
Verification of Finite Blocking in Chalice

February 23, 2015

Robert Meier
Supervisor: Prof. Peter Müller

Background

To verify the correctness of programs that use blocking operations, such as ac-
quiring locks, or receiving messages on channels, one often relies on all threads
being able to make progress. However, in a setting with non-terminating pro-
cesses these analyses may unfortunately break down, since threads could poten-
tially postpone the execution of unblocking operations forever. To tackle this
problem, the concept of obligations has been developed [1].

The main idea is that each blocking operation comes with an obligation to
perform the corresponding unblocking operation eventually. A measure, that is
associated with each obligation, enforces that the satisfaction happens within
finitely many steps and is not postponed indefinitely.

In this project we will look at existing extensions to the Viper framework
[2] that allow the modular verification of finite blocking. In particular we will
redesign and simplify the extensions made to Chalice, Silver and Silicon.

Core Requirements

Rethink the Design of Obligations

In light of recent changes in the original design of obligations, it is now appro-
priate to rethink the original design of the existing Chalice, Silver and Silicon
extensions. The new design should consider the following requirements:

• Reduce the necessary Silver extensions to encode the concept of obligations

• Increase the modularity in Chalice

• Allow states where both obligations and credits for a resource exist at the
same time

After the redesign all changes will be implemented in Chalice, Silver and Silicon.

1



Deadlock Detection

Design and implement an encoding of Chalice operations that change the wait-
level of a thread, such as fork, join, share, channel creation or blocking oper-
ations in general. A global wait order will be introduced to verify that there
exist no cyclic wait conditions among threads, which will result in deadlock -
free programs.

Extensions

Several extensions are possible. This mainly depends on the progress on the
core requirements.

• Improve the error reporting in Silicon

• Devise an extension to make it possible to join a thread more than once

– In particular, investigate what happens to permissions that are re-
turned by terminating threads

• Design and implement the verification of other operations / liveness prop-
erties (for example: read-write locks)

• Make it possible to use more general well-founded sets to describe the
lifetime expressions of obligations.

– Use heuristics to automatically infer the measures associated with an
obligation

Schedule

Task Description Time
Core Acquiring relevant background knowledge,

reading related work, understanding the prob-
lem in detail, familiarization with technical en-
vironment

2 weeks

Core Report: Introduction, Background, Related
Work

1 week

Core Design and implementation of silver exten-
sions + removal of unnecessary extensions

7 weeks

Core Design and implementation of deadlock check-
ing

3 weeks

Core Evaluation of implementation + Report 1 week
Extension Design and implementation of extensions 5 weeks
Extension Evaluation of implemented extensions + Re-

port
1 week

- Buffer week 1 week
Core Finalization of report 2 weeks
Core Preparation of final presentation 1 week

2



References

[1] P. Boström and P. Müller, “Modular verification of finite blocking in non-
terminating programs,” Tech. Rep., ETH Zurich, 2014.

[2] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and A. J.
Summers, “Viper: A verification infrastructure for permission-based reason-
ing,” Tech. Rep., ETH Zurich, 2014.

3


