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Abstract

With the constant increase in code development, testing has become
essential. Because of the higher cost of dynamic testing, static testing
is preferred. One of the existing techniques is using static analyzers.
These can be tested by using benchmarks. However, generating
benchmarks that expose a particular type of issue can be
time-consuming if the developers of static analyzers write these
benchmarks manually.

In this thesis, we present a technique to automate the process of
generating valid benchmark programs in Java for null pointer
analysis. Although we instantiate our procedure only for the null
pointer analysis, the approach is also suited for generalization to other
types of static analysis.

Moreover, we explore ways to ensure the quality of the generated
benchmarks by defining our own lightweight definition of equivalence
between programs. Unlike the already existing published papers and
archives that describe solutions related to the generation of valid
benchmark programs in Java, we focus on a solution that does not
require significant human effort to be used in practice.
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Chapter 1

Introduction

1.1 Motivation

Over the past years, there has been a constant interest in the generation of
benchmarks [14, 27]. Benchmark programs are widely used to test various
tools: e.g., compilers, static analyzers, verifiers, etc. However, it is highly
challenging to automatically generate benchmarks that are simple (i.e., easy
to understand), but also expressive (i.e., include various language features).
We will only refer to benchmarks that contain issues, not to other types of
benchmarks, i.e., that test the performance of a tool. Many of these programs
are currently written manually by developers who might introduce their
own biases by including previously-reported issues. Moreover, it is very
challenging to write benchmarks with high reproducibility (i.e., quality of
being reliable).

As our goal is to generate valid benchmark programs, we first look into the
more straightforward problem of generating valid programs. For example,
the work of Zhendong et al. [21] explores the generation of proper integer C
programs by sketching a program’s test execution on a subset of inputs and
randomly pruning its unexecuted code, i.e., mutation of the source code.
On the other side, regarding valid Java programs, the existing tools [14, 27]
either require a high level of expertise from the programmers or significant
human effort to be used in practice.

As shown in Listing 1.1, we restrict the bigger problem to the generation of
benchmarks in Java. This program was written by the developers of the
static analyzer Facebook Infer [3] and is a good example to emphasize
what is indeed a simple benchmark program. The program highlights one
of the analyses supported by Infer, i.e., null pointer analysis. When
executed, this program is expected to throw a NullPointerException; if the
analyzer is sound (i.e., does not miss errors), then it should identify the null
pointer dereference. Considering that benchmarks can be used to test both
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1. Introduction

new static analyzers and existing static analyzers for soundness, it is
important to automate the process of benchmarks generation. Thus, we
focus on developing a technique that automatically generates a test suite
that, by construction, exposes a particular class of issues (null pointer
exception) and which systematically covers a configurable set of language
features in Java.

Listing 1.1: Simple Java program that throws a NullPointerException. Such a program will
not be generated, but it will serve as input.

class Hello {

int test() {

String s = null;

return s.length();

}

}

Our approach starts by designing the input programs: simple programs,
called root programs, that throw a null pointer exception. These are
transformed by using rewrite rules that either modify the existing code or
add other pieces of code that maintain the existing behaviour (i.e.,
throwing the null pointer exception). We refer to such rewrite rules as
transformations. During the generation, the benchmarks increase in length
and expressiveness, and the generation stops when we reach the desired
level of complexity.

In the following chapters, we illustrate our technique for creating null
pointer analysis benchmarks, but our approach’s main ingredients are
generic. Therefore, our solution can be considered for other types of
analyses. Section 8.2 explains the minimal adjustments that need to be
done to consider the generalization of the technique.

1.2 Contributions

In this thesis, we make three core contributions:

1. We develop a technique to automatically generate Java benchmarks for
null pointer analysis.

2. We improve our generation technique by defining our own definition
of equivalence that enables us to remove redundant benchmark
programs from the final test suite.

3. We manage to find soundness issues in the Facebook Infer static
analyzer. Moreover, we reported these issues to the developers of
Infer.
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1.3. Outline

1.3 Outline

This introductory chapter is followed by presenting the necessary
background knowledge (Chapter 2). It includes static analyzers, null
pointer analysis, and the reasoning behind Facebook Infer. Chapter 3
presents a high-level overview of our technique, and, in Chapter 4 and
Chapter 5 (implementation), we offer more details about the generation of
benchmarks. We continue by presenting the results of our experimental
evaluation in Chapter 6. In Chapter 7, we compare our solution with the
existing ones and highlight the advantages and disadvantages of the
proposed solution. Finally, we conclude in Chapter 8 and describe possible
new directions for future work.
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Chapter 2

Background

The purpose of this chapter is to provide the necessary theoretical and
technical background information for the main ideas of this work. We
discuss static analyzers (see Sec. 2.1), testing them being a practical
application of generating benchmarks, then illustrate the theory behind
null pointer analysis (see Sec. 2.2). Lastly, we learn more about Facebook’s
own static analyzer, Infer, that we use for the evaluation phase in our
approach (see Sec. 2.3).

2.1 Static analyzers

Static analyzers are tools known to identify code defects before a program is
actually executed. They are commonly used between the coding phase and
the unit testing phase. Although manual reviews are highly used to identify
bugs in source code, automated tools are preferred. Besides the advantage of
automation, static analyzers cover every possible execution path, compared
to traditional testing.

Static analyzers are also used in safety and security-critical systems, in areas
where proving the absence of errors is essential. For example, Astree [19]
is a static program analyzer aiming to prove the absence of run time errors
in programs written in C. It is able to analyze complex C programs, but it
does not support dynamic memory allocation and recursion. Thus, Astree
is successful in analyzing many embedded programs in several areas: earth
transportation, medical instrumentation, aeronautic applications, etc.

Formally, consider the following definition (from [1]):
A static analysis tool S analyzes the source code of a program P to
determine whether it satisfies a property ϕ, such as ”P never deferences a
null pointer”. However, for any nontrivial property, there is no general
automated method to determine whether P indeed satisfies ϕ (from Rice’s
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2. Background

theorem). In the practical static analysis setup, a static analysis tool can be
wrong in one of two ways: it might say that P violates ϕ even though it
doesn’t (if soundness) or it may miss real violations of ϕ (if completeness).

Thus, we could examine static analyzers from two perspectives: soundness
and completeness. This thesis only focuses on soundness (i.e., the analyzers
should not miss errors), not completeness, i.e., the analyzers only report
actual errors (not false positives).

2.2 Null pointer analysis

A null pointer analysis is a type of static analysis that detects potential null
pointer dereferences and reports them as error messages or warnings [17].
This enables developers to add explicit checks; thus the runtime errors will
not be triggered anymore. For example, some of the most popular null
pointer analyzers are Infer (see details in Sec. 2.3) and the Java Null Checker
[23]. Programmers are encouraged to use annotations in their code to denote
which variables, fields, return values, etc., are expected to be non-null, i.e.,
NotNull, and which ones are not, i.e. Nullable. Even a simple flow in the
static analyzer is able then to find scenarios in which a non-null variable is
being set with a nullable variable.

In general, using a static null pointer analysis can bring a higher degree of
reliability to the specific project. However, it is not that simple to adhere to
it, as the analysis can report false positives (i.e., the locations do not trigger
a null pointer dereference, but they are detected as potential warnings) by
maintaining its quality of being conservative [17].

2.3 Facebook Infer

Facebook Infer [4] is an open-source static program analyzer, used to
identify bugs before the actual code produced by Facebook engineers is
shipped. It supports multiple programming languages, such as Java, C, and
Objective-C and its logic was written in OCaml.

Facebook decided to have their own static analyzer to complement
traditional dynamic testing (i.e., the method to test the dynamic behaviour
of software code by providing input values and checking if the output is
expected or not). Therefore, dynamic testing offers the possibility to have
individual runs through the code and check for correctness, and static
analysis can prove the absence of errors while testing cannot.

The main idea behind Infer is using mathematical logic to do symbolic
reasoning about program executions, approximating the reasoning an
actual developer would do when one examines a program. Moreover, it is a
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static analyzer that uses abstract interpretation [12], a general methodology
for designing static analyzers that are sound by construction (even though
the design of the analyzers provides theoretical guarantees, we still need to
test them as the implementation may not coincide with the design). On top of
the open-source static analysis tool, Infer’s team provides a framework for
developing abstract interpretation-based checkers (see [2]).

Nowadays, the analyzer is specialized in reporting issues caused by null
pointer accesses and resource and memory leaks. As Facebook states, these
categories of errors account for the largest percentage of application failures.
Our choice of focusing the project on null pointer analysis is not necessarily
correlated with Facebook’s previous statement. However, we considered
the constant work in the area of null pointer analysis and the availability
of popular null pointer analyzers that enables us to use them during the
evaluation experiments.
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Chapter 3

Overview

This chapter gives a high-level overview of the technique presented in this
report (Sec. 3.1). Then, we show our technique on a simple example (Sec.
3.2). We offer details about the example, the input program, and the resulted
benchmark after applying one transformation.

We reiterate over the problem that writing benchmark programs manually
by the developers is achievable, especially for simpler programs, but, once
we want to support a wider range of language features and bigger
programs, this becomes a more difficult process. Having an automated way
of generating benchmarks is very important for simplifying this
time-consuming process and thus reducing the human effort.

3.1 Technique overview

In Fig. 3.1, we present the high-level overview of the technique. The input
consists of root programs, simple Java programs that trigger a null pointer
exception.

These programs contain two classes: a generic type class and the public
class of the program. The generic class contains fields of both primitive and
reference types (the two categories of types in Java). Objects of the generic
type class are created in the main method of the public class (i.e., the entry
point of the program) and, then, we use these objects in such a way that
every execution of the program ends with a null pointer exception. We
clarify the structure of these root programs in Chapter 4. Regarding the
number of root programs, we designed 5 programs in order to include
different scenarios that could end in a null pointer exception. On this small
set of root programs, we apply transformations, i.e., rules that can either
modify or add code, while preserving the null pointer exception behaviour.
Transformations are applied incrementally (see Fig. 3.2), up to a desired
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3. Overview

complexity level of the generated benchmarks. The motivation of applying
transformations in an incremental way is getting to programs that are bigger
and more complex, and, hopefully, more challenging for the analyzer to
detect potential issues. Regarding complexity, we think of a program as
being complex if it has a relatively large number of statements and a
developer will find the null pointer exception issue, but he might require
more time comparing, for example, with understanding the root programs,
for which it is straightforward to find the cause of the issue. Also,
transformations can be instantiated by using code snippets extracted from
the Java Language Specification documentation (see Sec. 4.3). During the
generation phase (see Fig. 3.1), we remove redundant benchmarks in order to
end up quicker with a more diverse and complex set of benchmarks. In the
next section, we provide an example of such redundant benchmarks. The
way in which we remove them is related to the definition of equivalence,
explained in Section 4.5. This definition is based on the set of relevant
statements corresponding to the null pointer analysis (see Sec. 4.4).

Figure 3.1: High-level overview of the technique: highlighting the first phase in which root
programs were designed and the second phase that contains the design and application of
transformations, the actual generation of the benchmark programs and the removal of redundant
programs.

3.2 Example

Listing 3.1 shows an example of a program, that we considered as input for
the technique. This is a very simple program, that makes an object point
to null (line 8) and then tries to access a field f on the null object (line
9), statement that ends the execution of the program with a null pointer
exception. It should be noted that we consider all fields and methods to
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3.2. Example

Figure 3.2: Applying transformations incrementally, starting from the root programs. In the
generation tree, at level 1, we consider all benchmark programs obtained after the application
of one transformation, at level 2, all benchmark programs obtained after the application of two
transformations, etc.

be public, so no other errors are triggered due to inaccessibility. We have
designed 5 such root programs as input.

Listing 3.1: Root program.

1 class Box<T extends Object> {

2 ...

3 public int f;

4 public Object g;

5 }

6 public class RootProgram1 {

7

8 public static void main(String[] args) {

9 Box<Integer> box = null;

10 System.out.println(box.f);

11 }

12 }

In terms of transformations, we have designed and implemented 13 (these
are described in Chapter 4). Moreover, all our transformations are designed
to modify or add code such that the benchmark programs resulted will be
compilable. It should also be stated that:

• Each root program is designed to throws exactly one exception.

• The inserted code does not throw exceptions itself; when executed, the
resulting benchmark still raises the same exception as its root program
(only the position may change).

As an example, we look at a transformation that adds code by creating a
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new object of type Box and populating its fields, while preserving the
behaviour of the input program. Listing 3.2 presents the resulted
benchmark after applying this transformation on the program from Listing
3.1. Although this transformation does not involve branching or looping, it
changes the sequential control flow by increasing the number of statements
that the analyzer will need to consider.

Listing 3.2: Benchmark resulted after applying a transformation that adds a redundant
object and populates its fields on the program from Listing 3.1.

1 class Box<T extends Object> {

2 ...

3 public int f;

4 public Object g;

5 }

6 public class Bennchmark1 {

7

8 public static void main(String[] args) {

9 Box<Integer> axcmc = new Box<Integer>();

10 axcmc.f = 1103192343;

11 axcmc.g = new Object();

12 Box<Integer> box = null;

13 System.out.println(box.f);

14 }

15 }

Listing 3.3: Benchmark equivalent with the one from Listing 3.1.

1 class Box<T extends Object> {

2 ...

3 public int f;

4 public Object g;

5 }

6 public class RootProgram1 {

7

8 public static void main(String[] args) {

9 Box<String> box = null;

10 System.out.println(box.g);

11 }

12 }

Related to redundancy, we consider two benchmarks to be equivalent if they
have the same sequence of statements. For example, program from Listing
3.1 is not equivalent with the program from Listing 3.2, but it is equivalent
with the program from Listing 3.3, as, in both programs, first, we create an
object box (either with type Box<Integer> or Box<String>) that is pointing
to null and, afterwards, we access one of its fields (either f or g). These fields
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have different types and, yet, we consider field accesses of different types as
being equivalent, because, from the point of view of null pointer analysis, a
field access on a null reference triggers the same behaviour of a null pointer
exception.

To continue, on both programs from Listing 3.1 and Listing 3.2, we can
apply transformations, thus any resulted benchmark program (i.e., Listing
3.2) is part of both the final test suite and can also be reused as input for
generation.
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Chapter 4

Technical section

In this chapter, we clarify the structure of root programs (see Sec. 4.1) and
how transformations are designed and what are the basic construction steps
(see Sec. 4.2). In Sec. 4.3, we highlight the code snippets extraction from the
Java Language Specification documentation, continuing with defining the
relevant statements for the null pointer analysis in Sec. 4.4. We also present the
two main procedures of the technique: the equivalence algorithm (see Sec. 4.5)
and the generation algorithm (see Sec. 4.6). Lastly, we present special cases
when designing transformations (see Sec. 4.7).

4.1 Root programs

We created 5 root programs, that serve as input for the generation
technique. All these programs share the same structure. There are two
classes: Box<T extends Object>, generic class, and RootProgram, the public
class of the program, whose method main represents the entry point.

The class Box was created to enable the usage of different types (i.e., to
instantiate Box<Integer>, Box<String>, Box<A>, etc.). Moreover, all boxes
can access the same fields: field f of type int and field g of type Object. There
are two constructors: the default one and a parameterized constructor with
parameter of type T. We have also redefined built-in methods in Java, such
as toString(), to be able to call methods on objects of this generic class.

The main method of the public class of the program consists of a few
statements: creating objects of type Box, followed by assignments,
declarations, accessing fields or calling methods that trigger the null
pointer exception. For example, in Listing 3.1, we create an object of type
Box<Integer> that points to null and then access field f.

15



4. Technical section

4.2 Transformations

Transformations are rules that either modify or insert code while preserving
the behaviour of the program. Even though these might be correlated to
mutations, a transformation is more complex, as it follows a set of clear
steps, while a mutation can be as straightforward as an operator switch (i.e.,
from <= to >=).

In this section, we start by explaining the design of transformations (see
Subsec. 4.2.1), followed by types of transformations (see Subsec. 4.2.2).

4.2.1 Design of transformations

The motivation behind designing transformations is allowing us to construct
more complex type-correct programs. The final test suite will consist of
bigger programs that test the analyzer ability to find the exception.

To design transformations, we took in consideration two aspects: the need
to increase the number of Java language features (except the ones already
present in the input programs, root programs) and the need to alter the
existing execution flow in the programs as much as possible (i.e., by adding
branching, method calls), without changing the behaviour (i.e., ending the
execution of the program with the same null pointer exception) of the
resulting benchmarks.

Nowadays, Java is one of the most popular programming languages. Every
six months, a new Java version is released and these constant releases bring
new features to the language. For example, since Java 8, features like
allowing private methods in interfaces or local-variable Type Inference
were introduced [5]. Since there is this constant increase in Java language
features, we decided to use a moderate set, consisting of: declarations,
assignments, if-else statements, method calls, arrays, and non-null
annotations (introduced with Java 8). Needless to say, this set could be at
any time expanded, as the actual implementation facilitates the
introduction of transformations that could introduce other features.

4.2.2 Types of transformations

We designed 13 transformations and we present the construction of a few in
this subsection. In Appendix A, there are examples of other transformations.

Instantiate through method call transformation extracts the right-hand side of an
assignment (arbitrary expression, except from method calls to avoid infinite
recursion) into a method in the corresponding declared class of the object
that is being assigned. The return type of the method will be the declared
type of the object. In Listing. 4.1, object box of type Box<Integer> points to
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null. After the transformation, it gets instantiated by calling method foo that
returns null.

Listing 4.1: Resulted benchmark from applying the instantiate through method call
transformation on the program from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 public Box<Integer> foo() { return null;}

6 }

7 public class RootProgram1 {

8 public static void main(String[] args) {

9 Box<Integer> box = new Box<Integer>().foo();

10 System.out.println(box.f);

11 }

12 }

Move null pointer exception statement in a new method transformation, as the
name suggests, extracts the null pointer exception statement in a new
method in a new defined class. In Listing. 4.2, the access to field f of object
box that triggers the exception is moved in method test, in class Hello. This
change needs to still make the final program compile, thus method test gets
a parameter with the type of the declared type of object box: Box<Integer>.
As a result, we declare a new object of type Hello and, on this, we call
method test with the null reference.

Listing 4.2: Resulted benchmark from applying the move null pointer exception statement
in new method transformation on the program from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 }

6 public class RootProgram1 {

7 public static void main(String[] args) {

8 Box<Integer> box = null;

9 Hello h = new Hello();

10 h.test(box);

11 }

12 }

13 class Hello {

14 public void test(Box<Integer> box) {

15 System.out.println(box.f);

16 }

17 }

17
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Add if transformation is presented in Listing. 4.3. We add the method addIf,
that based on the values of the variables r1 and r2, can end the execution
of the program with the exception. Variable r1 is randomly assigned with a
value from 0 to INT MAX and, for example, for r1 = 10 and r2 = 0, the null
pointer behaviour is preserved. Even though not all possible executions end
with the null pointer exception, this is not relevant, as we are interested only
in testing soundness of analyzers. To add if statements or if-else statements,
we have designed several transformations. These transformations have the
ability to break the execution flow of the programs on which we apply them.
On a high level, such transformations require boolean conditions and some
code on each branch. The boolean condition is either passed as parameter,
explicitly set to true or based on two variables that gets randomly assigned
(see Listing 4.3). On the true branch, we always keep the initial behaviour
(i.e., the null pointer exception), respectively, on the false branch, we can
add redundant code (e.g., adding a redundant object and populating its
fields in Listing 3.2). The instantiation of this redundant code is enabled
by using the code snippets extracted from the Java Language Specification
documentation.

Listing 4.3: Resulted benchmark from applying the add if transformation on the program
from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 }

6 public class RootProgram1 {

7 public static void main(String[] args) {

8 Box<Integer> box = null;

9 addIf(box);

10 }

11 public static void addIf(Box<Integer> box) {

12 int r1 = new Random().nextInt();

13 int r2 = 0;

14 if (r1 > r2) {

15 System.out.println(box.f);

16 }

17 }

18 }

Since applying a transformation might move the null pointer exception, we
had to keep track of this information. Initially, the null pointer exception is
represented by the last statement in the main method. During the application
of transformations, we update, if needed, the position of the null pointer
exception; thus, the line statement that causes the exception is always known

18



4.3. Snippets from Java Language Specification

by construction.

In addition, the application of a transformation can be either successful or
not. For example, we defined a transformation that adds NonNull
annotations. These annotations are inserted for the redundant objects that
are declared by other transformations (e.g., see Listing 3.2). Thus, if no
redundant objects were added to the program, objects for which we know
by construction that they do not point to null, the transformation of adding
NonNull annotations is not applicable, so it results in an unsuccessful
operation.

4.3 Snippets from Java Language Specification

Many of these transformations add redundant code (i.e., on the false
branch of an if statement). Thus, our goal was to extract a set of code
snippets that are compilable and can help us to instantiate transformations
and to add more language features. Regarding this, we considered the Java
Language Specification documentation, more specifically, JLS 15 [8]. We
used the HTML version, as it is easier to extract code examples by checking
HTML tags for programlisting. During the extraction, we encountered a
relatively large number of code snippets that actually serve as example to
highlight compile-time errors (see Listing 4.6). We had to remove such
snippets and, as a result, we gathered a set of 36 compilable code snippets
(see example in Listing 4.4).

Listing 4.4: Compilable code snippet from JLS.

1 class S { int x = 0; }

2 class T extends S { int x = 1; }

3 class Test1 {

4 public static void main(String[] args) {

5 T t = new T();

6 System.out.println("t.x=" + t.x + when("t", t));

7 S s = new S();

8 System.out.println("s.x=" + s.x + when("s", s));

9 s = t;

10 System.out.println("s.x=" + s.x + when("s", s));

11 }

12 static String when(String name, Object t) {

13 return " when " + name + " holds a " + t.getClass() + " at

run time.";

14 }

15 }

Considering the compilable code snippet from JLS from Listing 4.4, we have
designed the insert redundant method from class transformation that randomly
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selects a method from one of the classes declared in the code snippet (see
Listing 4.5). Since the successful application of this transformation, as for the
rest of them, should ensure by construction a resulting compilable program,
we considered several issues that we had to fix. Sec. 4.7 shows these special
cases.

Listing 4.5: Resulted benchmark from applying the insert redundant method from class
transformation by using the JLS code snippet from Listing 4.4 on the program from Listing
3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 }

6 public class RootProgram1 {

7 static String when(String name, Object t) {

8 return " when " + name + " holds a " + t.getClass() + " at

run time.";

9 }

10

11 public static void main(String[] args) {

12 Box<Integer> box = null;

13 System.out.println(box.f);

14 }

15 }

Listing 4.6: Code snippet from JLS that is not compilable: f is declared as a final variable.

1 class Test {

2 static int v;

3 static final int f = 3;

4 public static void main(String[] args) {

5 int i;

6 i = 1;

7 v = 2;

8 f = 33; // compile-time error

9 System.out.println(i + " " + v + " " + f);

10 }

11 }

4.4 Relevant statements

As we specifically consider null pointer analysis, it is required to define the
set of statements that are relevant for this type of analysis. This set is then
used to understand and define the notion of equivalence in Sec 4.5.
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Table 4.1 shows the statements relevant for a null pointer analysis. These
statements are chosen by using the existing literature references (see [15],
Fig. 2) and then extending them to fit the design of root programs and
transformations, i.e., we want to match constructors for generic classes. We
acknowledge that, by definition, a relevant statement for the analysis is
considered as a statement that changes the abstract state [12]. However, we
included in Table 4.1 statements such as, print ’expr’, because ’expr’ might
be relevant for the analysis (i.e., ’expr’ represents a new construct) and,
thus, the matching of the whole statement enables us to use a simpler
matching algorithm. Examples of how program statements are matched to
ids are presented in Listing 4.7.

Table 4.1: Program statements which are relevant for a null pointer
analysis. x and y are objects, f is a field, T is a defined class, m is a
method, args := ∅ | [ arg0, arg1, ..., argn ], where argi := new T<>(args)
| T< Type >(args) | new T() | null | x.m’(args) | x.f | constant, expr :=
new T<>(args) | T< Type >(args) | new T() | null | x.m’(args) | m’(args)
| x.f, and, m’ is a non-void method.

Id Program statement

S1 x := new T<>(args) | T< Type >(args) | new T()
S2 x := null
S3 x := y
S4 x := y.f
S5 x.f := y
S6 x.m(args)
S7 return ’expr’
S8 print ’expr’
S9 m(args), static method
S10 x := y.m(args)

Listing 4.7: Matching relevant statements to ids.

1 Box<Integer> b = new Box<Integer>(); // S1

2 System.out.println(b.f); // S8

3 Box<String> b1 = b2.m(null); // S10

4.5 Equivalence

In this section, we deepen the understanding of the equivalence notion by
stating the assumptions we have made (see Subsec. 4.5.1), the lightweight
definition we considered (see Subsec. 4.5.2), and, the actual algorithm that
we developed (see Subsec. 4.5.3).
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4.5.1 Assumptions

In this work, we do not make any decisions based on the design (except
the relevant statements that are taken from the analyzer’s design) and/or
implementation of the static analyzers. For example, we did not annotate the
code with Nullable or Non-null annotations (see Sec. 2.2 about null pointer
analysis). However, our approach is not completely agnostic, as, in order
to define the equivalence notion, we assume that, for the analyzer, order is
relevant, i.e., the logic of the analyzer does consider the control flow of the
program.

4.5.2 Definition

In the existing literature, there are several definitions of what can be referred
as equivalence of two programs [22, 26]. However, there is no specific paper
that defines such a property with regard to analyzers.

Currently, there is the definition of equivalence between two programs up to
a set of objects A (i.e., ignoring the values of these objects) (see [6]). Also, there are
notions that capture the meaning of equivalence at the level of the program,
i.e., path-based equivalence [9]. Another option is to refer to the property of
structural equivalence, but a structural equivalence is often stronger than a
behavioural equivalence [29].

Consequently, we decided to give our own lightweight definition of
equivalence.

We consider benchmark P1 and benchmark P2 equivalent if the static
analysis of both benchmarks results in the analyzer processing the same
sequence of relevant statements.

The intuition behind this definition is that, if we would have the
implementation of the analyzer and we could instrument the code such
that we can see the path that the analyzer actually takes, this path will be
the same for both P1 and P2. Thus, if the path is the same for the
programs, it means that the analyzer behaves exactly the same from our
point of view, so it is necessary to only keep one of the two benchmarks.

4.5.3 Algorithm

In Algorithm 1, we receive as input, two programs, P1 and P2 and return a
boolean that indicates whether the two programs are equivalent. Initially, we
find the entry point of the two programs (considering that we might have
multiple classes, but only one main method as entry point) in lines 1 and
2. Then, we delete the statements that are irrelevant for the null pointer
analysis, i.e., are not matched to any id from Table 4.1. In line 7, we iterate
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over the lists s1 and s2. The looping stops when we encounter the first
different matched id in line 10. Otherwise, we return true in line 11.

Algorithm 1: Equivalence algorithm for two arbitrary benchmark
programs.

Data: P1, P2 - two distinct benchmark programs,

RS - relevant statements from Table 4.1

Result: Boolean that is true if the two programs are equivalent.

// getMainMethod(p) returns the entry point method of a program p.

1 m1 = getMainMethod(P1);

2 m2 = getMainMethod(P2);

3 deleteIrrelevantStatements(m1, RS);

4 deleteIrrelevantStatements(m2, RS);

5 s1 = getStatements(m1);

6 s2 = getStatements(m2);

7 for i ∈ min(s1.length, s2.length) do

// matchRelevantStatement(s, RS) returns id from Table 4.1.

8 id1 = matchRelevantStatement(s1[i], RS);

9 id2 = matchRelevantStatement(s2[i], RS);

10 if (id1 != id2) return false;

11 return true;

4.6 Generation

The entry point of our approach is the generation Algorithm 2. As initially
desired, the algorithm is parametrizable: R - set of root programs, T - set of
transformations, S - set of relevant statements (from the analyzer’s design),
and, L - integer that shows up to which level the generation runs. To run
the algorithm for null pointer analysis, we can instantiate R with the root
programs that trigger null pointer exception from Sec. 4.1, T with the
transformations defined in Sec. 4.2, and S with the relevant statements
defined in Sec. 4.4 (see Table 4.1).

Algorithm 2 starts with declaring the currentLevel integer in line 1 and the
set of generated benchmark programs B that is empty in line 2. Then, up
to level L, we read the benchmarks generated at level currentLevel (note:
initially, for level 0, we consider the generated benchmarks to be the root
programs, R.), and, on each of these programs, we try to apply once at a
time a transformation from the set T. The application of a transformation on
a program might result in two outcomes, depending whether the application
was successful, i.e., it makes sense to apply the transformation and it results
in a compilable program. If a successful application, the next check requires
getting the set of all programs that were generated at the previous level or up
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to now at this level. Against this set of programs, we check for equivalence
in line 11. If no equivalent already generated program is found, we add
program p in the result set B in line 14. In the end, we return the set of
resulted benchmarks, B.

Algorithm 2: Parametric algorithm to generate benchmarks for a
given type of analysis.

Data: R - set of root programs,

T - set of transformations,

RS - relevant statements from Table 4.1,

L - integer that shows up to which level the generation runs

Result: B - set of generated benchmark programs

1 currentLevel = 0;

2 B = ∅;

3 while currentLevel < L do
// readBenchmarks(currentLevel) returns the set of benchmarks generated at level

’currentLevel’.

// readBenchmarks(0) returns R.

4 P = readBenchmarks(currentLevel);

5 for p ∈ P do
6 for t ∈ T do

// addTransformation(p, t) applies transformation t on program p.

7 success = addTransformation(p, t);

8 if success then
9 isRedundant = false;

// readBenchmarksLevels(currentLevel, currentLevel - 1) returns the set
of benchmarks generated up to now at the ’currentLevel’, and the
benchmarks generated at the ’currentLevel’ - 1 level.

10 for g ∈ readBenchmarksLevels(currentLevel, currentLevel − 1) do
// equivalenceCheck(p, g, RS) defined in Alg. 1.

11 isRedundant = equivalenceCheck(p, g, RS);

12 if (isRedundant) break;

13 if !isRedundant then
14 B = B ∪ p;

15 currentLevel++;

16 return B;

For example, Listing 4.8 shows a benchmark generated by applying two
transformations, instantiate through method call and move null pointer exception
statement in a new method. This benchmark can result from the generation
algorithm; thus, it is returned in the set B.
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Listing 4.8: Resulted benchmark from applying the instantiate through method call
transformation and the move null pointer exception statement in a new method
transformation on the program from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 public Box<Integer> foo() { return null;}

6 }

7 public class RootProgram1 {

8 public static void main(String[] args) {

9 Box<Integer> box = new Box<Integer>().foo();

10 Hello h = new Hello();

11 h.test(box);

12 }

13 }

14 class Hello {

15 public void test(Box<Integer> box) {

16 System.out.println(box.f);

17 }

18 }

4.7 Special cases

There are a few transformations that introduce various challenges in order
to produce a compilable benchmark program. One example is represented
by the transformation that adds a redundant method in the declaration of
an existing class (see example from Listing 4.5). This redundant method is
chosen from a random class among the JLS code snippets.

The special cases that we had to overcome are:

• Cannot have multiple main methods with the same signature: main
(String []). In Java, we can have multiple main methods only if they
have different signatures (method overloading).

• The method that we want to add might use fields declared in the class
from which we extracted the method. Thus, we need to add these
fields too. Moreover, we also solve the possible issue of having name
conflicts between the new fields added and the existing ones.
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Chapter 5

Implementation

This chapter offers details about the implementation setup in Sec. 5.1,
continues by offering an overview of the most relevant classes in Sec. 5.2,
and, by iterating the steps needed to add a new transformation in Sec. 5.3.
It ends by discussing some of the shortcomings of the current
implementation in Sec. 5.4.

5.1 Setup

The solution is implemented in Java 15.0.2, on a system with macOS
Monterey Version 12.2.1. However, the solution is compatible with older
versions of Java as well. The used editor is VS Code and we used Maven as
a software tool to manage our Java project and automate application builds.
One of the advantages of using Maven is that we can easily add package
dependencies in the configuration pom.xml file.

5.2 Organization

The diagram from Fig.5.1 shows the most relevant classes in the
implementation of the solution, and how these classes relate to each other:

• Program: Each root program file gets read into the Program class.
This class contains information, such as: the file name, the package
name, the list of statements, the statement at which the null pointer
exception happens. Initially, in a root program, the last statement of
the main method is the one that triggers the exception. Then, as we
add transformations, this changes and we write the line number of
the null pointer exception statement as a comment on the first line of
the program (i.e., after the package declaration). This information is
needed as we do not store all generated benchmark programs in
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memory, and decided to instead do I/O operations to either read
programs from file or write programs to corresponding files.

• ProgramParser: The ProgramParser class can parse either a program
given its path or its encapsulation in a Program variable. After
parsing, it keeps three lists: a list of declared classes and/or
interfaces, a list of methods, and a list of variable declaration
expressions. To get these lists, we used the Visitor Pattern, thus we
declared classes ClassVisitor, MethodVisitor, VarDeclExprVisitor which
extend a VoidVisitorAdapter. We need these lists, as all the
transformations use parsing information. For example, we might
need to extract the beginning line of the main method to add
redundant objects before the null pointer exception statement (see
Listing 3.2).

• Statement: A statement keeps a field of type String.

• MatchRelevantStatements: This class contains the logic to assign
corresponding relevant statement ids (i.e., S1, S2, etc.). These ids are
kept in an enum RelevantStatementID. In case no id from Table 4.1 is
assigned to a statement, we return S0 (unknown id). Please note that
this logic needs to be updated in case the solution is reused for
another type of analysis, as it might use a different set of relevant
statements.

• Equivalence: This class implements the procedure from Algorithm
1. It uses the MatchRelevantStatements class to go over statements in
both input programs and identify possible relevant statement ids and
also instantiates two variables of type ProgramParser to extract methods
information (e.g.. getMainMethod from Algorithm 1 in line 1).

• Transformation: This is an abstract class that contains an abstract
boolean method addTransformation. This returns true if the
transformation was applicable and successfully applied. Moreover, it
contains an abstract method setEncoding that needs to be overridden
by each transformation. For example, for transformation InsertIf, the
encoding is Ii, as the convention is to extract the uppercase letters
from the transformation name in the encoding string. The encoding is
then added to the name of the generated benchmark, i.e., if we apply
InsertIf on RootProgram1 and the application of the transformation is
successful, the name of the resulted benchmark is RootProgram1Ii.
This encoding enables us to know how many transformations were
added and in which order and also shows the information at which
level was the program generated.

• Generator: This class implements the procedure from Algorithm 2. It
is given an integer that represents the level up to which we run the
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generation and a path, that represents the output directory in which
the generated benchmark programs are written to. Beside the main
logic of generation, it creates a list with all the transformations that
are used in the actual generation (i.e., the list of transformations is
input for the Algorithm 2) and also contains an utility function to read
from the output directory the latest generated programs (based on the
encoded names of the benchmarks).

Figure 5.1: Diagram with the most relevant classes in the actual implementation.

5.3 Adding a new transformation

The current implementation allows one to define additional transformations.
Once we understand the relations between classes from Fig 5.1, the following
steps are needed in order to add a new transformation:

• Extend Transformation class and override setEncoding and
addTransformation.

• The logic in addTransformation needs to update the line of the null
pointer exception statement in case this gets moved. The following
convention has to be fulfilled: the new line number is written as
comment after the package declaration.

• The method addTransformation returns true only if the application of
the transformation results in a compilable program. This could be
obtained either by construction or by explicitly compiling the program
that is resulted.
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• This is an optional step, but we strongly advise that, since we add
or modify source code and we have to handle many string parsing
tasks, any parsing information is obtained by using the methods from
the ProgramParser class, instead of defining other parsing utilities that
might result in a highly time-consuming coding task.

5.4 Shortcomings

Besides the difficulty in defining the theoretical aspects of this technique
(i.e., the equivalence notion), there were many challenges in implementing
a reliable and easily extendable generation infrastructure.

Currently, during the generation, especially when the generation goes up a
higher level (i.e., more than 4 levels), there are IO intensive workloads and
the program might become I/O bound as the time requesting the data (i.e.,
reading the benchmark programs generated at the previous level) is higher
than the time processing it.

Another shortcoming is that, since we do not keep generated benchmarks
information in the program memory, we need to write any additional
information that might be needed for future transformation applications in
the benchmark file. As an example, we write the line number of the null
pointer exception as a comment if this does not match the initial convention
of the root program that has the null pointer exception statement last in the
main method. This is not a shortcoming that can influence the current
results. However, it represents an essential implementation detail to
maintain the high success rate in applying transformations.
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Evaluation

The evaluation consists in two main experiments: the first, related to
generation metrics (see Sec. 6.1), and, the second, related to testing the
soundness of Facebook’s Infer analyzer (see Sec. 6.2).

6.1 Generation experiment

For this experiment, we build and run our Java project with version 15.0.2,
on a macOS Monterey 12.2.1, we used all 5 root programs, 9 defined
transformations, and the set of relevant statements from Tab. 4.1.

During this experiment, we run the generation algorithm from level 1 (one
transformation applied) up to level 5 (up to five transformations applied).
As seen in Fig. 6.1 and Fig. 6.2, there were two cases explored depending
on whether we enabled the equivalence algorithm, i.e., we removed the
redundant programs from the final test suite. We were interested in the
trend of two generation metrics: generation time and number of generated
programs.

In terms of generation time, we measured it in seconds. Fig. 6.1 shows the
generation time for the entire test suite up to a specific level. We can see up
to a 24x reduction in elapsed time, when we enable the equivalence check.
This result is expected, because, even though we enable the computation of
equivalence checks, we generate less benchmarks and the IO workload is
reduced, i.e., we do not write all the redundant programs.

Regarding the number of generated benchmarks, in Fig. 6.2, we can see
up to a 42x reduction, when we enable the equivalence check. This is an
essential improvement, as the resulting set will have the quality of being
more diverse.
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Figure 6.1: Results: Generation time trend up to level 5. Time difference for level 1 and 2
are relatively small. However, from level 3, generation time is extensively increasing for the case
when equivalence check is not enabled. At level 5, there is up to 24x reduction in generation
time, generation finishing in approx. 500 seconds.
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Figure 6.2: Results: Count of generated benchmarks trend up to level 5. The difference between
the number of generated benchmarks is relatively small for levels 1 and 2. At level 5, we observe
up to a 42x reduction, resulting in a diverse set with approx. 300 benchmarks programs.
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6.2 Infer experiment

Infer is an open-source analysis tool, thus we could download it and test its
soundness by running it on our set of generated benchmarks.

Regardless of the input language (Infer supports Java, Objective-C, C),
when we run Infer, i.e., infer run -- javac File.java , there are two
main phases:

• The capture phase: The file is compiled and, at the same time, it gets
translated by Infer in its own intermediate language in order to enable
the second phase.

• The analysis phase: The intermediate files resulted from the previous
phase are analyzed by Infer. Specifically, Infer analyzes each function
and method separately. When Infer finds an issue, it will stop the
analysis for that particular method or function, but will continue its
process for the remaining methods and functions.

For a null pointer issue, if we run it on the program from Listing 3.1, the
error message reported by Infer is: RootProgram1.java:9: error: NULL
DEREFERENCE; object box last assigned on line 8 could be null and is
dereferenced at line 9.

For this experiment, we run Infer version v.1.1.0 on 87 benchmarks
generated up to level 3 when the equivalence check is enabled. In Fig. 6.3
and Fig. 6.4, we see the results against two Java versions that we used: 1.8.0
and 15.0.2. Each version is given as a flag option to Infer, and Infer uses it
to compile the programs. In both cases, on a quarter of benchmarks, Infer
fails to compile them due to its inability to compile programs that use
multiple packages. Our benchmarks use multiple packages because, firstly,
each benchmark has its own declaration of the generic class Box and we
need to avoid conflicts. Secondly, the transformations that need a random
generator are actually using the Singleton instance used throughout the
whole project to ensure that, given a seed, we can replicate experiments.
From Infer’s documentation, we could not find if there exists a way to
provide flags that could enable Infer to compile such programs. On the
remaining benchmarks that Infer manages to compile, so they can reach the
analysis phase, Infer does not manage to find issues in 8% of the cases for
Java 1.8.0, respectively 33.3% of the cases for Java 15.0.2. Currently, the
bugs are reported to Infer’s developers, and we are waiting for
confirmation from their side. This difference in Infer’s behaviour is
unexpected, as the benchmarks do not use different language features that
might not be available in one of the versions. Also, there is no clear
indication in Infer’s documentation that they might not be able to run Infer
on newer versions of Java. In Listings 6.1 and 6.2, there are simplified
examples of programs on which Infer is unsound.
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Figure 6.3: Running Infer on generated benchmark programs (Java 1.8.0).

Infer fails to run.
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Figure 6.4: Running Infer on generated benchmark programs (Java 15.0.2).

Infer fails to run.

25.3%
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33.3%
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Listing 6.1: Example of false negative by running Infer with Java 1.8.0.

1 public class RootProgram {

2 public static void main(String[] args) {

3 String [] array = new String[3];

4 String s = array[0];

5 System.out.println(s.toString()); // Null pointer exception.

6 }

7 }

Listing 6.2: Example of false negative by running Infer with Java 15.0.2. However, Infer
reports issue for this example when running with Java 1.8.0.

1 class Box<T extends Object> {

2 ...

3 public int f;

4 }

5 public class RootProgram {

6 public static void main(String[] args) {

7 Box<Integer> box = null;

8 System.out.println(box.f); // Null pointer exception.

9 }

10 }

Moreover, the Infer experiment reveals other two aspects. The first is
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related to the impact of transformations in finding the bugs. Regardless of
the number of transformations applied to the initial root program, if Infer
manages to report the bug for the initial program, it will also be able to
detect the bug in the benchmarks that originated from it. The second
aspect concerns how Infer behaves on two programs that we consider
equivalent. As we would expect, if we run Infer on two programs that we
consider equivalent, Infer proves consistency, as it behaves in the same way:
either reports the issue or shows no error messages.

35





Chapter 7

Related work

In this chapter, we compare our technique to closely related lines of work:
refactorings (see Sec. 7.1), generation of benchmarks (see Sec. 7.2), and,
testing of static analyzers (see Sec. 7.3).

7.1 Refactorings

Refactoring [7] is a way to restructure an existing piece of code, by altering
its internal structure without changing its external behavior. The majority
of existing Java IDEs offer the possibility of refactoring code. For example,
in Eclipse, there are the following options: renaming variables and
methods, renaming packages, renaming classes and interfaces, extracting a
class, extracting an interface, extracting a superclass, extracting a method,
extracting local variables, extracting a constant, inlining, push down and
pull up (parent-child relationship), changing a method signature, or
moving methods to another existing class.

Our current transformations were not explicitly based on these Eclipse
refactorings, but we did use the intuition behind these when constructing
some transformations (e.g., see Listing 4.2). Moreover, these refactorings
could be used to design new transformations, but not all refactorings
would produce benchmarks that are not redundant, i.e., that will not get
removed by the equivalence algorithm. For example, if we consider the
renaming refactoring as transformation, the application of this
transformation would result in removing the generated programs from the
final test suite.

7.2 Generating benchmarks

For Java, the existing tools for generating valid programs require expert
knowledge and significant human effort to be used in practice. On one

37



7. Related work

side, Daniel et al. [14] focus on an imperative approach: the programmer is
responsible of how the test generation should proceed which has the
advantage of a faster generation, but requires the expertise of the
programmers to provide generators. Comparing to our technique, we do
not require any expertise of the programmers related to the generation
itself. Even when switching to another type of analysis, the developer will
not have to change the generation logic. On the other side, Soares et al. [27]
developed a Java program generator (JDOLLY) that uses Alloy and the
Alloy Analyzer to create programs given the language elements (classes,
fields, methods, etc.). This technique has the advantage of using a
bounded-exhaustive generation method that generates programs that
purely random generators might miss and, consequently, expressiveness is
correlated with the constructors added to the model. In comparison, even
though our technique might not produce benchmarks as expressive, it does
not require such a significant expert knowledge.

Another popular line of work [16, 18, 24, 25] injects bugs into real-world
programs by analyzing execution traces. Pewny and Holz developed
EvilCoder [24], a system to automatically find vulnerable code locations and
modify these locations to introduce vulnerabilities. In this work, the
authors focused on the insertion of bugs rather than the finding or fixing of
bugs, as they consider that the evaluation of this methodology of finding
bugs can become very difficult without showing a realistic view of the
work. Their closest related work is represented by LAVA: Large-scale
Automated Vulnerability Addition [16], although LAVA specifically adds new
vulnerabilities (buffer overread or buffer overflow), instead of transforming
the code, as in EvilCoder. Thus, this research area shows us that inserting
bugs by analyzing execution traces could produce expressive and
challenging benchmarks, but, at the cost of requiring more effort on the
programmer side to understand how such a bug could occur in the code.

Also, as Roy et al. [25] state, EvilCoder fails to inject bugs that are
reproducible and LAVA fails to produce bugs that are deep and fair (i.e., it
is possible to come across such a bug by using regular bug detection
techniques). In contrast, we do not insert bugs in the code, as we initially
design root programs that already throw an exception. The advantage is
that, even after multiple applications of transformations, the same
behaviour of the program is maintained, i.e., the program still ends with
the same exception. Thus, the developer of an analyzer can determine the
root cause of why the analyzer fails to report an issue by knowing the
initial triggered exception and the transformations that were applied and in
which order.
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7.3 Testing static analyzers

Another line of work [10, 13, 28] shows the current improvements in testing
static analyzers for soundness and precision. A work closely related to ours
uses automatically generated benchmarks, from a given set of seed
programs, to compare six analyzers, on arbitrary code [20]. Similarly, we
tested Facebook’s Infer static analyzer for soundness by using our set of
automatically generated benchmarks, resulting in Infer missing issues, i.e.,
Infer fails to report issues for up to 33% of the benchmarks.
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Chapter 8

Conclusions and future work

This chapter presents the final conclusions about the presented technique in
this thesis (see Sec. 8.1), and ends by showing the possible lines of future
work (see Sec. 8.2).

8.1 Conclusions

This thesis introduces a technique to automatically generate Java benchmarks,
starting from a set of root programs, then following the application of multiple
transformations. Our approach in generating benchmarks is making a step
forward in solving current problems, such as: significant human effort to use
existing tools in practice, and expert knowledge needed on the programmer
side to understand the root cause of the bug in the generated benchmarks.

All the theoretical parts of the project from Chapter 4 have also an
implementation correspondent in Chapter 5. Thus, we can instantiate the
framework to generate a set of benchmarks for null pointer analysis.

In order to understand the possible impact of our generated test suite, we
tested Facebook Infer for soundness. The results showed that Infer does not
behave the same for different Java versions. Infer uses the given Java version
to make its own compilation of the programs. Infer failed to report issues
in 8% of the benchmarks for Java 1.8.0 and up to 33% of the benchmarks for
Java 15.0.2.

Moreover, the work in this thesis can be replicated for other types of analysis
(see next section for more details), and we are confident that this approach
in generating benchmarks to test soundness can prove successful, beyond
the scope of null pointer analysis.

41



8. Conclusions and future work

8.2 Future work

Test the equivalence definition

We present our own lightweight definition of equivalence in Subsec. 4.5.2,
by also highlighting the intuition behind the notion definition. For future
work, we can choose a static analyzer for which we have the implementation
and try to instrument the code to check our assumption: two programs are
equivalent if the analyzer follows the same path. It should be noted that it is
not relevant which static analyzer we chose for this experiment, one already
implemented or one that is currently being written, because we did not
define the notion making implementation assumptions.

Extend approach to consider completeness

To test the precision of the analyzers, we would need to check that the
blocks of code inserted during transformations preserve the incorrect
behaviour with respect to all inputs. For a given input, we can check this
property by using concrete execution. However, to check for all inputs is
completely impractical. Favourably, in the current implementation, the
actual transformations do not use any input read from console or user
defined, but a few transformations declare variables that gets assigned to
random values and, based on this assignations, the behaviour of null
pointer exception might not be triggered. Finally, we could extend our
approach to consider completeness by either modifying or deleting these
few transformations that we mentioned above.

Search-space pruning

In the current implementation, we first apply a transformation and then
check if the resulted benchmark program is equivalent or not to other
program already generated. As a future improvement, we could create a
mechanism to ensure that each applied transformation will only create
programs that are not equivalent to any previously-generated program, i.e.,
prune the search space before generation.

Challenging behaviour detection

There are some behaviours that are known to be challenging for analyzers
to detect, such as: aliasing, write effects, etc [11]. The resulted test suite
could include examples that reflect the previously mentioned behaviours by
designing additional transformations.

Generalization

This technique could be easily extendable to other types of analyses, taking
into consideration the generality of the generation algorithm. For future
work, we could consider: buffer overrun or division by zero. The current
Java solution can be reused, as the logic from the generation algorithm does
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8.2. Future work

not have to change. We would only need to provide appropriate inputs for
the root programs, i.e., which target the particular type of exception, and for
the set of relevant statements. Moreover, considering that the set of relevant
statements is different, the logic that matches statements with ids has to be
updated (i.e., matchRelevantStatement from Algorithm 1).

Reduce IO workload

Sec. 5.4 mentions that, for a higher level of generation, there are IO intensive
workloads. A future improvement would be to reduce this IO workload to
spend less time to request the data, i.e., reading the benchmarks already
generated.

Handle more special cases

In Sec. 4.7, we described some of the most common scenarios that we fixed
in order to output compilable programs after applying the insert redundant
method from random class transformation. However, this list with scenarios
is not exhaustive. For example, parameter types, returns types or locally
declared variables types in the method might be undefined in the current
program. Another example is that we could add a method that calls another
method that is undefined from our point of view. For missing types, these
special cases could be solved by either finding their declarations in the initial
code snippet that we selected, or, by our own definition of these types.
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Appendix A

Other examples of transformations

Listing A.1: Resulted benchmark from applying an add if-else transformation on the
program from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 }

6 public class RootProgram1 {

7 public static void main(String[] args) {

8 Box<Integer> box = null;

9 addBranch788(box);

10 }

11 public static void addBranch788(Box<Integer> box) {

12 int r1 = project.SingleRandom.getInstance().nextInt();

13 int r2 = project.SingleRandom.getInstance().nextInt(1);

14 if (r1 > r2) {

15 System.out.println(box.f);

16 } else {

17 Box<Integer> sdzsp = new Box<Integer>();

18 sdzsp.f = 1789481587;

19 sdzsp.g = new Object();

20 }

21 }

22 }
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A. Other examples of transformations

Listing A.2: Resulted benchmark from applying the insert redundant class transformation
on the program from Listing 3.1.

1 class Box<T extends Object> {

2 public int f;

3 public Object g;

4 ...

5 }

6 public class RootProgram1 {

7 public static void main(String[] args) {

8 Box<Integer> box = null;

9 System.out.println(box.f);

10 }

11 }

12 class Test1 {

13 public static void main(String[] args) {

14 int i = 4;

15 int ia[][] = new int[i][i=3];

16 System.out.println(

17 "[" + ia.length + "," + ia[0].length + "]");

18 }

19 }
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[29] Yücesan, E., and Schruben, L. Structural and behavioral equivalence
of simulation models. ACM Trans. Model. Comput. Simul. 2, 1 (1992),
82–103.

49



 
 
 
Declaration of originality 
 
The  signed  declaration  of  originality  is  a  component  of  every  semester  paper,  Bachelor’s  thesis,  
Master’s  thesis  and  any  other  degree  paper  undertaken  during  the  course  of  studies,  including  the  
respective electronic versions. 
 
Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 
__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 
Title of work (in block letters): 
 

 
 
Authored by (in block letters): 
For papers written by groups the names of all authors are required. 
 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 
− I have  committed  none  of  the  forms  of  plagiarism  described  in  the  ‘Citation etiquette’  information  

sheet. 
− I have documented all methods, data and processes truthfully. 
− I have not manipulated any data. 
− I have mentioned all persons who were significant facilitators of the work. 

 
I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 
   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

Automatically Generating Java Benchmarks with Known Errors

Hurmuz Madalina

Zurich, 20.03.2022


	Contents
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Static analyzers
	Null pointer analysis
	Facebook Infer

	Overview
	Technique overview
	Example

	Technical section
	Root programs
	Transformations
	Design of transformations
	Types of transformations

	Snippets from Java Language Specification
	Relevant statements
	Equivalence
	Assumptions
	Definition
	Algorithm

	Generation
	Special cases

	Implementation
	Setup
	Organization
	Adding a new transformation
	Shortcomings

	Evaluation
	Generation experiment
	Infer experiment

	Related work
	Refactorings
	Generating benchmarks
	Testing static analyzers

	Conclusions and future work
	Conclusions
	Future work

	Other examples of transformations
	Bibliography

