
Automated Generation of Data Quality Checks
Master’s Thesis Project Description

Madelin Schumacher
Supervisors: Dr. Caterina Urban, Alexandra Bugariu

September 2017

1 Introduction

Data analysis programs are developed and used not only by computer scientists but also by
biologists, statisticians and specialists from other fields. Even though these programs are correct,
unexpected input data can lead to a program failure or to an erroneous output which might be
difficult to detect.

Due to a common lack of documentation or because the user is not experienced enough it
might not be clear how the input data has to be formatted, what value ranges can be used, what
type the input data should have, do values have to be unique and so on. For programs needed
in medical environments the input data used for a certain program might not be available to
the programmer because of confidentiality issues.

This can lead to errors when the program is run by a user because the programmer could not
test their software with real input data. [1] shows that most data errors happen for the following
reasons: data is copied from a corrupted input source (e.g. misunderstanding someone at the
telephone or working with illegible hand writing), input data that captures measurements of a
physical process is wrong because of a flaw in the design or execution, a faulty preprocessing of
raw data results in wrong values, or errors occur when merging multiple sources of input data
and inconsistencies need to be resolved (e.g. different units, data representation, measurement
periods and so on).

Many data analysis programs have to run for many hours to produce a result. It is cum-
bersome having to restart a program that ran for hours if an error occurred because of faulty
input data. Often it is not feasible for the user to check the data by hand because data analysis
programs work with a vast amount of input data.

To avoid running into program failures and to reduce the effort needed to check the input
data by hand we will create a static analyzer and an input checker. Static program analysis
is used to inspect a program’s source code and infer information about it, without running it.
This information can be used to check if certain properties hold. The result of this analysis will
be used to automatically synthesize a checker that runs on the input data to search for possible
errors. The checker reports problematic input values so that the user can fix those values before
running the actual data analysis program.

2 Motivating Example

Listing 1 shows a data analysis program written in Python. The idea of the program is to
read a file named columnsAges.csv containing comma separated lines with an identification of
the town, the number of people living in the town and the ages of the citizens. As output it
calculates and prints the average age per town.

The program goes through each comma separated line and splits it. The first value of the
line is the identification of the town, the second value is the number of people living in the

1

town and the other entries contain the ages of the people living there. The sum of these ages is
calculated and divided by the number of people. Finally the value is printed.

This program is correct and will produce a correct result if the input data given in the file
columnsAges.csv is as expected. However, the program makes several assumptions about the
input data. If the data is not as expected it will lead to program errors or even worse, the
program will finish without error but give a faulty output which might not be detected by the
user.

The program will produce a ZeroDivisionError in line 7 if the number of people given in
the input is zero. This could happen if each line is dedicated to a certain town and for one
town no data was available. The program will raise a ValueError in line 4 if the input contains
something other than comma separated numbers. For example if the data was created by hand
and accidentally the letter O was inserted instead of the number 0. An IndexError will happen
in line 8 if the identification number of the town is not in the range of the towns array.

More difficult to detect is the case when a line does not contain as many ages as given in
the second column of each line. If the number of people living in the town is smaller than the
number of entries that are following, line 6 will cut off the remaining numbers and not consider
them at all. Therefore faulty input data might not be detected because the program will report
no error. If the number of people given is larger then the number of entries following, Python
will simply ignore this and just sum the entries available. The user will not know that input
data is missing.

1 towns = [’ Zurich ’ , ’ Berne ’ , ’ Base l ’ , ’Geneva ’]
2 i n p u t f i l e = open (’ columnsAges . csv ’)
3 f o r l i n e in i n p u t f i l e :
4 columns = [i n t (va lue) f o r va lue in l i n e . s t r i p () . s p l i t (’ , ’)]
5 num people = columns [1]
6 sum ages = sum(columns [2 : num people+2])
7 average age = sum ages / num people
8 pr in t (’The average age in ’ , towns [columns [0]] , ’ i s ’ , average age)

Listing 1: Data Analysis Program in Python

To avoid these errors a programmer has to add error handling as shown in Listing 2. With
this approach the errors would have been detected by the program itself. There are several
reasons why the first program without the error handling might be used. The person creating
this code might not be experienced enough to add error handling to the code or might just not
consider possible errors of input data and just assume that it is correct. The code with the
error handling is also much longer and takes more time to write.

Even the code from Listing 2 does not catch all errors that can happen because of unexpected
input data such as using semicolons instead of commas to separate the values. This will result
in cryptic errors for the end users and they might not be able to find the error in their input
data or assume a faulty program. Additionally, the code with error handling will stop execution
as soon as one error is detected. The user would have to fix the issue in the input data and
rerun the program. This process has to be repeated every time the program finds a problem. It
might even run for a long time before an error is detected. Using a tool that checks the input
data before running the program will report all errors at once and the user can then fix those
values and check the corrected input data file again.

2

1 towns = [’ Zurich ’ , ’ Berne ’ , ’ Base l ’ , ’Geneva ’]
2 i n p u t f i l e = open (’ columnsAges . csv ’)
3 t ry :
4 f o r l i n e in i n p u t f i l e :
5 columns = [i n t (va lue) f o r va lue in l i n e . s t r i p () . s p l i t (’ , ’)]
6 num people = columns [1]
7 i f (num people == 0) :
8 pr in t (’The number o f people in a town cannot be 0 . ’)
9 break

10 i f (num people != l en (columns)−2) :
11 pr in t (’The number o f people i s not equal to the number o f ages g iven . ’)
12 break
13 sum ages = sum(columns [2 : num people+2])
14 average age = sum ages / num people
15 i f (columns [0] > l en (towns)−1) :
16 pr in t (’The town i d e n t i f i c a t i o n i s unknown . ’)
17 break
18 pr in t (’The average age in ’ , towns [columns [0]] , ’ i s ’ , average age)
19 except ValueError :
20 pr in t (’The value i s not a c o r r e c t number . ’)

Listing 2: Data Analysis Program with Error Handling in Python

3 Related Work

To ensure a successful program execution most approaches check correctness of the program
itself by using formal verification ([2], [3]), model checking [5], or other means [4].

In contrast, we assume that the program works correctly for expected input data. Our
goal is to ensure successful program execution by checking the input data for correctness. Less
research has been done in this area.

CheckCell [6], for example, proposes data debugging, an approach to ensure input data
correctness. It is a tool to detect data errors in spreadsheets based on the assumption that if one
data cell has a big impact on the output compared to the other cells it is either rather important
or wrong. CheckCell uses program analysis to identify output cells and their corresponding
inputs. Statistical analysis is used to find out if an input value has a disproportionate influence
on the output. The tool gives an impact score to each of the inputs and the user can choose
what percentage of input values they want to check. The tool then shows to the user the found
values one after another so that they can decide whether the value is wrong.

The approach solely uses the inputs and output of a function without considering the func-
tion itself. Input values are compared to each other to find faulty ones. Our approach on the
other hand analyzes how the input values are used by the program and what assumptions are
made about the input values. Because CheckCell is implemented as an add-in for Microsoft
Excel, runtime errors are detected by Microsoft Excel and not the program itself. Our analysis
reports values that will produce runtime errors that would otherwise not be detected before
running the program.

4 Core Goals

• Program Examples. In a first step we will find and study examples of data analysis
programs to gather common assumptions that programmers make about the input to
their program. One source for code examples is Google Code Jam [7], an online coding
competition. The contests consist of problems that require to write a program that takes
some input, works with that data, and outputs a solution. The final programs of the
contestants can be downloaded. In addition, we will collect and study code examples

3

from other domains that can be found online. By manually inspecting the code we will
find assumptions the programmer makes about the input values that will lead to a program
failure when violated. (+)

• Static Analysis Design. The assumptions found in the first step need to be formalized
to use them in an automated tool. We will build upon the Abstract Interpretations
framework of Cousot [8] and design a static analysis that captures assumptions a program
makes about the input data by inferring the preconditions. We will focus on finding
assumptions that need to be fulfilled in order for the program not to yield an explicit error.
This will be done as an over-approximation. The analysis finds necessary preconditions
so that the execution will result in a program failure if a precondition is violated. We will
focus on how the input values are used individually without considering their relationship
to each other. For instance, the analysis will capture information about values that are
outside of an expected range or values that are expected by the program but are missing
in the input. (+++)

• Input Checker Design. We will design an approach that uses the information of the static
analysis to automatically generate checks that expose input data values that violate the
assumptions of a program. The analysis and the checks are run before the data analysis
program would start. To be able to find and report an erroneous value, the checker
needs to know about the structure of the input data. The information of the structure
is implicitly given when the data is read by the program. After the static analysis, the
checker iterates through the input data in a way that does not have to concur with the
way the data is read by the program. That is why the static analysis needs to be designed
in a way that captures enough information for the checker to match the input values with
the assumptions about them in the data analysis program. (+++)

• Tool Implementation. The previously gained knowledge will be used to implement a tool
using Python that targets data analysis programs written in Python. Before running the
actual data analysis program, the tool infers assumptions of the program and automat-
ically checks the input data to the program to discover unexpected values. This tool
focuses on users that have no background in computer science. It should reduce the effort
for end users to find and fix faulty values in the input data. Therefore we will design a
meaningful approach to tell the user about possible issues of the data. This includes not
overwhelming the user with unnecessary assumptions that are violated but rather gather
these assumptions and create a useful method to show the faulty values to the user. For
example in Listing 1 on line 8 the program prints the name of a town by accessing the
array at the index given by the town identification input. The program will raise an ex-
ception if the array is accessed outside of its bounds. It is better to directly tell the user
that the input value has to be in the range [−4, 3] instead of first telling the user that the
value has to be ≥ −4 and only later that the value also has to be ≤ 3. Furthermore, if
there is only one value that is wrong, then it makes sense only to point out that particular
entry, but if many values violate the same assumption, a better approach is to tell the
user directly what assumption is made for all those data values. (++)

• Tool Evaluation. The tool can be evaluated on data analysis programs that use input data
to run. The input data to a program can be manipulated to introduce unexpected values.
We report the number of erroneous values found by our tool compared to those that are
missed and the number of values overall. Another important aspect to evaluate is the
quality of messages given to the user to fix the inputs. It is difficult to show this without
doing an extensive user study. Users with no experience in computer science want simple
to understand messages whereas more experienced users might want to see mathematically
precise messages. We will therefore show the usability of our tool by presenting the efforts

4

made to make the tool appealing to different kind of users (i.e. users with different levels
of experience in computer science). (+)

5 Extensions

• Further Assumptions. The static analysis can be extended to furthermore gather informa-
tion about values with an unexpected data type (e.g. a string instead of an integer), values
that should be unique (e.g. input data that reports values for every year but should not
contain multiple entries for one year) or values that have a certain format that matches a
regular expression pattern (e.g. values that match ([01]?[0−9]|2[0−3]):[0−5][0−9], mean-
ing values that are in 24-hour format). Furthermore, instead of focusing on individual
data values, the analysis can be extended to capture relationships between them (e.g. one
value is the sum of the values that follow on the same line). (+)

• Implicit assumptions. To catch more implicit assumptions, the analyzer can be extended.
An example would be to check if certain input values are never used but would have been
important for an analysis. In Listing 1 some of the ages are ignored because the number
of people stated for a town is wrong. The program does not yield an explicit error but
the problem could still be caught by an extended static analysis. In order to catch these
assumptions they have to be formalized and the tool has to be extended. (++)

• Improving Performance. The first design will primarily focus on correctness. To further
enhance usage of the tool, performance should be improved. Data analysis programs often
work with large amounts of input data so that the checker might be slow when checking
all the input values. In addition, the data analysis program might be large so that the
analysis needs significant time to run. Extending the design by using multi-threading
when checking the data or using a less complex analysis (e.g. simpler abstract domain)
could improve performance. Another way is to narrow the search space by offering the
user an interface to specify what kind of assumptions should be inferred or what part of
the data should be checked. (++)

• Under-Approximation. The outcome of the static analysis we design will be an over-
approximation of the correct result. An other approach is doing an under-approximation
instead. The analysis finds the sufficient preconditions so that every error will be reported.
The drawback is that the analysis might report correct values that do not yield an error
when the program is running. Those values do not have to be fixed and the user has to
decide whether a reported value would really result in program failure. To reduce the
amount of correct values that should not be reported as problematic we can use dynamic
analysis or testing. With a dynamic approach the tool can check if the data analysis
program will indeed run into an erroneous state using the values reported by the static
analysis. (+++)

References

[1] Joseph M Hellerstein. Quantitative data cleaning for large databases. United Nations Eco-
nomic Commission for Europe (UNECE), 2008.

[2] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[3] Robert W Floyd. Assigning meanings to programs. In Program Verification, pages 65–81.
Springer, 1993.

5

[4] Azadeh Farzan, Matthias Heizmann, Jochen Hoenicke, Zachary Kincaid, and Andreas Podel-
ski. Automated program verification. In International Conference on Language and Au-
tomata Theory and Applications, pages 25–46. Springer, 2015.

[5] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.

[6] Daniel W. Barowy, Dimitar Gochev, and Emery D. Berger. Checkcell: Data debugging for
spreadsheets. SIGPLAN Not., 49(10):507–523, October 2014.

[7] Google code jam. https://code.google.com/codejam/about. Accessed: 2017-09-03.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

6

https://code.google.com/codejam/about

	Introduction
	Motivating Example
	Related Work
	Core Goals
	Extensions

