
Augmenting software development with

information scripting

Master Thesis Description

Lukas Vogel
luvogel@student.ethz.ch

May 26, 2015

1 Introduction

Today’s large software projects are associated with a lot of information. The
program code itself is perhaps the most important information source. Addi-
tionally issue trackers, version control systems, debuggers, analysis tools, and
documentation, etc. provide invaluable information to a developer. Engineers
frequently face questions which require a combination of information from mul-
tiple sources [1] to answer. Yet existing tools are often not optimal for such use
cases.

Consider an imaginary developer Bob, who is debugging a new regression.
Bob updated his code version with the version control system. He finds the
updated code crashes somewhere after the current breakpoint in the method
addTracks(). To find the cause Bob would like to know what changes occurred
in the callgraph of the method addTracks() during the last week. Bob thus
has to answer the more abstract query: “Find recent changes in the callgraph
of function x”. To answer this query a developer needs to find all functions
that lie in the call graph of the function x. With the version control system
the developer can determine which code has recently been changed. Those two
information fragments then have to be manually combined to answer the initial
query. This pattern where a combination of multiple subqueries is needed to
answer a question is common in software development. Both LaToza and Fritz
[1, 2] identify similar questions which are shown to be cumbersome to answer
in existing tools. While existing work solves some issues, there are still open
questions and there is room for improvement.

In this project we aim to design an information scripting framework that
allows a user to query, compose, and visualize information from different sources.
We believe that such a system can help developers to answer many of the raised
questions. The framework should be integrated in Envision, an IDE prototype
for object-oriented languages [3]. Envision features a visual structured editor
based on a flexible visualization framework that scales to large programs.

1



2 Design inspiration

For the information scripting framework we pursue an approach which is heav-
ily inspired by the Unix command line and its power. We aim to design the
framework in four layers:

• The exchange medium is the data structure that all other layers use
to communicate with each other. In Unix the exchange medium is lines
of text.

• The information sources are sources of information such as a version
control system or the source code. This layer is analogous to Unix pro-
grams that produce data without input, for example ls.

• Scripts are used to combine, filter, sort, etc. the data of the exchange
medium. Unix supports this with pipes, streams, and scripts.

• Visualizations should present the output of a script in a meaningful way.
In Unix this is usually plain text, either displayed on the screen or saved
as a file.

A somewhat similar question to the one we presented in the introduction
is “Print the last three commit ids for all source files which contain the word
label”. In Unix this can be answered with the following command:

grep -l "label" *.c | xargs -L 1 git log -3 --format =%H --

This line shows how a user can answer a query with a single line of combined
commands. We want to bring this power and simplicity to an IDE and source
code.

3 Related work

Fritz and Murphy [1] identify a set of questions developers ask routinely and aim
to simplify the answering of those questions. They define various information
fragments as bits of information from various sources, e.g. source code, change
sets, etc. They show that with an information fragment model which supports
composing and presenting information fragments developers are able to answer
most raised questions with ease. While Fritz’s solution is specifically designed
around a set of questions, with our scripting approach it should be possible to
cover more cases.

Storey et al. [4] observe that for a programming task often various locations
of a software project are involved. A location in this sense can be a source
location, a wiki entry, a comment, etc. By creating a waypoint system they
aim to group important locations for a task. With a prototype implementation
they gathered mostly encouraging feedback. In our work we aim to generalize
this idea, where tags are just one source of information. The tag information
could be combined with other information which can be even more useful. For
example a combination of tags and version control information could be used
to get updated information for a certain task.

Schiller and Lucia [5] describe a plug-in ecosystem that should enable users to
combine various plug-ins inside an integrated development environment. They

2



formalize this system using a polymorhic lambda calculus. For the interaction
between the plug-ins they define various data models. The formalism from the
lambda calculus assures that nonsensical plug-in combinations are impossible.
The authors implemented their approach in a prototype called Cupid. Cupid
uses a combination of clickable interfaces with textual input to create informa-
tion queries. To display the results a separate formatting rule has to be applied.
In our work we aim to create a solution which allows a user to easily combine
the querying and visualizations in a single command or script. Furthermore the
visual environment of Envision provides new opportunities on how to meaning-
fully display the queried data.

LaToza and Myers [2, 6] identify questions which developers frequently ask
and which are time consuming and hard to answer. They suggest that these
questions should be taken into consideration when designing development tools.
Especially reachability questions [6] are identified to play an important role
in software engineering. The authors designed the tool Reacher [7] which can
help answer call-graph related questions faster than traditional tools. For our
work the analysis of frequently asked questions and the tool Reacher will be an
important source of inspiration for the design process.

4 Core tasks

This project includes several core tasks. At first we will explore existing work.
Then our work focuses on designing and implementing a four-layered informa-
tion scripting system. This system should gradually be integrated in Envision.

4.1 Analysis of existing work

There exist various approaches on combining of data from different information
sources. We presented a small selection in section 3. We will analyze the existing
work and identify advantages and disadvantages. This analysis will be used to
guide our work.

4.2 Data exchange layer

To make it possible to query and compose information from different data
sources we need a uniform data format, which is understood by all data sources.
The format should be able to express complex relationships between data. We
aim to explore a graph-based approach for this data format, as a simple list is
insufficient to encode all relevant information.

Consider a query callgraph which returns the callgraph of a method. The
data format should be able to encode such information. Another example is the
data flow of a variable which is passed as an argument to a method.

4.3 Information source layer

The information source layer provides a way to access information from various
sources. Some potential sources are the source code, version control, compiler,
issue tracker, tags, etc. Envision should at least feature the source code and tags
as data sources. A tag is a piece of information attached to a source location

3



similar to what Storey et al. proposes [4]. From the implementation perspective
this layer is just an interface over the existing IDE, that can query the relevant
information and return it in the unified data format.

An information source more specifically should allow a programmer to re-
quest certain information by entering a command with arguments. The re-
quested data should be returned in the data exchange format as specified in
section 4.2.

A simple query to the source code data source could be calls draw, which
should return all locations that call the draw method. Another example of a
simple query to the version control system could be changed recently, which
should return all locations that have recently changed.

4.4 Scripts layer

To enable more complex queries we plan to provide data source independent
tools which work on the unified data format. We plan to provide tools for
combining, filtering, piping, and sorting information in the unified data format.
A single command, or a combination of commands can also be saved as a script
and then serve as a proper data source.

If we reconsider the two examples from the information source layer, a script
should make it possible to combine the queries, such that a user can get all code
regions which call the method draw and have recently been changed.

4.5 Visualization layer

The visualization layer should provide visualization primitives which can be
used to visualize the unified data format. At the very least we should have the
following visualization primitives:

• Highlights To visualize certain code regions of interest. For example this
could be used to highlight code regions which have recently been changed.

• Arrows To visualize connections or dependencies between different parts
of the data. Arrows can, for example, be used to visualize a call graph.

The idea is that per default all output of the commands to the introduced system
are visualized by this layer.

5 Possible extensions

Here we list some possible extensions to the core tasks.

5.1 Advanced visualizations

Investigate and implement more visualizations. We list two specific examples
here but the list could be extended depending on the progress with other tasks.

4



5.1.1 Heat maps

A heat map is an overlay which colors different regions of the code in different
colors depending on some heat measure. In a temperature heat map the color
red means hot and blue cold, we could use a similar notion or experiment with
a different paradigm.

The heat map should support visualizing code regions which have been re-
cently or frequently changed. Additionally it should support showing which
authors are active in which regions of the code. This could help developers
which are new in a project to find the person which they have to talk to if they
encounter a problem in a certain location of the project.

5.1.2 Data flow

In programs, data can flow through various paths. In some cases it is important
to know where the data of certain variables flows through. We want a visualiza-
tion of this flow to help developers in certain questions. Consider the question
“Can I change the definition of this variable without getting code conflicts with
my coworkers?”, a data flow visualization and a map on what the coworkers are
working on, might help to answer such a question.

5.2 Modifying Commands

Instead of only querying data we would like to extend the proposed system to
support modifying data through commands. Such a command could, for exam-
ple, make it possible to change all variables of type std::string to variables
of type QString.

Such a change might break something during compilation. Thus we would
like that modifying commands can automatically incorporate feedback from
other sources, e.g. the compiler.

That mechanism would enable refactoring actions where instead of updating
all references when renaming a field, the compiler is used as a data source to
suggest which references have to be renamed.

5.3 More information sources

To showcase the ability of our system we should support more data sources.
We aim to use the version control system as a data source. It could be used

to query recent changes, frequent authors for certain locations, etc.
Envision recently gained a debugging plug-in, which can compile, run, and

debug code. This could be extended to serve as an additional data source.
The compiler could be used in combination with a modifying command for
refactoring actions as explained in the previous task.

6 Schedule

A tentative time schedule for the project

5



Task Start date Time
Explore related work June 1, 2015 2 weeks
Design unified data format (layer 1) June 15, 2015 2 weeks
Implement data sources (layer 2) &

data format (layer 1) June 29, 2015 3 weeks
Introduce script capabilities (layer 3) July 20, 2015 3 weeks
Introduce visualization primitives (layer 4) August 10, 2015 2 week
Refine unified data format (layer 1) August 24, 2015 2 weeks
Finalize core tasks September 7, 2015 2 weeks
Extensions September 21, 2015 6 weeks
Write-up & finalizing November 2, 2015 4 weeks
End December 1, 2015

References

[1] Thomas Fritz and Gail C. Murphy. Using information fragments to answer
the questions developers ask. In Proceedings of the 32Nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE ’10, pages
175–184, New York, NY, USA, 2010. ACM.

[2] Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about
code. In Evaluation and Usability of Programming Languages and Tools,
PLATEAU ’10, pages 8:1–8:6, New York, NY, USA, 2010. ACM.

[3] D. Asenov and P. Müller. Envision: A fast and flexible visual code editor
with fluid interactions (overview). In Visual Languages and Human-Centric
Computing (VL/HCC), pages 9–12, 2014.

[4] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter Rigby. Waypointing
and social tagging to support program navigation. In CHI ’06 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’06, pages
1367–1372, New York, NY, USA, 2006. ACM.

[5] Todd W. Schiller and Brandon Lucia. Playing cupid: The ide as a match-
maker for plug-ins. In Proceedings of the Second International Workshop on
Developing Tools As Plug-Ins, TOPI ’12, pages 1–6, Piscataway, NJ, USA,
2012. IEEE Press.

[6] Thomas D. LaToza and Brad A. Myers. Developers ask reachability ques-
tions. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 185–194, New York, NY,
USA, 2010. ACM.

[7] T.D. LaToza and B.A. Myers. Visualizing call graphs. In Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium
on, pages 117–124, Sept 2011.

6


	Introduction
	Design inspiration
	Related work
	Core tasks
	Analysis of existing work
	Data exchange layer
	Information source layer
	Scripts layer
	Visualization layer

	Possible extensions
	Advanced visualizations
	Heat maps
	Data flow

	Modifying Commands
	More information sources

	Schedule

