a visual programming environment that represents source code as a combination of
visual and textual components. It aims to be a programming environment for various object-
oriented languages. Envision is written in C++ by means of the Qt framework. The develop-
ment of Envision evolves mainly in the context of Dimitar Asenov’s PHD studies [5] and was
started during his master thesis [3].

In this project we develop an Envision plug-in to import C++ code. The plug-in translates
from Clang’s C++ AST to Envision’s model. The report provides details about the implemen-
tation process as well as an evaluation and guidelines for future enhancements.

In this section we present the motivation behind this project, give a short introduction to
Clang, and finally list some challenges we faced. Section 2 will discuss the representation of
code in Clang and in Envision. The design of the plug-in and how to use it, is explained in
section 3. We evaluate the plug-in in section 4. In section 5 we show how the plug-in can be
further improved.

1.1 Motivation

Envision currently has only some support to import Java code. However Envision aims to
support many object-oriented languages. The choice to support C++ in particular has various
reasons. For one C++ is a very commonly used language in many different fields. As Envision
is written in C++ we have a high interest on importing Envision’s code. This plug-in will
provide the first step to develop Envision inside itself. That will help to improve the quality of
Envision in general because it will be used day to day as opposed to now where it is used only
for testing of newly implemented features.

This thesis therefore concentrates on adding support for C++ in Envision. The goal is
to import C++ code which is semantically comparable to what is currently supported with
Java code. This ranges from simple things such as classes and methods to generic code with
templates.

1.2 Clang

To import C++ code the project will rely on Clang [7]. Clang is an open source front-end to
the LLVM compiler. It is very mature and is used in industry. In the latest version (3.3) Clang
supports the full ISO C++11 standard.

1

Chapter 1. Introduction

Clang has a great community that is very helpful. On Clang’s mailing list as well as on the
LLVM irc-channel the people were very nice and helpful for questions we had about Clang’s
AST and its interface. The community also built several tools, either based on Clang or to help
using Clang. For example we use the Bear tool [18] which can create compilation database files,
which are needed for Clang based tools.

1.3 Challenges

Importing C++ code to Envision will raise several challenges we have to tackle.
We have to find ways to handle the C++ modularity system which is based on header files

and preprocessor directives. Header files should not always be translated the same way. For
system header files we are only interested that we need them (i.e. that there was an #include

statement in the source code) but do not want to see their content, as you normally do not need
to edit them. On the other hand we should translate header files which belong to the project,
that the plug-in is importing, to Envision’s model.

This modularity system introduces many inherently textual constructs such as forward dec-
larations. Not all of those constructs are needed in Envision’s model and we have to find
solutions on how to deal with such constructs.

Clang works in translation units, that means each source file is separately translated. In
Envision we only have one model for a whole project. This means we have to merge header files
which were included in multiple translation units.

Clang’s AST contains a lot of nodes which are only needed for compilation. Such nodes
have no counterpart in the written source. In Envision we only want to edit the code as it is
written in the source file. Thus we have to consider only those nodes which represent some
written code.

As Envision’s current model is mainly designed with Java in mind we have to adapt the
model to support C++ features alongside Java constructs.

2

2 Envision’s model and Clang’s AST

The abstract syntax tree of Clang and the model of Envision are one core part to understand
to design a plug-in which can translate from Clang’s AST to Envision’s model. This section
familiarizes the reader with those 2 representations and presents an overview of differences,
which are important for our project.

2.1 Overview

In general both representations have four kind of nodes:

Declarations are nodes which define a unique identifier such as classes, methods and simi-
lar top-level constructs. A body of a declaration may contain several sub-declarations,
statements and expressions.

Statements are used to model code which may alter the application execution flow. Examples
include if-then-else statements, all kinds of loops but also return statements.

Expressions contain all the calculations of a program. One popular expression node is the
binary operation.

Types model the type of other nodes.

While Envision makes a clear distinction between those four kinds Clang developers took
another design decision. In Clang every expression is also a statement. This is not very usual
for an AST and even the designer seems to be unhappy with the fact that an expression is a
statement as one of the developer states [16]. In the context of this thesis this difference is
rather insignificant.

Envision’s model only has one single node for definition and declaration of declarations,
whereas in Clang’s AST a definition might be in a different node than the corresponding dec-
laration.

In addition to those four kinds both representations also have some nodes, which do not fit
into those categories. An example of such a node is the node for member initializers.

In Clang’s AST most nodes provide a reference to the source location from where this node
was created. Such a location can be resolved to a file name and a line number, which is helpful
for us to report unsupported features in our plug-in.

3

Chapter 2. Envision’s model and Clang’s AST

2.2 Differences between Clang’s AST and Envision’s model

In this section we present differences between the two representations. First we discuss the
completely different nature of Envision’s model and the textual nature of C++. Then we
present some interesting differences in certain nodes.

2.2.1 Textual versus tree based nature

C++ has an inherently textual character and has some features which are difficult to represent
in a structured model. The modularity system of C++ is based on header files and partitioned
declarations and definitions.

On the other hand we have Envision’s model which is a highly structured tree model. In
Envision’s model a whole project is represented in one tree. Declarations and definitions are
merged together. In this thesis we refer to Envision’s model as a united concise model.

Features like conditional compilation and macros are easy to represent in a textual approach
but it is not clear how to translate this in a tree based model. For compilation such constructs
can be expanded but in the translated Envision model we still want to have the complete
information about macros and conditional compilation. This would be needed to be able to
develop C++ code in Envision.

2.2.2 Switch statements

In Clang switch statements are modeled very similarly to while loops. This means a switch
statement has a condition variable or expression and a body. The body is a list of statements. To
model cases both representations provide a case statement. In Clang’s AST the case statement
contains just one child statement. Whereas in Envision’s model a case statement contains every
statement that belongs to this case, this means every statement before the next case statement.

This structured approach of Envision provides an easy to overview AST, because a switch
statement contains, except from the statements before the first case, just a list of case state-
ments. While in Clang there is just a list of statements, which can be confusing.

This difference affects the translation, and is considered in our implementation of the trans-
lation.

2.2.3 Lambda expressions

Lambda expressions are interesting because the different approaches for different use cases can
be seen. While Envision’s model only need to provide a model to interact and visually represent,
Clang’s AST has to be suited to be compiled. Therefore lambda expressions are implemented
quite differently. For Envision’s purposes it is enough to have a single node representing a
lambda expression. In Clang however the lambda expression has a corresponding class and
method node. The arguments and the body of the lambda are stored in the method node.
Those additional nodes for the class and the method are later used for compilation. To get
information about the parameters of the lambda expression we use the method node.

4

Chapter 2. Envision’s model and Clang’s AST

2.2.4 Types

Envision has two kinds of types: First there are type expressions, which are used for interaction
and visualization. Second there are types, that are used for actual type resolution. All expres-
sions including type expressions provide a type() method, which provides the actual type. In
both Clang’s AST and Envision’s model there are wrapping classes for qualified types. Clang
however only has types and no type expressions because there is no need to interact with them
like in Envision.

5

3 Plug-in design and implementation

In this chapter we explain the design and the implementation of the C++ import plug-in.
For our design we first had to decide on what interface method we use to interface with Clang.

Section 3.1 provides an overview of the different interface methods of Clang and explains our
selection. Our choice to use the LibTooling interface causes some constraints to our design. The
setup of the classes which are specifically to interface with Clang is explained in section 3.2. In
section 3.3 we explain how the plug-in is structured and provide information about the classes.
Later we present the managing classes and the visitors. We discuss how the plug-in deals with
unsupported code in section 3.6 and how to use it in section 3.7.

3.1 Clang interface

Clang offers various possibilities to interface with it. Following is a list of possible interface
methods, and explanations why a certain method is used or why not.

LibClang is a stable C interface to Clang. It aims to stay backwards compatible and provides
high-level abstractions from Clang’s AST. The downside of this method is, that it does not
provide full control over the AST. Furthermore it is more natural to use a C++ interface
in a C++ environment.

Clang Plugins are a way to run additional action’s on the AST and are easy to integrate with
a build environment. However in this project the goal is to create a plug-in in Envision
and we only need to read the Clang AST, due to this we do not use this method.

LibTooling [10] is a C++ interface which is to be used to write standalone tools. As Envision
is already written in C++ it makes sense to also write the C++ import plug-in in this
language. The only downside this method has for our purpose is that the code may need
to be adapted after a change to Clang’s AST. As this mostly happens due to a language
change, it is important to look into this anyway as one may need to adapt Envision’s
model to support such changes.

Considering these points our choice is to use the LibTooling interface.

6

Chapter 3. Plug-in design and implementation

3.2 Classes specific to Clang

This section presents the classes which our plug-in needs to interface with Clang. A tool built
with LibTooling runs a FrontendAction over some code [10]. The FrontendAction is the base
interface for various front-end actions, those are actions which are performed in the front-end of
the compiler. The front-end of a compiler deals with parsing, syntax analysis, and generation
of the internal representation, the back-end is to optimize and generate code. For actions which
only use the preprocessor there is the PreprocessorFrontendAction, this action can for example
be used to rewrite certain preprocessor statements. There is also an interface for merging ASTs
the ASTMergeAction. We use the ASTFrontendAction which is an abstract interface for actions
which only work on the AST. Other actions can be found in Clang’s documentation [8].

In figure 3.1 you can see how the plug-in uses the Clang specific classes. The CppImportManager
creates a Clang tool. To create the tool the class will first search the provided directory for
source files and for a compilation database because they need to be provided for the tool. The
tool features a run method which takes a FrontendActionFactory as a parameter. The tool uses
this factory, in our case the ClangFrontendActionFactory to create a FrontendAction for each
translation unit.

CppImportManager

+create()

ClangFrontendActionFactory

+CreateASTConsumer()

TranslateFrontendAction

+HandleTranslationUnit()

ClangAstConsumer

ClangAstVisitor

createscreates

instantiates

starts<<use>>

Figure 3.1: Clang specific classes

The ClangFrontendActionFactory class implements the FrontendActionFactory interface. It
has to provide a create() method which is called for every translation unit the tool is run on.
This method will then create the TranslateFrontendAction. As we want the visitor and the
logging class to persist over all translation units the factory will provide those to the created
front-end actions.

The TranslateFrontendAction is our implementation of the ASTFrontendAction interface.
Therefore the class has to provide a method CreateASTConsumer() to create an AST consumer.
This method will also get called for each translation unit. In our implementation the method
creates an AST consumer and adapts the compiler instance in the persisting classes. A compiler
instance provides access to the source manager of Clang which is needed for logging purposes
in our tool.

The ClangAstConsumer, which implements the ASTConsumer interface, is in its current state
just a wrapper to start the AST visitor. However it will be useful for extending the plug-in
with more functionality such as comment handling which we discuss section 5. Therefore the
class has a pointer to the CppImportLogger class which is used for logging.

7

Chapter 3. Plug-in design and implementation

3.3 Plug-in design

This section discusses the design of the plug-in apart from the classes which are specific to
Clang.

The main interface of this plug-in for users and other plug-ins is the CppImportManager. It
provides methods for testing and setting the source path. After the source path is set the model
can be created with the createModel() method. The detailed usage of the plug-in is discussed
in section 3.7.

For the translation we use several visitors which interact with each other. All of the visitors
use the utilities and logger classes. The visitors are explained in detail in section 3.5.

The manager classes are used to find duplicates of nodes in Clang’s AST and to merge them.
They are explained in section 3.4.

RecursiveASTVisitor

<Derived>

Visitors

ClangAstVisitorExpressionVisitor TemplateArgumentVisitor

CppImportUtilities CppImportLoggerManager

TranslateManager

NodeHasher

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>><<use>>

Figure 3.2: Plug-in design

The CppImportUtilities class is used for translation of simple things like operators. There-
fore it contains a lot of boiler-plate code with switch case constructs.

The CppImportLogger class is used to log unsupported features and helps with error analysis.
Its functionality is described in section 3.6.

3.4 Manager classes

As mentioned earlier Clang works in translation units, that means each file we want to translate
gets processed separately. Therefore the plug-in will translate some header files multiple times
and we have to manage duplicates of declarations. We also have to merge declarations and

8

Chapter 3. Plug-in design and implementation

definitions because, as we have explained earlier (section 2.1), Envision has a united concise
model. For this we use the TranslateManager class, which keeps track on whether a certain
declaration has already been visited. To store the data we use several maps which use a unique
string hash of the declaration as a key and store a pointer to the corresponding node in the
resulting model.

To create this unique string representation the NodeHasher class is used. This class has the
sole purpose of generating unique strings for Clang nodes. To achieve this it uses a combina-
tion of the node name, the node’s parent, the node’s type, and the node’s template arguments.
Thanks to this we can merge declarations and definitions together and get everything in Envi-
sion’s representation.

3.5 AST visitors

The core of the plug-in consists of 3 visitors. We have different visitors for different purposes,
they all visit a certain kind of nodes and translate those nodes. To do this translation, the
visitors use a custom strategy to visit the children. All visitors inherit directly from Clang’s
RecursiveASTVisitor, which is explained in the following subsection.

3.5.1 Recursive AST visitor

The RecursiveASTVisitor is the parent class of all our visitors, it is from Clang’s library. This
visitor uses the curiously recurring template pattern [13].

The visitor does a depth-first order traversal of the whole Clang AST, and provides 3 groups
of methods. The first group is the Traverse method group, those methods just dispatch to the
Traverse method which matches the dynamic type of a node. From there the WalkUpFrom method
is called which goes up the class hierarchy until a top-level node, e.g. a declaration, is reached.
While ’walking up’ the method calls a user overridden Visit method – if there is one. Those
methods are in a hierarchy, in which the Traverse methods are highest, the WalkUpFrom are in
the middle, and the Visit methods are lowest. A method can only call methods from the same,
or lower levels.

The visitor as provided dispatches to the correct user defined method, this behavior is best
explained with an example. If TraverseStmt() is called on a LabelStmt, the TraverseStmt will dis-
patch the call to TraverseLabelStmt(). If there is no such method in the derived class, the visitor
will instead call the corresponding WalkUpFrom method, in our case the WalkUpFromLabelStmt().
The WalkUpFrom method first calls the same method on the parent in the node hierarchy, in
our case WalkUpFromStmt(), and then the corresponding Visit method, here VisitLabelStmt().
This results in a call chain up from the dynamic type of the node until the top-level type like
statement or declaration, and then from there again down the hierarchy with the Visit methods.

Once understood this system provides several advantages. We use Traverse methods for
almost all nodes, this is the easiest way to define a custom visiting order and is also fast
to dispatch, as there is only one method call in between. For example for an if statement
we use the TraverseIfStmt() method. For nodes where the common ancestor node provides
enough information for our purposes we use the WalkUpFrom methods. This saves us to imple-

9

Chapter 3. Plug-in design and implementation

ment identical methods, or even a separate dispatch to the correct method. For type aliases
there exists the new C++11 form (using Alias = type) and the previous form (typedef type

Alias), both forms have a separate Clang node but a common ancestor, therefore we use the
WalkUpFromTypedefNameDecl() method which deals with both nodes.

Using only those 2 method groups has another advantage, we can use the Visit methods
to find unsupported nodes. In our derived visitors, we define the Visit methods for top-level
nodes, such as statements and declarations. Whenever such a method is called, we know that
this node is not supported, since otherwise our defined Traverse or WalkUpFrom method would
have been called.

Now that we know the general structure of the visitors, we can go into the details of our
visitors.

3.5.2 Declaration and Statement visitor

The ClangAstVisitor is the main visitor, it instantiates the other 2 visitors, which are used to
help. It is instantiated with a pointer to an Envision root node, i.e. a project to which it will
add all the translated nodes.

The visitor uses two stacks that help the translation process. One stack is for declarations
and statement item lists and is used for visiting bodies. For example to translate a method
the visitor pushes the statement item list on the stack and calls TraverseStmt() to traverse the
body, in this way each node which is in the body, gets added to this list. For classes we push
the class node on the stack and then visit all children of the class. When we visit a method
declaration we can check what is on top of the stack and in the case of a class just add the
method to the method list of the class. Because in Envision the children of declarations are
structured, e.g. a class has lists for methods, fields and more, it easier to append a node to the
correct list directly when visiting it. When we would do it the other way around, and push the
children on the stack, we would also first have to check what node is on the stack, that would
include a lot of casts.

The expression stack on the other hand, works in the opposite direction. For expressions
the caller calls the TraverseStmt() method on the expression, and then pulls the translated
expression from the stack. Whenever we visit a node which has expressions as children we know
exactly where those expressions belong to, for example when visiting a loop statement we can
visit the condition and then pull the last expression from the stack and set this as the condition.
This way we have no overhead with casting or determining where to put the expression.

We implemented the TraverseStmt() method such that it dispatches to the TraverseStmt()

method of the expression visitor if the argument is an expression node.

3.5.3 Expression visitor

The ExpressionVisitor translates all kinds of expressions. It can be used by calling the
TraverseStmt() method, which automatically dispatches to the correct method. While this
method also allows statements to be passed in, the caller has to make sure that only expressions
are passed. The visitor has a stack of the last translated nodes, and provides a method for
the client to get the last translated node. If the node could not be translated, the method will

10

Chapter 3. Plug-in design and implementation

return an ErrorExpression. We use this stack also for intermediate results, for example for
overloaded operator calls we first translate all arguments and then, dependent on the operator,
create the correct expression using the translated arguments.

While the visitor is designed for the sole purpose of visiting expressions, it still needs the
ClangAstVisitor because of the way lambdas are modelled in Clang’s AST. As we have seen
in section 2.2.3 lambda nodes have certain information in class and method declarations. We
therefore use the ClangAstVisitor to visit the body of the lambda.

3.5.4 Template argument visitor

This visitor is very simple and only translates template argument declarations. Unlike the
expression visitor, only a field is used to store previously translated nodes, because we only
translate one argument at the time. The class provides a method which takes a declaration as
an argument and directly returns the translated node. If the node could not be translated the
method returns a FormalTypeArgument which has ”#ERROR” as name, this should make the
error visible in Envision. Additionally an error message is printed in the console.

While it would be possible to include the methods of this visitor in the ClangAstVisitor

we decided that separating this out provides a nicer structure of the plug-in. This is possible
because templated nodes in Clang’s AST provide an iterator over template arguments. We
explicitly loop through template arguments and translate them with this visitor.

3.6 Handling of unsupported code

C++ has a very large amount of features, we only support a subset thereof. For the user we
have to provide feedback when something is not supported. Therefore we implemented the
CppImportLogger class which keeps tracks of unsupported features and prints warnings for the
user. Feedback is structured such that the user knows exactly where the problem is i.e. we
provide a file name and a line number of the problem. The feedback is only given for C++
code and does not warn about preprocessor statements or comments. As an example we try to
import the code listed in listing 3.1. If one just looks at the output (figure 3.3), it seems on the
first glance correct, however the label is missing.

1 int main() {

2 label: std::cout << "print";

3 return 0;

4 }

Listing 3.1: Unsupported code with a label

int main

coutstd. <<"print"

0

Figure 3.3: Translated sample

The console output reflects this observation and prints the warning as in listing 3.2. It is
obvious that on line 2 there is a LabelStmt which is not supported. We implemented a set
of error codes that are appended in the end of the not supported node type. Those will be
explained in the following subsection.

11

Chapter 3. Plug-in design and implementation

1 ERR/WARN: In class : ClangAstVisitor

2 reason : Not supported

3 in stmt class node : LabelStmt_NS

4 in file : test.cpp

5 on line : 2

Listing 3.2: Error note for the label statement

3.6.1 Error codes

We found that problems while importing code often have similar reasons and therefore created
4 groups of errors:

Not supported (NS): Nodes which the plug-in at its current state simply does not support.
For expressions we create an error expression which is visible in Envision and also out-
put the corresponding warning. (Example: user defined literals) For declarations and
statements which are not supported we only output a warning. (Example: labels)

No parent (NP): Nodes for which the plug-in finds the Clang parent node, but this node is
not yet translated. This would happen if a class method is declared before the declaration
of the class. During development we had this error for variables which were from an
implicit instantiated template class, which is now checked.

Insert problem (IP): This is the case when either the imported C++ code is invalid, or it
is not supported by Envision. Such an error happens for example when the visitor visits a
statement, but the current node on the stack is not a statement item list. This happens if
we forget to push the statement item list previously for example when visiting a method
body. The visitor therefore does not know where to put the statement. For invalid C++
code the Clang parser already prints the Error and does not create a corresponding node
in the AST, therefore whenever this Error occurs it points to a bug in the implementation
of the plug-in.

Other (O): This is for problems which do not fit into the other groups. Those cases provide
a detailed message of the reason.

Thanks to the suffixes, which are presented in the brackets after the name, it is easy to
get an overview of which problems occurred in the statistics output. The statistics table is
presented in the end and contains the node name with the suffix, plus the number of times this
error happened. An example of such statistic output is shown in listing 3.3.

12

Chapter 3. Plug-in design and implementation

1 =Statistics of warnings and errors==

2

3 General errors

4 UnaryOperator_NS: 50

5

6 Types not supported by envision

7 TypeOfExpr: 25

8 unsigned char: 9

9

10 Unary operations not supported

11 UO_Extension: 50

12

13 Storage class specifiers not supported

14 SC_Extern: 2

15

16 ===========Statistics End===========

Listing 3.3: Sample statistics output

3.7 Using the plug-in

This section discusses the usage of the new plug-in. As for using the plug-in you will, in most
cases, need a compilation database file. We explain why this file is needed in section 3.7.1. We
present how to test the plug-in with test cases in section 3.7.2 and in section 3.7.3 we explain
the steps needed to import C++ projects.

3.7.1 Compilation databases

Compiling C++ often needs additional information passed in as command line arguments.
Those arguments can be used to specify the version of the standard (for example -std=c++0x to
specify the C++11 standard) or to include libraries with the -I switch. There are even more
such switches and they may differ from source file to source file. It is therefore important that
the plug-in, i.e. the Clang interface, is aware of such arguments. Clang tools take a compilation
database file, that conforms to the format described in the Clang documentation [9]. Those files
will contain the whole command which would be used to compile a certain source file and also
the complete path to the source file. Providing such a compilation database file is the easiest
way to specify compilation arguments for the plug-in.

3.7.2 Testing

When implementing support for new nodes, or when checking the behaviour of the plug-in for
a certain construct it is often desirable to have a small test case and an easy way to provide
this case. Therefore we provide the setupTest() method in the CppImportManager. This method
will import the test selected with the testSelector file.

13

Chapter 3. Plug-in design and implementation

To create a test, just create a directory (inside the test directory of the plug-in) with the
name of the test and inside it a file called ’test.cpp’. In the testSelector just write the name
of the directory, and make sure there is no previous line without a ’#’ character. Then simply
run Envision with the --test cppimport parameter.

We generate a generic compilation database file for the test cases and use /usr/bin/clang++

-std=c++0x -Irelative -I/usr/lib/clang/3.3/include/ -c -o test.o test.cpp as compile com-
mand. If those arguments do not fulfill your needs you have to use a project as described in the
next section.

3.7.3 Importing C++ projects

For larger projects importing is a bit more complex, but luckily most steps are automated and
do not need much interaction. As opposed to the test cases, you have to provide a compilation
database file for projects. We will explain how you can generate them automatically.

Before creating the compilation database file you may have to adapt a few settings in your
project.

• You have to set the compiler to clang++.

• You have to include the include directory of Clang, on Linux systems this is typically

/usr/lib/clang/3.3/include/

This is needed to find Clang’s system headers such as stdarg.h

• If you use C++11 features such as list initializers and libraries which check for the com-
piler version such as Qt 4 you have to fake a more up-to-date gcc version since Clang
currently masquerades itself as gcc version 4.2.1. This can be achieved with first un-
defining the version with -U__GNUC_MINOR__ and then define it to the latest version i.e.
-D__GNUC_MINOR__=8.

Now that the set up is done you can proceed with generating the compile commands file. If
you use one of the following build systems you can just follow the described steps to generate
such a file:

CMake: As of version 2.8.5 CMake supports generating compilation databases for UNIX Make-
file builds with the option CMAKE_EXPORT_COMPILE_COMMANDS [9].

Qt qmake project: For qmake project files just run qmake on them which generates a Makefile
and then proceed with the steps explained in the make description.

make Makefile: For make files you can use the Bear tool [18]. As soon as you have installed
the tool you can call bear -- make. This will compile your project and generate the
compile_commands.json file. You have to make sure that your project is not yet compiled
otherwise the database will be incomplete or empty.

After you have your compilation database file you are ready to import the code. We provide
a way for users to easily import their project for testing purposes and also an API for other
plug-ins:

14

Chapter 3. Plug-in design and implementation

Users Just specify the path in the testSelector file (this file is in the test folder of the plug-in)
begin the line with path: and then write the path. After having set this up you can run
Envision with the --test cppimport parameter. If you have a project with sub-projects
you can specify the path in testSelector file with the spath: prefix. For this you have to
have a compile commands file for each sub-project as described below.

API For other plug-ins we provide a method to import code. You can interface with the
CppImportManager class. First you have to set the import path with the setImportPath()

method, you have to pass the path of the project you want to import as argument. If
you have a project with sub-projects set the second parameter to true, and make sure
you provide a compile commands file for each sub-project as described below. After you
have set the path you have to call the createModel() method which returns the root of
the translated project.

If you want to use the tool on a project with sub-projects it is best to create the compile
commands file for each sub project this can be achieved with a small script as in listing 3.4.

1 #!/bin/bash

2

3 for dir in ./*/

4 do

5 (cd $dir && make clean && bear -- make)

6 echo "Processed $dir"

7 done

Listing 3.4: Script for sub projects

This special treating for projects with sub-projects is needed because of an issue in Clang’s
tooling interface. If we would just use the top-level Makefile Clang would use invariant include
paths. In particular we found that Clang replaced -I/src with the complete path while pro-
cessing the first sub-project. Therefore the include path is wrong for the other sub-projects
and causes errors because header files can not be found. We reported this issue on the Clang
mailing list but did not yet get any feedback on this.

15

4 Evaluation

Now that we have seen how the plug-in is built, we present an overview of supported features
in the implementation. As one of our main goals was to import Envision’s code, we analysed
how well the plug-in performs in doing that. To check general performance we ran our tool on
other C++ software and report the results in section 4.2.

4.1 C++ support status

The initial goal of this thesis was to support C++ code which is semantically comparable
to what the Java import plug-in supports. We outreached this goal and support even more
constructs. In the following subsections we present the status of some interesting features and
constructs.

4.1.1 Feature completeness

In this section we present an overview of C++ constructs and their support status. The table
contains the name of the feature, the corresponding node name in Clang if there is one, and
in the comment column you can see current state of the feature. The overview concentrates
on features, which are only partially or not at all supported. For some features we provide
additional information in the following subsections.

Feature Clang Node Comment

Preprocessor
Preprocessor – Minor support, see section 4.1.3
Template code
Template code – Mostly supported, see section 4.1.4
Partial template special-
ization

ClassTemplatePartial-
SpecializationDecl

Not supported

Template specialization ClassTemplate-
SpecializationDecl

Supported

Templated methods FunctionDecl Supported
Templated reference ex-
pressions

– Supported including method calls

16

Chapter 4. Evaluation

Templated friend declara-
tions

FriendTemplateDecl Not supported

Declarations
Namespace declarations NamespaceDecl Supported including merging
Class declarations CXXRecordDecl Supported, also unions and structs
Method declarations FunctionDecl Supported, also constructors and

destructors
Variable declarations VarDecl Supported, also static fields (mod-

eled as VarDecl in Clang)
Field declarations FieldDecl Supported
Alias declarations various Supported
Friend declarations FriendDecl Mostly supported, see section 4.1.5
Access specifiers AccessSpecDecl Supported indirect (method & fields

are queried)
Dependent using declara-
tion which is not marked
with typename

UnresolvedUsing-
ValueDecl

Not supported

Statements
Statements Stmt All statements used in Envision are

supported
Expressions
Lambda expressions LambdaExpr Supported except for capture lists
Overloaded operator calls CXXOperatorCallExpr Most supported, except for over-

loaded memory operator call (new,
delete)

Literals – All supported, except user defined
ones

C++11 noexcept expres-
sion

CXXNoexceptExpr Not supported

Pseudo destructor CXXPseudoDestructor-
Expr

Not supported

C++11 Pack expansion ex-
pression

PackExpansionExpr Not supported

Size of pack expression SizeOfPackExpr Not supported
Parenthesized list expres-
sion

ParenListExpr Not supported, see section 4.1.6

Types
Function type FunctionProtoType Supported except for argument

names
Decltype DecltypeType Not supported
Member pointer MemberPointerType Not supported
Various elements
Member initializers CXXCtorInitializer Partial support, see section 4.1.6

17

Chapter 4. Evaluation

Extern keyword – Not supported
Labels LabelStmt / LabelDecl Not supported
Body of anonymous out-
lined functions

CapturedStmt / Cap-
turedDecl

Not supported

Inline ASM code ASMStmt Not supported
Go to GotoStmt / Indirect-

Goto
Not supported

Attribute applied to a
statement

AttributedStmt Not supported

4.1.2 C++11 features

The latest C++ standard brings many valuable additions to the C++ language. Some of those
features are already used quite often in the code of Envision. As our goal is to import Envision
we aimed to support all the needed C++11 features to achieve this. Envision’s model already
supported a load of features, examples include: lambda expressions, null pointer constant,
initializer lists, in-class member initializers, and range based loops. Yet there were some features
that needed an adaptation of the model. We added support for the auto type, which is a very
commonly used feature. Furthermore we had to introduce member initializers for methods,
which we designed in a way that they directly support delegating constructors.

4.1.3 Preprocessor

Preprocessor directives are a very important construct for C++ programmers. One very basic
directive, the #include directive, is crucial for every C++ program. Thanks to Clang which
provides preprocessed sources this construct is partially supported out of box. Partially sup-
ported means here that files which are included are also considered for translation, but we lose
the information that they were included. This loss of information is unfit, especially in the case
of system headers because those are not translated to Envision’s model, and it should be con-
sidered to translate includes to a corresponding Envision node in the future. The #pragma once

directive will guarantee that a header file is included only once for each translation unit.
For macros and conditional compilation we only provide limited support. As the tool runs

on preprocessed sources we only get the macros expanded, for the defined values as given. This
is enough to test the importing of C++ code, but needs to be extended to really be able to
develop C++ code in Envision. We outline an approach to improve preprocessor support in
section 5.2.

4.1.4 Templates

For templates the initial goal was to support constructs similar to Java, this means templates
used like Java generics. The plug-in supports normal template classes, template methods, as
well as template specialization.

18

Chapter 4. Evaluation

Support for the recently introduced variadic templates [2][6, pp. 327–329] is yet missing.
Supporting variadic templates would need changes to Envision’s model in various nodes, some
of them are stated in the following.

First of all we would need a way to model variadic templates in the FormalTypeArgument

node of Envision. Then we would need a node to represent the ellipsis operator (...). This
ellipsis operator will have to contain a child expression, which will be used as the argument.
For example for a method which takes a variadic template as parameter i.e. when the call looks
like func(args...); the parameter in Envision’s model would be an ellipsis operator with a
reference-expression, which refers to args, as the operator argument.

4.1.5 Friend methods

While support for friend classes is easy, because they can only be declared, there are more
issues for friend methods. Friend methods can be defined inside a class, but even if done so
they are still global [6, p. 243]. Therefore we would have to split the method into declaration
and definition, because Clang models it as one single node.

While this is feasible, by propagating the definition to the correct place, Envision in its
current state still lacks the possibility to refer to this method. Presently we are using a method
call expression to refer to the method, which is uniquely used for debugging and displaying
purposes. This helps as a place holder in the implementation, as soon as Envision supports
referring to a method that can easily be adapted in the current implementation.

4.1.6 Member initializers

We provide support for most member initializers but there are some cases which do not work.
If we have a call to a super constructor from a templated class there will be a ParenListExpr

as initializer expression which is not supported by our plug-in. An example of such a case is
shown in listing 4.1.

1 class Pair {

2 int a,b;

3 public:

4 Pair(int f,int s){

5 a=f;

6 b=s;

7 }

8 };

9

10 template <class T> class A : public Pair {

11 A(int f, int s) : Pair(f,s){}

12 };

Listing 4.1: Member initializer which does not work

The interesting thing is that if the class A is not templated the Clang AST is different and
supported. Below you find the AST dumps of the sample with and without template argument
(only the member initializer is shown).

19

Chapter 4. Evaluation

1 |-CXXCtorInitializer ’class Pair’

2 | |-CXXConstructExpr 0x1aeb940 <col:21, col:29> ’class Pair’ ’void (int, int)’

3 | | |-ImplicitCastExpr 0x1aeb910 <col:26> ’int’ <LValueToRValue>

4 | | | ‘-DeclRefExpr 0x1aeb4d8 <col:26> ’int’ lvalue ParmVar 0x1aeb2c0 ’f’ ’int’

5 | | ‘-ImplicitCastExpr 0x1aeb928 <col:28> ’int’ <LValueToRValue>

6 | | ‘-DeclRefExpr 0x1aeb500 <col:28> ’int’ lvalue ParmVar 0x1aeb330 ’s’ ’int’

Listing 4.2: Working AST

1 |-CXXCtorInitializer ’class Pair’

2 | |-ParenListExpr 0x2bff7e8 <col:25, col:29> ’NULL TYPE’

3 | | |-DeclRefExpr 0x2bff798 <col:26> ’int’ lvalue ParmVar 0x2bff580 ’f’ ’int’

4 | | ‘-DeclRefExpr 0x2bff7c0 <col:28> ’int’ lvalue ParmVar 0x2bff5f0 ’s’ ’int’

Listing 4.3: Templated sample, not working

This parenthesized list of expression is introduced whenever Clang can not determine which
method will be called. In fact in this case it would be possible to determine it, but there is no
implementation for this decision. You can find the discussion on the mailing list [15].

4.1.7 Implicit nodes

Clang creates an AST which is ready to be compiled. Therefore the tree contains more infor-
mation than what is written in the source code. For Envision we just want the parts written in
the source code. While many implicit nodes can be ignored and are not visited at all, there are
some cases where implicit nodes contain information relevant to our translation. In this section
we present some cases where the translation adds implicit code and explain why this happens.

In figure 4.1 you can see the translated code of listing 4.4. The difference is obvious:
The plug-in has introduced a QFlags constructor call which is undesired because this does
not represent the written source code.

1 Modifiers get() const {

2 return modifiers_;

3 }

Listing 4.4: Implicit code sample

Modi ers get

QFlags ()modi ers_

Figure 4.1: Translated sample

To find out why this happens we looked into the AST Clang generates for the code as written
in listing 4.4. There we found an explicit construct-expression (i.e. CXXConstructExpr) node.
To further investigate this we changed the code to match the translated code and compared the
two ASTs. But unfortunately both ASTs looked identical and therefore this did not provide
any more insight on how to deal with this problem.

However one possible solution to solve this problem is to compare the beginning and end
source location of the construct expression. If those locations are identical we can conclude that
this expression is not written. In that case we just have to find a strategy on how to deal with

20

Chapter 4. Evaluation

multiple children. Other than that such an expression can be ignored and the child is to be
visited.

Another problem arises for implicit conversion operator calls. In figure 4.2 the call to a
conversion operator (operator int()) has been inserted when comparing to listing 4.5. In the
AST one can discover an implicit cast expression node which has the operator call as a child.
Using this implicit cast as an indicator of the implicit operator call expression might be possible.
While we observe that this cast is not needed when explicitly writing the operator call, there
might be cases where this assumption can be misleading. Another solution is to do the same as
before and just compare the source locations.

1 void save(Model::PersistentStore& store)

const

2 {

3 store.saveIntValue(modifiers_);

4 }

Listing 4.5: Implicit code sample

void save
store

PersistentStoreModel. &

saveIntValuestore. ()operator intmodi ers_ . ()

Figure 4.2: Translated sample

4.2 Performance

This section presents statistics on time and space consumption of our plug-in during practical
test runs. As importing is done only once for a certain project, later we can use Envision’s
persistence model, performance is not a very important factor for this plug-in. The values we
present are just approximations and are only to give a rough idea of time and space consumption.

The time was measured using the QTime class. We only measured the time from the start of
the C++ import until the end. This means the time to resolve the references and to visualize
the model is not included.

The memory was measured with the top tool [1]. We used the tool by observing the memory
usage during the importing. This is not very accurate but provides a rough approximation. We
only show the highest usage during the plug-in run. The plug-in frees all resources except from
the created model as soon as it is finished.

The line number were determined with the CodeAnalyzer tool [20]

Test Total Lines Code lines Time used [min:sec] Memory [Mb]

Envision 85363 42691 1:55 176

cppcheck gui 23678 16440 0:27 100

We imported the cppcheck tool [17] to compare the results against those from Envision.
Memory is not a very big concern because after the plug-in is finished with creating the

model, Envision uses a lot more memory than what is needed during the importing. Memory
usage is low thanks to translation units, because we only have rather small Clang ASTs which
are deleted after the translation unit is processed.

21

Chapter 4. Evaluation

Time usage is rather high but at an acceptable level, when considering that importing is
done only once. In section 5.4 we present how to make this plug-in work in multiple threads,
which should lower the time used.

22

5 Future extensions

The plug-in provides support to import a variety of C++ constructs as explained in the previous
section. However import functionality is far from being complete and there are still interesting
things which can be added. In section 5.1 an approach on how to support the import of
comments is outlined and discussed. Section 5.2 is about advanced preprocessor directives such
as macros and similar constructs. Even if there is a high coverage of supported AST nodes there
might be the need to support newly introduced nodes. Therefore we present how to achieve this
in section 5.3. We outline the needed adaptations to make the plug-in multi threading capable
in section 5.4.

5.1 Comments

Comments are a crucial feature to document and explain code. Therefore it is of high interest
to deal with source code comments in the future. This section lays out approaches on how to
deal with comments used for documentation, but also how to deal with explanatory comments.

Given that documentation comments, are bound to a declaration, adding support for them
is very easy. Clang’s framework parses comments and binds them to declarations. To get the
comment of a declaration the getASTContext() method can be used to get the context and from
the context you then get the comment. The ASTContext class provides several methods to get
the comments reaching from raw comments to pre-parsed full comments.

While the documentation comments are quite easy to get, some more work is required to
get comments, which for example explain some complicated code in a method. We outline one
possible approach to deal with them. Our approach is based on source locations, because for
statements Clang does not provide an AST Context or anything similar. Therefore we first have
to implement a comment handler. The comment handler should use the Clang::CommentHandler

as a base class. The only method this handler has to provide is the HandleComment method. In
our approach this method is used to save the source ranges in a list. The source range is enough
to get the comment later, as long as we are in the same translation unit.

Once we have the comment handler, we have to make sure Clang is aware of it. So we add
the following line to the CreateASTConsumer() method in the ClangConsumerCreator class :

CI.getPreprocessor().addCommentHandler(//pointer to our handler);

This will register the comment handler to the preprocessor, thus the HandleComment method will
get called whenever a comment is read. Note that the ClangConsumerCreator class provides a
reference to the CppImportLogger class which could be helpful to log comment activities.

23

Chapter 5. Future extensions

Now our comment handler will collect all locations of comments. What remains to be done
is to adapt the visitor to query the comment handler, if there is a comment near the statement
we are currently visiting. If we find a statement which has a comment, we can get the comment
using the source manager.

During development we implemented a sample comment handler to test the behavior. The
handler we had, just printed every comment it received. Because Envision has currently no
support for comments we removed this handler shortly after our experiment.

5.2 Preprocessor directives

Some directives such as #include filename and #pragma once are partially supported as dis-
cussed in section 4.1.3. The source being preprocessed may cause a loss of information we are
interested in. As Envision is a code editor it needs to be aware of all possible cases of a condi-
tional compilation. However such functionality is currently missing and therefore we present a
rough overview of steps that are necessary to add this functionality. This guide will only include
the steps needed in the CppImport plug-in. How to model such a construct in Envision’s model
has yet to be determined.

The approach for preprocessor directives is, like the approach with comments, based on
source locations. Clang allows to set preprocessor callbacks to easily interact with the preproces-
sor, without reimplementing the Preprocessor class. A class which implements the PPCallbacks

interface provided by Clang [11] has to be implemented to get information on what the prepro-
cessor does. The interface provides methods for both conditional compilation, and macros which
is well suited for our desires. For the constructs of interest we can store the source location,
and if needed additional information. The callback method for #ifdef constructs for example
contains not only the source location but also the token which is tested. This token will be of
interest if we want to support conditional compilation. There might be additional steps needed
to always get valid source locations, this was discussed on the mailing list [14] [19].

After having the class implemented we have to register it to the preprocessor. This is done
by manipulating the ClangConsumerCreator class. In the CreateASTConsumer() method, we have
to add the following line:

CI.getPreprocessor().addPPCallbacks(//pointer to our callbacks);

This will add our callback class to the preprocessor callbacks.
Now that the callbacks are registered we have to adapt our visitors. The visitors have to

query if on a certain source location there is a preprocessor construct which is of interest.

5.3 AST nodes

An important and often needed extension is to add support for new Clang AST nodes. This is
rather simple by extending the existing visitors. We demonstrate the process of adding support
for a new node with examples, but try to keep explanations as general as possible. In the
example on expressions, the focus lies on user defined literals, a C++11 construct, which is
not yet supported. The second example will be about declarations. First off we present initial
common steps that need to be done first.

24

Chapter 5. Future extensions

5.3.1 General steps

At the beginning a test case, which contains the new feature, has to be written. The test case
should be as minimal as possible. This helps to have an overview and simplifies the debugging
process. With the test case given, it is possible to try and see how the plug-in deals with it.
This should already provide an error message with the node name that is not supported.

If this is not the case, or more detailed information is needed, the AST dump will help.
This can either be achieved programmatically inside the visitor by calling dump() on a node
or otherwise by calling clang -cc1 -std=c++11 -undef -ast-dump test.cpp. The first method
makes it possible to choose very precisely which node to print, whereas the second method
prints the whole AST, but is easier to do since there is no need to recompile anything. In both
cases it is advised to have a short and concise test cases because the AST quickly gets large
which makes it more difficult to find a specific location in it.

With the node name we can find the rich documentation of a node on the llvm website, a
search on Google with the node name should directly lead to it.

5.3.2 Expressions

In our example we use the test case as listed in Listing 5.1. In its current state the plug-in
translates this sample into the representation showed in Figure 5.1. From the console output,
which is shown in listing 5.2, we can see that the missing node is a UserDefinedLiteral.

1 int operator"" _toInt(long double n) {

2 return int(n);

3 }

4

5 int main(){

6 int m = 5.0_toInt;

7 }

Listing 5.1: User defined literals, test case

CppImport

int operator "" _toInt
n

double

n
int

int main

mint 5

Figure 5.1: Translated test case

1 ERR/WARN: In class : ExpressionVisitor

2 reason : Not supported

3 in stmt class node : UserDefinedLiteral_NS

4 in file : test.cpp

5 on line : 6

Listing 5.2: Error when importing a user defined literal

As we have to visit children in our specified order, our method will be a Traverse method,
and we can call Traverse for the children (remember the different methods as explained in
section 3.5).

The user defined literal has two parts which we have to consider: first we have the arguments
and second we have the literal suffix. The arguments can be traversed by the expression visitor
and the suffix we receive with the getUDSuffix() method.

25

Chapter 5. Future extensions

Applying all this, we get the method as shown in Listing 5.3. This method is quite simplified
for presentation purposes and would need error checking in the real version. Since Envision has
currently no support for user defined literals we inserted comments on line 10 and 11 to specify
which additional steps would be needed.

1 bool TraverseUserDefinedLiteral(Clang::UserDefinedLiteral* literal)

2 {

3 QString suffixName = QString(literal->getUDSuffix()->getNameStart());

4 for(auto argIt = literal->arg_begin(); argIt!=literal->arg_end(); ++argIt)

5 {

6 TraverseStmt(*argIt);

7 OOModel::Expression* arg = ooExprStack_.pop();

8 // do something with arg

9 }

10 // create the translated node.

11 // push the created node on the expression stack

12 return true;

13 }

Listing 5.3: Pseudo code of the new method

5.3.3 Declarations

As for declarations we also have to check for duplicates, the process contains some more steps
than the process for expressions. The example, which we use for this explanation is a type alias
with type arguments. We use an example from Envision’s code, we modified the code from the
Reflect.h file slightly, to the code in listing 5.4. If we run the plug-in on this code we receive
the Envision model as shown in figure 5.2. There you can see, that the translated version of
the type alias contains no type arguments which is wrong.

1 namespace Core {

2

3 template <class Base>

4 class Reflect : public Base

5 {

6 protected:

7 using Super = Reflect<Base>;

8 };

9 }

10

11 template <class Base> using Super =

Core::Reflect<Base>;

Listing 5.4: Type alias with template argument

Re ect

Core

Re ect Base Base

Super Re ectCore. ⟨ ⟩Base

Figure 5.2: Translated sample, the type alias
without type arguments

From the plug-in output, as in listing 5.5, we can see that a TypeAliasTemplateDecl node
which was not supported. There is a second node the TemplateTypeParmDecl that is reported.

26

Chapter 5. Future extensions

We translate TemplateTypeParmDecl nodes in the TemplateArgumentVisitor therefore there is no
method for this node in the ClangASTVisitor. Because the visitor visits childs automatically for
unsupported nodes this TemplateTypeParmDecl is also reported with the TypeAliasTemplateDecl.
With our presented method we can eliminate both errors.

1 ERR/WARN: In class : ClangAstVisitor

2 reason : Not supported

3 in clang node : TypeAliasTemplateDecl_NS

4 clang node name : Super

5 in file : test.cpp

6 on line : 11

7 ERR/WARN: In class : ClangAstVisitor

8 reason : Not supported

9 in clang node : TemplateTypeParmDecl_NS

10 clang node name : Base

11 in file : test.cpp

12 on line : 11

Listing 5.5: Error when importing a templated type alias

With the name given by the error message, the documentation [12] can be found.
Now we implement the check for duplicates, to achieve this we first implement a function

which creates a unique hash of the declaration. For this we add a function hashTypeAliasTemplate

to the NodeHasher class. We can reuse the method for type aliases without templates, and to
this append the hash of the template arguments. The method implemented will look like in
listing 5.6.

1 const QString hashTypeAliasTemplate(const Clang::TypeAliasTemplateDecl*

typeAliasTemplate)

2 {

3 QString hash = hashTypeAlias(typeAliasTemplate->getTemplatedDecl());

4 auto templateParamList = typeAliasTemplate->getTemplateParameters();

5 for(auto templateParam = templateParamList->begin();

6 templateParam != templateParamList->end(); ++templateParam)

7 {

8 hash.append("_");

9 if(auto templateType =

llvm::dyn_cast<Clang::TemplateTypeParmDecl>(*templateParam))

10 hash.append(hashTemplateTypeParm(templateType));

11 else if(auto nonTemplateType =

llvm::dyn_cast<Clang::NonTypeTemplateParmDecl>(*templateParam))

12 hash.append(hashTemplateTypeParm(nonTemplateType));

13 }

14 return hash;

15 }

Listing 5.6: Pseudo code of the new method

Now we have to modify the TranslateManager class. The method insertTypeAliasTemplate

will look identical to the insertTypeAlias method, except for the adapted hash method.

27

Chapter 5. Future extensions

Next we implement the TraverseTypeAliasTemplateDecl method in the ClangAstVisitor

class. The name we receive from the getNameAsString() method. The aliased type we receive
with the following line:

typeAliasTemplate->getTemplatedDecl()->getUnderlyingType();

Then we just have to loop over the template arguments and translate them with the
TemplateArgumentVisitor. At the end we have to insert the newly generated type alias in
the model. Due to the size the finished code of the method is omitted here, but it can be found
in the source code.

5.4 Multi threading

The extensions presented previously concentrate on adding features. Another interesting im-
provement is to find on the performance side. Even if the import currently is rather fast, it
should be as fast as possible. This section therefore presents some points to consider to make
this plug-in multi threading capable.

Be aware that Clang works in translation units, which means for each source file that we
have a separate run of the tool. This offers a great possibility to parallelize the importing.

There are some classes which should be shared amongst all translating threads. The most
important one is the TranslateManager class, which was presented in section 3.4. For the maps
used by this class we have to implement thread safety. This means we have to lock access to
a certain map each time a thread writes to this map. For reading we do not need to change
anything since the Qt-framework provides this already. The logging class is another class that
is shared and since it uses maps it should be changed to be thread safe.

As every translated node gets added to an Envision node we have to make sure that we
provide thread safety for such insertion as well. This can either be done by implementing an
own thread safety guarantee for the inserted nodes or by using Envision’s locking facility as
provided by the Envision model.

Given thread safety we can create several threads and split the sources to process amongst
them. Each thread can then create its own tool and translate the given sources.

28

6 Conclusion

We presented a plug-in for Envision which is able to import C++ code to Envision. The plug-in
relies on the Clang front-end, we translate from Clang’s AST to Envision’s model. Most of the
code constructs found in Envision’s source code we are able to import with this new plug-in.
We found ways to merge ASTs from different translation units into the united concise Envision
model. Our implementation is able to detect certain AST nodes which are not written in the
source code and handles them appropriately. Some parts are still missing to be able to fully
import C++ projects, especially preprocessor constructs such as macros are not yet supported.
We provided detailed guidelines, which we hope will help to implement the missing functionality.

The plug-in we presented, is a first step towards developing Envision using Envision itself.
To achieve this there is still some work to do:

• We have to extend this plug-in to also support preprocessor directives and comments.

• As soon as the plug-in is complete, we should adapt the visualizations to fully support
the newly introduced C++ constructs. This is not very crucial but still needed for day to
day usage.

• The last and probably the biggest task is then to export Envision’s model to C++ code
to be able to compile the edited project.

The ability to develop Envision using itself, will hopefully further improve the quality of
Envision.

29

A Importing Envision’s code

This section explains how to import Envision’s code with the new plug-in. The steps here are
very specific to Envision’s code, for other code bases you find explanations in section 3.7.

• First clone the Envision repository [4] to some path PATH.

• In PATH/Core you will find the common.pri file which you have to adapt:

– To QMAKE_CXXFLAGS add the parameter -U__GNUC_MINOR__

– In the next line write DEFINES += __GNUC_MINOR__=8 this fakes gcc version 4.8

– Specify Clang as the compiler with QMAKE_CXX = clang++

– Add the include directory from clang to the INCLUDEPATH variable In Linux this may
look like this: INCLUDEPATH += /usr/lib/clang/3.3/include/

• Now cd to the PATH directory again and run qmake -r eventually you have to specify
the qt version so you may want to use qmake-qt4 -r

• Now you should have a Makefile in PATH and in the sub directories which contain code.
Create a maker.sh file as in listing A.1

• Make sure you have the bear tool [18] installed.

• Run the maker.sh script, it will create the needed compile_commands.json files

• In the directory where you have your installed version of Envision cd into CppImport/test

• In this directory is the testSelector file, open it, and add spath:PATH where PATH is the
PATH (the cloned Envision directory) For example this can look like this:

spath:/home/luke/BachelorThesis/TestEnvision/Envision (note that there are no spaces)

• You can now run Envision with the --test cppimport argument.

30

Appendix A. Importing Envision’s code

1 #!/bin/bash

2

3 for dir in ./*/

4 do

5 (cd $dir && make clean && bear -- make)

6 echo "Processed $dir"

7 done

Listing A.1: Script for sub projects

If you observe that not all code was translated, you may want to make sure that the generated
compile_commands.json files are complete and contain no errors. This was often the case during
our development.

31

References

[1] Unix top utility. http://www.unixtop.org/, July 2013.

[2] Variadic templates. http://en.wikipedia.org/wiki/Variadic_template, July 2013.

[3] Dimitar Asenov. Design and implementation of envision - a visual programming system.
Master’s thesis, ETH Zürich, 2010.

[4] Dimitar Asenov. Envision on github. https://github.com/dimitar-asenov/Envision,
July 2013.

[5] Dimitar Asenov. Envision’s project page. http://www.pm.inf.ethz.ch/research/

envision, July 2013.

[6] The C++ Standards Committee. Latest publicly available draft - n3690 edition, May 2013.

[7] clang. clang: a c language family frontend for llvm. http://clang.llvm.org/, July 2013.

[8] clang. Frontendaction documentation. http://clang.llvm.org/doxygen/classclang_

1_1FrontendAction.html, July 2013.

[9] clang. Json compilation database format specification. http://clang.llvm.org/docs/

JSONCompilationDatabase.html, July 2013.

[10] clang. Libtooling documentation. http://clang.llvm.org/docs/LibTooling.html, July
2013.

[11] clang. Ppcallbacks class reference. http://clang.llvm.org/doxygen/classclang_1_

1PPCallbacks.html, July 2013.

[12] clang. Typealiastemplatedecl class reference. http://clang.llvm.org/doxygen/

classclang_1_1TypeAliasTemplateDecl.html, July 2013.

[13] James O. Coplien. Curiously recurring template patterns. C++ Rep., 7(2):24–27, February
1995.

[14] George Kastrinis Eli Friedman. Mailing list conversation about macros and decla-
rations. http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031444.html,
August 2013.

32

http://www.unixtop.org/
http://en.wikipedia.org/wiki/Variadic_template
https://github.com/dimitar-asenov/Envision
http://www.pm.inf.ethz.ch/research/envision
http://www.pm.inf.ethz.ch/research/envision
http://clang.llvm.org/
http://clang.llvm.org/doxygen/classclang_1_1FrontendAction.html
http://clang.llvm.org/doxygen/classclang_1_1FrontendAction.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html
http://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html
http://clang.llvm.org/doxygen/classclang_1_1TypeAliasTemplateDecl.html
http://clang.llvm.org/doxygen/classclang_1_1TypeAliasTemplateDecl.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031444.html

References

[15] Eli Friedman. Mailing list conversation about member initializers. http://lists.cs.

uiuc.edu/pipermail/cfe-dev/2013-August/031347.html, August 2013.

[16] Manuel Klimek. The clang ast - a tutorial. http://youtu.be/VqCkCDFLSsc?t=5m40s, May
2013.

[17] Daniel Marjamäki. Cppcheck tool. https://github.com/danmar/cppcheck, July 2013.

[18] Laszlo Nagy. Build ear. https://github.com/rizsotto/Bear, July 2013.

[19] George Kastrinis Sam Parker. Mailing list conversation about macros and source lo-
cations. http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031454.html,
August 2013.

[20] Mark Teel. Code analyzer tool. http://www.codeanalyzer.teel.ws/, July 2013.

33

http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031347.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031347.html
http://youtu.be/VqCkCDFLSsc?t=5m40s
https://github.com/danmar/cppcheck
https://github.com/rizsotto/Bear
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-August/031454.html
http://www.codeanalyzer.teel.ws/

	Contents
	Introduction
	Motivation
	Clang
	Challenges

	Envision's model and Clang's AST
	Overview
	Differences between Clang's AST and Envision's model
	Textual versus tree based nature
	Switch statements
	Lambda expressions
	Types

	Plug-in design and implementation
	Clang interface
	Classes specific to Clang
	Plug-in design
	Manager classes
	AST visitors
	Recursive AST visitor
	Declaration and Statement visitor
	Expression visitor
	Template argument visitor

	Handling of unsupported code
	Error codes

	Using the plug-in
	Compilation databases
	Testing
	Importing C++ projects

	Evaluation
	C++ support status
	Feature completeness
	C++11 features
	Preprocessor
	Templates
	Friend methods
	Member initializers
	Implicit nodes

	Performance

	Future extensions
	Comments
	Preprocessor directives
	AST nodes
	General steps
	Expressions
	Declarations

	Multi threading

	Conclusion
	Importing Envision's code
	References

