
Automatically Generating Java

Benchmarks with Known Errors
Master’s Thesis Project Description

Mădălina Hurmuz
Supervised by Prof. Dr. Peter Müller, Alexandra Bugariu

ETH Zürich

September 2021

1 Introduction

Over the past years, there has been an increased interest in the generation of
benchmarks. Benchmark programs are widely used to test various tools: e.g.,
compilers, static analyzers, verifiers, etc. However, it is highly challenging to
automatically generate benchmarks which are simple (i.e., easy to understand),
but also expressive (i.e., include various language features and different types of
issues).

1.1 Example

As shown in Listing 1, our focus will be to generate benchmarks in Java. This
program was written manually by the developers of the static analyzer Facebook
Infer [1] and is a good example to emphasize what is indeed a simple benchmark
program. The example focuses on one of the analyses supported by Infer, i.e.,
null pointer analysis. When executed, this program is expected to throw a
NullPointerException; if the analyzer is sound (i.e., does not miss errors), then
it should identify the null pointer dereference. Considering that such simple
benchmarks can be used in order to test both new static analyzers and existing
static analyzers for soundness, it is of high importance to automate the process
of benchmarks generation.

Listing 1: Simple Java program that throws a NullPointerException.

class Hello {

int test() {

String s = null;

return s.length();

}

}

1.2 Objective

The goal of this project is to generate increasingly complex benchmarks
that, by construction, expose a particular class of errors. We will develop a
technique that automatically generates test suites, which systematically cover
a configurable set of language features in Java. As previously stated, our
practical application for these benchmarks is testing static analyzers. Among
the types of static analyzers, we consider those based on abstract
interpretation [4], a general methodology for designing static analyzers that

1



are sound by construction (even though the design of the analyzers provides
theoretical guarantees, we still need to test them as the implementation may
not coincide with the design).

It should also be noted that static analyzers are usually tested for reliability
in terms of soundness and precision (i.e., should report a low number of false
positives). For this project, we only focus on soundness.

1.3 Related work

1.3.1 Generating benchmarks

As our goal is to generate valid benchmarks programs, we first look into the
simpler problem of generating valid programs. However, it seems that even
this task is not trivial. Csmith [15], unlike previous similar tools, generates
programs that cover various language features of C without introducing
undefined and unspecified behaviours. For Java, the existing tools require
expert knowledge and significant human effort to be used in practice. On one
side, Daniel et al. [6] focus on an imperative approach: the programmer is
responsible of how the test generation should proceed which has the advantage
of a faster generation, but requires the expertise of the programmers to
provide generators. On the other side, Soares et al. [13] developed a Java
program generator (JDOLLY) that uses Alloy and the Alloy Analyzer to
create programs given the language elements (classes, fields, methods, etc.).
This technique has the advantage of using a bounded-exhaustive generation
method that generates programs that purely random generators might miss
and, consequently, expressiveness is correlated with the constructors added to
the model.

Another popular line of work [7, 8, 10, 12] injects bugs into real-world programs
by analyzing execution traces. Pewny and Holz developed EvilCoder [10], a
system to automatically find vulnerable code locations and modify these
locations to introduce vulnerabilities. In this work, the authors focused on the
insertion of bugs rather than the finding or fixing of bugs, as they consider
that the evaluation of this methodology of finding bugs can become very
difficult without showing a realistic view of the work. Their closest related
work is represented by LAVA: Large-scale Automated Vulnerability
Addition [7], although LAVA specifically adds new vulnerabilities (buffer
overread or buffer overflow), instead of transforming the code, as in EvilCoder.
Thus, this research area shows us that inserting bugs by analyzing execution
traces could produce expressive and challenging benchmarks, but, at the cost
of requiring more effort on the programmer side to understand how such a bug
could occur in the code. Also, as Roy et al. [12] state, EvilCoder fails to inject
bugs that are reproducible and LAVA fails to produce bugs that are deep and
fair (i.e., it is possible to come across such a bug by using regular bug
detection techniques).

2



1.3.2 Testing static analyzers

Another line of work [3, 5, 9, 14] shows the current improvements in testing
static analyzers for soundness and precision. In the work of Taneja et al. [14],
it is shown how an SMT solver is used to compute sound and maximally
precise static analysis results. Another work [9], more closely related to ours,
uses automatically generated benchmarks to compare six analyzers, as there
was no systematic way of comparing the effectiveness of different analyzers on
arbitrary code up to that point.

To sum up, the existing methods for generating benchmarks either require
significant expert knowledge, or they do not allow the developers to easily
understand why their tool missed a particular bug, or they do not provide any
guarantees with respect to the language features covered by the test suite.
With regard to testing static analyzers, the existing works either are not fully
automated or they do not provide the level of generalization, randomness and
expressiveness that our approach can eventually show.

In the following section, we describe our approach in order to overcome the
aforementioned challenges.

2 Approach

2.1 Inputs

Our generator will be parametric in the following three inputs:

1. the classes of errors the benchmarks should contain (e.g.,
NullPointerException, ArrayIndexOutOfBoundsException, Arithmetic-
Exception, etc.). Note that the error should be thrown when we execute
the program, as we do not consider assertion violations.

2. the set of language features supported by a static analyzer (e.g.,
declarations, assignments, loops, method calls, etc.)

3. the statements relevant for the analysis (i.e., those program statements
which have an effect on the abstract state).

For instance, Table 1 shows the statements relevant for a null pointer analysis
(we do not show their effect on the abstract state, since this information is not
required for generating the benchmarks, i.e., we do not require to know the
exact implementation of the analyzer, only its design).

3



Table 1: Program statements which are relevant for a null pointer
analysis. x and y are objects, f is a field, T is a defined class, m
is a method, args is a (possibly empty) list of arguments.

Id Program statement

S1 x := new T()
S2 x := null
S3 x := y
S4 x := y.f
S5 x.f := y
S6 x.m(args)

2.2 Approach overview

Initially, we will generate programs like the one from Listing 1, that compile
and, when executed, are expected to throw a given type of exception. We will
then define a set of transformations which allow us to construct more complex
type-correct programs that preserve the incorrect behaviour, but cover
different language features supported by the analyzer.

Even with a limited set of transformations, one can potentially obtain
infinitely many programs (see Listing 2), thus enumerating all the programs
(even with a bounded number of instructions) is not feasible. To prune the
search space efficiently and to avoid generating redundant programs, we will
define a notion of behavioural equivalence (with respect to the statements
relevant for a given analyzer). As a rough general idea, if two programs map
to the same sequence of statements relevant for the analysis (i.e., the same
changes of the abstract state), we will consider the two programs to be
behaviourally equivalent. We will also use object histories to ensure that our
transformations do not produce behavioural equivalent programs.

Listing 2: Simple example that illustrates how we can obtain infinitely many
programs by using a constructor change transformation which replaces T
with any built-in Java class.

T t = new T(); // where T is a built-in class in Java

For instance, the program from Listing 3 is behaviourally equivalent to the one
from Listing 1, since they both include an assignment where the right hand side
is null, followed by a method call on the previously-assigned variable. Moreover,
both objects s and o, on which the methods length() and finalize() are called,
are constructed in the same way. To be more precise, we associate the same
sequence of events (history) to both objects s and o. By events, we refer to an
invocation of a method involving the object. Thus, s and o are both assigned
with null and, afterwards, a method is tried to be invoked on a null receiver. By
using object histories, we record this information as a sequence of events, and
we should also keep track of the object allocation.

4



Listing 3: Simple Java program that throws a NullPointerException and is
behaviourally equivalent to the program from Listing 1, thus is redundant
and should not be included in the test suite.

class Hello {

int test() {

Object o = null;

return o.finalize();

}

}

However, we acknowledge that this solution may not be sufficient, as some
transformations may generate programs with infinite histories and histories of
different lengths, but not different behaviour. For the infinite histories issue, a
solution would be to consider abstract histories [11], i.e., a bounded
representation for each object history. The latter issue is not an actual
problem if we think of two programs where the second program has the same
prefix as the first one, but throws an additional exception, because we focus on
concrete execution, and so, both programs will stop at the first exception. For
the other scenarios that we might encounter, we will try to find a solution
based on the way we design our transformations.

2.3 Possible transformations

Listing 4 and Listing 5 illustrate the result of two possible transformations.

Listing 4: The program from Listing 1, transformed by inserting a method
call.

class Hello {

int test(String s) {

return s.length();

}

}

Hello h = new Hello();

String s = null;

h.test(s);

Listing 5: The program from Listing 1, transformed by inserting redundant
code.

class Hello {

int test() {

String s = null;

String hello = "Hello"; // redundant code

return s.length();

}

}

5



Insert method calls. The first one replaces the call to a type-correct
method m on a null receiver with passing null to a method m’ which calls m
on its parameter (in Listing 4, length() corresponds to m and test() to m’ ).

Insert redundant code. The second transformation requires inserting blocks
of code that do not modify s. Designing this transformation poses two
challenges:
1) how to generate the code to be inserted?, and
2) how to know, by construction, that it still preserves the faulty behaviour
(without performing static analysis)?.

We will address challenge 1) by using code snippets of increasing size from the
Java language specification (JLS) [2]. These are usually small and target a
specific language feature, thus one can choose just those language features
which are supported by the analyzer. The block of code from Listing 5 was
taken from JLS and inserts an assignment with a constant right hand side. For
challenge 2), we will require the inserted block to preserve the incorrect
behaviour with respect to a given input (not with all possible inputs),
property which can be checked by concrete execution. The resulting
benchmark will be good enough for our test suite, although it has weaker
guarantees, because we only test soundness, not precision of the analyzers. For
example, in Listing 6, when the parameter valid maps to true, we reach the
redundant code that does not modify s and that allows us to preserve the
incorrect behaviour, i.e., the program will still throw a NullPointerException.

Listing 6: The program from Listing 1, transformed by inserting redundant
code and preserving the incorrect behaviour with respect to valid being true.

class Hello {

int test(boolean valid) {

String s = null;

if (valid) {

// redundant code & does not modify ’s’

String hello = "Hello";

} else {

s = "S";

}

return s.length();

}

}

3 Core goals

3.1 Assumptions

We will first instantiate our approach for a particular type of analysis (i.e.,
null pointer analysis) and for a particular analyzer (i.e., Facebook Infer). We
will assume for simplicity that the only statements that affect the abstract
state are the ones from Table 1. We will also assume that the only supported
language features are: declarations, assignments, if-else statements, and

6



method calls.

3.2 Overview of the core goals

1. Define root programs: Write initial programs (like the one from Listing
1) whose execution will end in a null pointer exception. These should be
simple programs on top of which we generate our test suite.

2. Identify relevant statements: Design and implement an algorithm for
identifying the statements of a program that can modify its abstract state
(see Table 1). We will use a pattern matching algorithm that has as input
the program and returns these statements (i.e., we return the id from
Table 1 corresponding to the statement).

3. Define transformations: Define transformations to systematically
introduce into the root programs language features which are not yet
covered (as stated later in goal 7, we do measurements in terms of
language features to see what is covered), from the following set:
declarations, assignments, if-else statements, and method calls. Express
these transformations as templates. For instance, we could construct the
following templates for assignments: x := new T(), x := null, x := x, x
:= y, x := constant, x := y.m(args), x := y.f, where x and y are objects, f
is a field and m is a method. It should be noted that we ignore the types
and choose a more lightweight approach where we use the compiler to
check for the validity of the code.

4. Template instantiation with JLS code: Read from the Java Language
Specification web pages pieces of code that increase in size. We plan to
use the JLS code to instantiate as many templates as possible. Thus,
the pieces of code will not be used only for the insert redundant code
transformation (as shown in Section 2.2). In order to extract the actual
example code, we can read the content in a HTML format and look for
the blockquote tag. Inside this tag, there is quoted text from different
sources and, in order to distinguish the code examples from other citations,
we search in the beginning of the text for import statements, package
declarations, class declarations or interface declarations.

5. Behavioural equivalence: Definite the notion of behavioural
equivalence, with respect to the statements relevant for the analysis and
to object histories (i.e., sequences of operations in which the object is
created/used), for the statements which do not change the abstract state.

6. Generate benchmark programs: Systematically generate programs
(with increasing number of instructions, up to a predefined bound)
starting from the root programs, followed by the application of the
transformations. Remove all the redundant programs (those that are
behaviourally equivalent, as defined in the previous goal).

7. Comparison with Facebook Infer: With every iteration of our
solution, we want to compare our generated test suite with the one from
Facebook Infer. We measure how many of the statements from Table 1

7



and how many languages features (declarations, assignments, if-else
statements, and method calls) we support compared with Infer. We will
then ensure that our generated test suite covers all these statements and
the restricted set of language features, and will measure the
combinations of statements-language features covered. Additionally, we
will discuss what completeness guarantees our approach can provide with
respect to different classes of behaviour (determined based on the notion
of behavioural equivalence from goal 5).

4 Extension goals

• Search-space pruning: Create a mechanism to ensure that each applied
transformation will only create programs that should be behaviourally
different (i.e., prune the search space before generation).

• Challenging behaviour detection: We would like to include in our test
suite examples which have been shown to be challenging for the analyzers
(e.g., which contain aliasing, write effects, etc.).

• Generalization: It would be relevant to look into the generalization of
the approach to other types of analyses (e.g., buffer overrun, division by
zero).

5 Schedule

To meet our core goals, we plan to roughly adhere to the following schedule:

Week Goal

2021-09-20
Prepare initial presentation
and define root programs

2021-09-27 Identify relevant statements
2021-10-04 Identify relevant statements
2021-10-11 Identify relevant statements

2021-10-18
Evaluation: collect existing tests from Infer

and measure their coverage

2021-10-25
Evaluation: collect existing tests from Infer

and measure their coverage
2021-11-01 Define transformations
2021-11-08 Define transformations
2021-11-15 Define transformations
2021-11-22 Template instantiation with JLS code
2021-11-29 Template instantiation with JLS code
2021-12-06 Template instantiation with JLS code
2021-12-13 Behavioural equivalence
2021-12-20 Behavioural equivalence
2021-12-27 Behavioural equivalence
2022-01-03 Generate benchmark programs
2022-01-10 Generate benchmark programs

8



2022-01-17 Evaluation: measure coverage
2022-01-24 Evaluation: measure coverage
2022-01-31 Evaluation: define completeness and measure it
2022-02-07 Write thesis
2022-02-14 Write thesis
2022-02-21 Write thesis
2022-02-28 Prepare final presentation

References

[1] Facebook Infer. https://fbinfer.com/.

[2] Java Language Specification. https://docs.oracle.com/javase/specs/
jls/se6/html/j3TOC.html.

[3] Bugariu, A., Wüstholz, V., Christakis, M., and Müller, P.
Automatically testing implementations of numerical abstract domains.
In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (2018), pp. 768–778.

[4] Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages (1977), pp. 238–252.

[5] Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr,
J., Yakobowski, B., and Yang, X. Testing static analyzers with
randomly generated programs. In NASA Formal Methods Symposium
(2012), Springer, pp. 120–125.

[6] Daniel, B., Dig, D., Garcia, K., and Marinov, D. Automated
testing of refactoring engines. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (2007), pp. 185–
194.

[7] Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti,
A., Robertson, W., Ulrich, F., and Whelan, R. Lava: Large-scale
automated vulnerability addition. In 2016 IEEE Symposium on Security
and Privacy (SP) (2016), IEEE, pp. 110–121.

[8] Kashyap, V., Ruchti, J., Kot, L., Turetsky, E., Swords, R.,
Pan, S. A., Henry, J., Melski, D., and Schulte, E. Automated
customized bug-benchmark generation. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM) (2019),
IEEE, pp. 103–114.

[9] Klinger, C., Christakis, M., and Wüstholz, V. Differentially testing
soundness and precision of program analyzers. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (2019), pp. 239–250.

9

https://fbinfer.com/
https://docs.oracle.com/javase/specs/jls/se6/html/j3TOC.html
https://docs.oracle.com/javase/specs/jls/se6/html/j3TOC.html


[10] Pewny, J., and Holz, T. Evilcoder: automated bug insertion.
In Proceedings of the 32nd Annual Conference on Computer Security
Applications (2016), pp. 214–225.

[11] Raychev, V., Vechev, M., and Yahav, E. Code completion with
statistical language models. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (2014),
pp. 419–428.

[12] Roy, S., Pandey, A., Dolan-Gavitt, B., and Hu, Y. Bug synthesis:
Challenging bug-finding tools with deep faults. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (2018),
pp. 224–234.

[13] Soares, G., Gheyi, R., and Massoni, T. Automated behavioral testing
of refactoring engines. IEEE Transactions on Software Engineering 39, 2
(2012), 147–162.

[14] Taneja, J., Liu, Z., and Regehr, J. Testing static analyses for precision
and soundness. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (2020), pp. 81–93.

[15] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding
and understanding bugs in c compilers. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation (2011), pp. 283–294.

10


	Introduction
	Example
	Objective
	Related work
	Generating benchmarks
	Testing static analyzers


	Approach
	Inputs
	Approach overview
	Possible transformations

	Core goals
	Assumptions
	Overview of the core goals

	Extension goals
	Schedule

