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ABSTRACT

Symbolic execution has been rediscovered in the last decade as a promising tech-
nique for the automated verification of programs and as an alternative to vcg-
based approaches, which tend to be fragile in the sense that small changes to a
program or its specification can have a significant impact on the verification run-
time.

In this thesis we extend the symbolic execution algorithm presented by Smans
et al. to Chalice, a Microsoft Research language that uses fractional permissions
in order to enable verification of concurrent programs operating on shared mu-
table data structures and to detect possible deadlocks. Specifications in Chalice
are expressed by means of implicit dynamic frames, pure functions and abstract
predicates, which allow for a specification language that closely resembles the host
language, unlike for example separation logic.

Our algorithm has been implemented in an automated program verifier called
Syxc, which has been thoroughly tested and compared with the vcg-based Cha-
lice verifier in order to identify strengths and weaknesses of our symbolic execu-
tion algorithm. Syxc has been designed with extensibility and maintainability in
mind, and could be used as the basis for a symbolic execution engine for industry-
strength programming languages such as Scala.
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1
INTRODUCTION

1.1 OVERVIEW

This Master’s thesis is part of a long-term project dedicated to the development of
an automatic program verifier for the Scala programming language [Ode10]. More
precisely, the thesis’ goal is the implementation and evaluation of a verifier for the
Chalice programming language [LM09] based on the concept of symbolic execution
[Kin76]. The development is expected to enable us to gain first-hand experience
with symbolic execution and to compare it to the Chalice verifier, which is based
on the concept of verification condition generation (vcg). Moreover, the resulting ve-
rifier is intended to serve as the basic execution engine for the yet to be developed
Scala verifier, should the symbolic execution approach prove successful.

1.2 SYMBOLIC EXECUTION

Symbolic execution has been introduced by James King in 1976, and attracted at-
tention in the last decade1 [BCO05, SJP10] as a possible alternative to vcg-based
verification approaches. Verifiers built using the latter approach often tend to be
unpredictable in terms of verification time, i.e. small changes to the program or its
specification can result in significantly different verification times.

Vcg-based verifiers work by first encoding the complete program in a suitable ve-
rification language, e.g. first-order logic, and by then utilising an (automatic) theo-
rem prover to verify that the program’s postconditions follow from the program’s
preconditions and the encoded program itself. In a modular verification setting
this usually means that the theorem prover is invoked once for each method, and
that it operates on a possibly very complex formula.

Symbolic execution engines, on the other hand, execute every possible branch of
a method in succession, collecting only the currently relevant information and for-
warding them to a theorem prover in order to verify assertions. As an example,
consider an if-then-else statement. Its symbolic execution branches at the guard
and yields two subsequent executions, once executing the if-block under the as-
sumption that the guard is true, once executing the else-branch assuming that the
guard is false. In general, this approach results in a lot more invocations of the
theorem prover, but with significantly smaller formulae to prove. This is assumed
to have a positive effect on the verifier’s stability and might also facilitate debug-
ging, since it is explicit in which execution branch an assertion fails.

1 See http://sites.google.com/site/symexbib/ for a non-exhaustive enumeration of papers
on symbolic execution.

1
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2 INTRODUCTION

1.3 CHALICE

Chalice is an experimental object-oriented programming language developed at
Microsoft Research. It supports, among others, fork-join concurrency, exclusive as
well as shared access to data, inter-thread communication and static deadlock de-
tection. Chalice uses implicit dynamic frames [SJP09a] in combination with fractional
permissions [Boy03] to determine an upper bound on the set of heap locations that
a method might change and to control read- and write-access to possibly shared
heap locations. Chalice is publicly available as part of the Boogie verification sys-
tem2 [Bar+05] and includes several non-trivial, fully specified examples, e.g. hand-
over-hand locking, Owicki-Gries style counters or Peterson’s algorithm.

Chalice also includes a vcg-based verifier, which encodes Chalice programs in the
Boogie programming language [Lei08] and then uses Boogie to verify the enco-
ding. Boogie implements a classical weakest-precondition calculus and depends
itself on an automatic theorem prover, e.g. Z3 [MB08], to discharge the resulting
proof obligations. In this report we will refer to the vcg-based Chalice verifier sim-
ply as ”Chalice” or ”the vcg-based (Chalice) verifier”.

We have chosen Chalice as the target language of our symbolic-execution-based
verifier for several reasons:

• Its set of features is small compared to e.g. Scala, but the supported features
are nonetheless interesting and challenging with respect to verification.

• Chalice’s specification language is similar to the one used in [SJP10], allo-
wing us to build upon this work and to extend it with fractional permissions,
fork-join concurrency and shared mutable data structures.

• The included test suite and the vcg-based verifier facilitate the development
of our symbolic-execution-based verifier and enable us to compare the two
approaches directly, i.e. on the same language.

1.4 PROCEEDING

The rest of the report is structured as follows: in Section 2 we define the subset
of the Chalice programming language that we target with our symbolic execution
algorithm, which is presented in Section 3. Syxc, our implementation of the algo-
rithm, is be presented in Section 4. Completeness and runtime performance are
discussed in Section 5, where we also compare Syxc to the vcg-based Chalice veri-
fier. Section 6 finally concludes the thesis and enumerates possible future work.

2 http://boogie.codeplex.com/

http://boogie.codeplex.com/


2
CHALICE

Despite being a small research language, Chalice is already quite powerful and
we cannot give a full introduction to it in the context of this thesis. We therefore
encourage the reader to consult the appropriate literature, e.g. [LM09, Lei10].

2.1 INTRODUCTORY EXAMPLES

Listing 1 shows a simple Chalice program alongside its specification and illus-
trates the concepts of implicit dynamic frames, fractional permissions, pure func-
tions and abstract predicates.

In Chalice, a field is only accessible if the current thread has permissions to do so.
Hence, permissions can be used to compute an upper bound to the set of fields a
mutator method can modify, thereby framing it. Write permissions are unique, i.e.
at most one thread can posses them at any given time, and denoted by acc(c.f).
Read permissions can be granted to multiple threads, which permits parallel read
access to shared data structures, and are denoted by acc(c.f, n), where 0 < n <

100, or rd(c.f). The sum of all read permissions distributed over all threads is at
most1 100. Shared read access is implemented by means of fractional permissions,
which theoretically can be distributed among infinitely many threads to allow for
parallel computations, and recollected afterwards to regain write access. Where
pure functions (e.g. getters) abstract over expressions, predicates abstract over access
assertions. Hence, both constructs are means to implement information hiding.

In Listing 1, the function get() is used to hide the field x, and the predicate V in
turn hides access to it. The constructor method requires the caller to have full, i.e.
write access to x, which the caller gains by instantiating a cell, and it ensures full
access to V. Since method inc() and function get() both only require read access
to V, clients can conclude that get() will return the same value after inc() has been
invoked. We therefore say that V frames get().

Listing 2 shows a basic example of how fractional permissions can be used toge-
ther with fork-join concurrency to implement shared read access. Observe that in a
modular verification technique such as Chalice, the assertion would fail if method
square would require acc(c.V, 50). In that case the current thread would have lost
all permissions to acc(c.V) after the second fork-statement. Since get() is framed
by V its value is havoced, i.e. we lose the information that get() == a. By keeping
a small fraction of access to V we prohibit that another thread can get full access to
V and thereby write access to x. Thus, we can be sure that get() retains its value.
Another solution would be to add ensures c.get() == old(c.get()) to the specifi-
cations of method square.

1 It is possible for a method to irrevocably lose permissions by ensuring fewer permissions than have
been required, which can be used to implement immutable data structures.

3



4 CHALICE

Listing 1: An immutable cell and its specification

1 class ImmutableCell {
2 var x: int

3

4 predicate V { acc(x) }
5

6 method ImmutableCell(y: int)

7 requires acc(x)

8 ensures acc(V) && get() == y

9 {
10 x := y

11 fold V

12 }
13

14 function get(): int

15 requires rd(V)

16 { unfolding rd(V) in x }
17

18 method inc() returns (c: ImmutableCell)

19 requires rd(V)

20 ensures rd(V) && c != null && acc(c.V)

21 && c.get() == get() + 1

22 {
23 c := new ImmutableCell

24 call c.ImmutableCell(unfolding rd(V) in x + 1)

25 }
26 }

Listing 2: Illustrating fork-join concurrency and fractional permissions

1 class Main {
2 method run(a: int) {
3 var y1: int

4 var y2: int

5 var c: ImmutableCell := new ImmutableCell

6 call c.ImmutableCell(a)

7 /∗ Current thread has acc(c.V, 100) ∗/
8

9 fork tk1 := square(c)

10 fork tk2 := square(c)

11 // fork tk3 := square(c)

12 /∗ Would fail , not enough permissions are left ∗/
13 join y1 := tk1

14 join y2 := tk2

15

16 assert y1 ∗ y2 == a ∗ a ∗ a ∗a
17 }
18

19 method square(c: ImmutableCell) returns (y: int)

20 requires c != null && acc(c.V, 49)

21 ensures c != null && acc(c.V, 49)

22 && y == c.get() ∗ c.get()

23 { y := c.get() ∗ c.get() }
24 }
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Chalice supports sharing and locking of objects, and it uses so-called mu-values,
stored in mu-fields, to define an order in which shared objects can be acquired.
This locking order prevents deadlocks that can occur if multiple threads cyclically
wait for each other to release an acquired object [Dij71]. An object can only be
acquired if its mu-value is strictly greater than the mu-values of all objects already
held, i.e. acquired, by the current thread, which can be tested by an assertion such
as assert waitlevel << x.mu for a given object x. See Listing 3 for an illustrating
example.

Mu-fields are read-only fields which can only be modified by share- and unshare-
statements. This implies that sharing an object x will only succeed if the current
thread has gained write access to the corresponding mu-field by e.g. a precondi-
tion containing acc(x.mu). After being unshared, an object can be shared again
with a different mu-value. That is, the mu-value can change during program exe-
cution, just as the holds-status can.

Listing 3: Illustrating shared objects and locking orders

1 class PositiveCell {
2 var x: int

3 invariant acc(x) && x > 0

4 }
5

6 class Client {
7 var c1: PositiveCell

8 var c2: PositiveCell

9

10 method sharing ()

11 requires acc(c1) && acc(c2)

12 {
13 c1 := new PositiveCell

14 c2 := new PositiveCell

15 c1.x := 1 /∗ Establish the monitor invariant ... ∗/
16 c2.x := 2 /∗ ... before sharing the objects ∗/
17 share c1 above waitlevel

18 share c2 above c1

19 assert waitlevel << c1 && c1 << c2

20 }
21

22 method sharingFailingInvariant ()

23 requires acc(c1) && acc(c2)

24 {
25 c1 := new PositiveCell

26 share c1 above waitlevel

27 /∗ Error: monitor invariant might not hold ∗/
28 }
29

30 method acquiring ()

31 requires rd(c1) && c1 != null && rd(c2) && c2 != null

32 requires rd(c1.mu) && rd(c2.mu)

33 requires waitlevel << c1 && c1 << c2

34 {
35 acquire c1

36 acquire c2

37 assert c1.x > 0 && c2.x > 0

38 release c1

39 release c2

40 }
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41

42 method acquiringWrongOrder ()

43 requires rd(c1) && c1 != null && rd(c2) && c2 != null

44 requires rd(c1.mu) && rd(c2.mu)

45 requires waitlevel << c1 && c1 << c2

46 {
47 acquire c2

48 acquire c1 /∗ Error: a dead−lock might occur ∗/
49 }
50 }

Objects have so-called monitor invariants, which contain access permissions to fields
of the object and assumptions about them. Sharing an object basically means that
the permissions mentioned in the monitor invariant are transferred from the sha-
ring thread into the monitor, from where they are eventually transferred to an ac-
quiring thread. If an object is write-acquired the thread gets exactly those permis-
sions mentioned in the invariant. If the object is read-acquired those permissions
are scaled down to only permit read access, as described in Section 3.2.4.

2.2 SYNTAX

Our verifier supports the subset of Chalice defined in Figure 1, which roughly
is Chalice without support for inheritance (refinement-relations between classes)
and channels. Syxc does not yet implement the semantics of certain features which
are syntactically valid, e.g. old-assertions in monitor invariants. See Section 5.3 and
Section 5.4 for limitations.

For the sake of simplicity we take the liberty to slightly differ from the real Chalice
syntax in the following two points (real syntax mapped to our syntax):

• Access assertions: acc(e0.f, e1) maps to acc(e0.f, (e1, 0)) and rd(e0.f, e1)

maps to acc(e0.f, (0, e1)), and likewise for predicate access assertions.

• Lock modes: holds(e) maps to holds(e, W), rd holds(e) maps to holds(e, R),
!holds(e) and !rd holds(e) both map to holds(e, N), and analogous for
acquire and release. The latter two, however, may not be used with N. See
Section 5.3.9 for a limitation implied by this simplification.

In order to be verifiable, we require Chalice programs to be well-formed. Since
Syxc uses the existing Chalice parser to create a program’s abstract syntax tree
(AST), we can assume that the programs are syntactically well-formed (e.g. all
mentioned variables, functions and methods are declared) and correctly typed if
the parser terminates successfully. The only requirement we add is that assertions
have to be self-framing, i.e. that they include access assertions for each field and
predicate they access.
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program ::= cls
cls ::= class C invariant φ { mem }
mem ::= var f : T | meth | func | pred
meth ::= method m(x: T) returns (y: T)

requires φ ensures φ lockchange e { s }
func ::= function p(x: T) requires φ { e }
pred ::= predicate V { φ }
s ::= e.f := e | var x: T | e := e | e := new C |

if (e) then { s } else { s } | call x := e.m(e) |
fork x := e.m(e) | join x := e | fold pa | unfold pa |
share e between e and e | acquire(e, lm) |
release(e, lm) | unshare e | free e | assert φ |
assume e | while (e) invariant φ lockchange e { s }

φ ::= φ && φ | e ==> φ | e ?φ :φ | fa | pa | e | old(φ)
e ::= e op e | null | true | false | n | lockbottom |

waitlevel | e.f | e.p(e) | unfolding pa in e |
holds(e, lm) | old(e)

op ::= aop | bop | rop
aop ::= + | - | * | / | %
bop ::= && | || | ! | <==> | ==>
rop ::= == | < | > | <= | >= | <<
pa ::= acc(e.V , e) | rd(e.V , e)
fa ::= acc(e.f, e) | rd(e.f, e)
lm ::= R | W | N

In this figure, overlining represents repetition, n, x, f,m, p, V represent an integer literal, a local
variable, a field, a method, a pure function and a predicate, respectively, and T,C represent a type and
a class, respectively.

Figure 1: The subset of Chalice supported by Syxc





3
SYMBOLIC EXECUTION

This section gradually introduces our symbolic execution algorithm: Sections 3.1
to 3.6 define the background theory of the algorithm. The algorithm itself is presen-
ted in sections 3.8 to 3.12 and followed by an illustrating example in sections 3.13.
The remaining sections present additional technical details of our algorithm.

3.1 LANGUAGE

Definition 1. We define the following sets in order to mention Chalice code in our
symbolic execution algorithm:

• X , the set of local program variables with typical element x

• E , the set of expressions with typical element e

• Φ, the set of assertions with typical element φ

• S, the set of statements with typical element s

3.2 LOGIC

Definition 2. We define T to be the theory of our symbolic execution algorithm.
That is, T contains all function symbols and corresponding axioms which are ne-
cessary for our verification technique. T will be gradually populated in the follo-
wing subsections whenever we introduce a new concept.

3.2.1 Sorts and terms

Definition 3. Assumptions gained during the symbolic execution of a program
are encoded as many-sorted first-order logic terms and formulae. We define

• T , the set of terms with typical element t

• TA ⊂ T , the set of fractional permission terms with typical element
tα = (n, ε)

where t can be a first-order term or formula. Most terms and formulae follow di-
rectly from Chalice’s boolean expressions (see Figure 1), and fractional permission
terms directly correspond to fractional permission assertions. Following [SJP10]
we use the term term to refer to any element of T , i.e. to first-order terms and
formulae.

9



10 SYMBOLIC EXECUTION

Examples of terms are null encoding null, tx = ty encoding the expression x == y,
and C.p(tv, t, ts) encoding an application of a function C.p with a snapshot tv , a
receiver t and a list of arguments ts.

Definition 4. Each term has a corresponding sort, namely one of Int, Bool, Ref,
Mu, LMode and Snap, where Int and Bool are integers and booleans, respectively,
where Ref are object references, Mu are mu-field values, LMode are lock modes
and Snap are function and predicate snapshots. Snapshots are used to frame pre-
dicates and functions, and will be illustrated in Section 3.6. In the rest of the report
we will omit sorts whenever the context is unambiguous.

3.2.2 Pure functions

For each pure n-ary Chalice function

p(x1 : T1, . . . xn : Tn) : Tr

declared in a class C there exists a function symbol

C.p : Snap× Ref× S1 × . . .× Sn → Sr

in T ’s signature, where Si is a sort corresponding to Chalice’s type Ti. Note that
we do not axiomatise functions globally, i.e. add an axiom relating function appli-
cations to the evaluation of their respective bodies, as it is done by the vcg-based
verifier. Instead, such a relation is added as yet another term to the path conditions
whenever a function application is evaluated. The corresponding rule is presented
in Figure 2.

3.2.3 Locks and locking order

The logic’s signature includes the following built-in functions dealing with locks
and their locking order:

lockbottom : Mu
R, W, N : LMode
mu : Ref× Int→Mu
holds : Ref× Int→ LMode
< : Mu×Mu→ Bool

lockbottom denotes that an object is not shared at all, R and W denote a read and
a write lock, respectively, and N denotes that an object is not locked, i.e. held, by
the current thread. mu and holds encode the current mu-field value and holds-
status (R, W or N ) of an object. The second argument to mu and holds intuitively
represents the version or revision of the function, with the highest revision being
the currently valid one. Such a versioning is necessary in order to support function
updates, which will be explained in Section 3.5.

T also includes the following axioms about locking orders, the mu function and
the holds function:

∀m1, m2 • m1 < m2 ⇒ m2 6= lockbottom
∀m 6= lockbottom • lockbottom < m
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∀m1, m2 • ¬(m1 < m2 ∧ m2 < m1)

∀m1, m2, m3 • m1 < m2 ∧ m2 < m3 ⇒ m1 < m3

∀ r1 6= r2, vh, vm •

holds(r1, vh) 6= N ∧ holds(r2, vh) 6= N⇒ mu(r1, vm) 6= mu(r2, vm)

The first four axioms define a strict partial order with lockbottom as the least
element. The fifth axiom declares that two held objects must have distinct mu-
values.

3.2.4 Permissions

Definition 5. We define a less-than order relation on TA as follows:

∀ (n1, ε1), (n2, ε2) ∈ TA • (n1, ε1) < (n2, ε2)⇔ n1 < n2 ∨ (n1 = n2 ∧ ε1 < ε2).

In addition, we use the comparisons greater-than (>), at-least (≥) and at-most (≤)
in the context of permission terms and with the usual semantics relative to the
definition of less-than. For the sake of conciseness we also define the following
shorthand

∀ p ∈ Int, (n, ε) ∈ TA • (n, ε) < p⇔ n < p ∨ ε < 0

to conveniently express that a fractional permission is positive (tα ≥ 0) or permits
write access (tα ≥ 100).

Definition 6. Moreover, we define the operations addition, subtraction and the
so-called permission scaling (multiplication) on TA:

∀ (n1, ε1), (n2, ε2) ∈ TA • (n1, ε1)± (n2, ε2) = (n1 ± n2, ε1 ± ε2)

∀ (n, ε) ∈ TA • (100, 0) ∗ (n, ε) = (n, ε) = (n, ε) ∗ (100, 0)

∀ (n1, ε1), tα ∈ TA • (n1, ε1)∗tα =


(n1, ε1) if tα = (100, 0),

(0, 1) if tα = (0, 1) ∧ ε1 = 0 ∧ n1 > 0,

(0, ε1) if tα = (0, 1) ∧ ε1 > 0

The intricate definition of scaling is due to the fact that the current fractional per-
mission model in Chalice does not lend itself to generally reversible multiplication.
Consequently, Chalice prohibits such operations, namely partial folding and un-
folding of predicates containing non-full access permissions. Partial folding and
unfolding of predicates containing only full-access permissions is permitted and
corresponds to the second axiom in the above definition. In addition, Chalice also
permits scaling of monitor invariants by epsilon permissions (and epsilon permis-
sions only!). This is done when an object is read-acquired or -released, and the
semantics are captured by the third axiom. For example, read-acquiring a moni-
tor invariant containing acc(x) yields rd(x) access, as does acc(x, 50), whereas
rd(x,2) yields rd(x,2) access.
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3.3 SYMBOLIC STATE

Definition 7. A symbolic state is a quadruple (γ, h, g, π) ∈ Σ composed of a sym-
bolic store γ, a symbolic heap h, a symbolic old heap g and path conditions π, all
of which will be defined in the rest of this subsection.

The symbolic state contains all information available while symbolically executing
a program. It determines the result of assertion and expression evaluations, and it
is modified by assertions and statements. Modifications due to assertions are cal-
led production and consumption of assertions, and presented in Section 3.9 and Sec-
tion 3.10, respectively. Access to a component c ∈ {γ, h, g, π} of a heap σ is denoted
by an object-oriented style dot-syntax: σ.γ, σ.h, σ.g and σ.π. Substituting a heap
component c′ for a component c yields a new state σ′ and is denoted by σ[c′/c].
Substituting several components is denoted by σ[c′1/c1, c

′
2/c2, . . . , c

′
n/cn] and defi-

ned in a sequential way as σ[c′1/c1, c
′
2/c2, . . . , c

′
n/cn] = σ[c′1/c1][c′2/c2] . . . [c′n/cn].

Definition 8. A symbolic store γ ∈ Γ is a partial function γ : X → T from variables
to terms. Its domain comprises all variables in the current scope of the symbolic
execution.

We denote function updates of γ by γ′ = γ + (x, t), which is defined as

∀ γ, γ′, x, t •

γ′ = γ + (x, t)

⇔
γ′(x) = t ∧ ∀ x′ 6= x • γ′(x) = γ(x)

Definition 9. A symbolic heap h ∈ H is a set of heap chunks representing currently
accessible memory cells and their values. Heap chunks are either field chunks,
predicate chunks or token chunks, representing accessible fields, predicates and
joinable tokens, respectively.

A chunk c ∈ CH can be added to and removed from a heap h, which is denoted
by h′ = h+ c and h′ = h− c, respectively, and defined as

∀ h, h′, c • h′ = h+ c⇔ h′ = h ∪ {c}
∀ h, h′, c • h′ = h− c⇔ h′ = hr {c}

Definition 10. Field chunks are of the form tr.f pp→ tv # tα, where

• tr represents a receiver object

• f represents a field of the receiver object

• tv represents the value of the field (f points to tv)

• tα is a fractional permission representing the current thread’s access to the
field

If such a field chunk exists, then (1) the field tr.f may at least be read by the current
thread and (2) the field’s current value is tv .

Definition 11. Predicate chunks are of the form tr.V [ts] # tα, where

• tr represents a receiver object

• V represents a predicate of the receiver object

• ts is a snapshot determine the values of the fields that the predicate V abs-
tracts over, i.e. the heap segments covered by V
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• tα is a fractional permission representing the current thread’s access to the
predicate

As with field chunks, the existence of such a predicate chunk in a heap implies
that (1) the corresponding predicate is at least readable by the current thread and
(2) that unfolding the predicate yields access to fields whose current value is deter-
mined by the predicate’s snapshot.

The careful reader might have noticed that field chunks and predicate chunks are
structurally identical, unlike the predicate chunks introduced in [SJP10], which
also contain the arguments passed to predicates. Parameterised predicates are
a feature that is currently not supported by Chalice, but we nevertheless keep
the distinction between field and predicate chunks to emphasise the difference
in semantics and to facilitate extending our formalism with parameterised predi-
cates.

Definition 12. Token chunks are of the form tr pp→ (C.m, h, t, ts), where

• tr identifies the token itself, i.e. tr is the term a token variable points to

• C.m represents the forked method

• h is the heap that existed when the method has been forked and in which
the monitor invariant held

• t is the receiver object of the invoked method

• ts represents the actual method arguments

Definition 13. A set π ∈ Π of path conditions is a set of first-order logic formu-
lae representing assumptions gained from the symbolic execution in progress. For
example, for a given field x (recorded in h) and a local variable y (recorded in γ)
with current values tx and ty , respectively, an assumption such as x > y would go
to the path conditions as tx > ty . Sources of path conditions are, among others, pre-
conditions, postconditions of method calls and guards of if-then-else statements.

Analogous to updating a heap h we update path conditions π by adding a term t,
denoted by π′ = π + t.

Since two of the four heap components can be uniquely identified by their type
and because modifications of the current heap component h are much more com-
mon than updates of g, we take the liberty to introduce the following shorthand
notations.

σ + (x, t) = σ[(σ.γ + (x, t)) / γ]

σ + c = σ[(σ.h+ c) / h]

σ + t = σ[(σ.π + t) / π]

σ / γ′ = σ[γ′ / γ] σ / (x, t) = σ[{(x, t)} / γ]

σ / h′ = σ[h′ / h] σ / c = σ[{c} / h]

σ / π′ = σ[π′ / π] σ / t = σ[{t} / π]

where t ∈ T, x ∈ X , c ∈ CH, γ′ ∈ Γ, h′ ∈ H,π′ ∈ Π.

Definition 14. An atomic term (a variable) t is called fresh with respect to a set of
states if it is syntactically distinct from all terms in these states. We write t = fresh
to express that t is such a term, and we use fresh as an argument to functions that
take a term, or generally in places where a term is expected, e.g. tr.f pp→ fresh # tα
or γ + (x, fresh).
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Intuitively1, the fresh-function corresponds to a function with side-effects that in-
creases a private counter on each invocation and successively returns terms t1,
t2, t3, etc. The correctness of the rules of our symbolic executing algorithm, for
example the production of conjuncted assertions presented in Figure 5, depend on
this freshness property.

3.4 INFERRING OBJECT DISTINCTNESS

The fact that the sum of all permissions to a field can be at most 100 allows us
to conclude that two objects c1 and c2 of the same type C must be distinct if the
current thread holds acc(c1.f, n1) and acc(c2.f, n2), where n1 + n2 > 100. Such
a situation is illustrated in Listing 4.

Listing 4: Inferring object distinctness from access permissions

1 method get(n: int , m: int) returns (c1: Cell , c2: Cell)

2 requires 0 < n && n <= 100

3 requires 0 < m && m <= 100

4 ensures c1 != null && c2 != null

5 ensures acc(c1.x, n) && acc(c2.x, m)

6 { . . . }
7

8 method aliasingPossible () {
9 var c1: Cell

10 var c2: Cell

11 call c1, c2 := get(50, 50)

12 assert c1 != c2

13 /∗ Should fail , aliasing is possible ∗/
14 }
15

16 method aliasingImpossible () {
17 var c1: Cell

18 var c2: Cell

19 call c1, c2 := get(51, 51)

20 assert c1 != c2

21 /∗ Should succeed , aliasing is impossible ∗/
22 }

We therefore add the following axiom inferring object distinctness from access per-
missions, i.e. from field chunks in the current heap, to our theory T :

∀ t1, t2, tα, tβ , f •

∃ t1.f pp→ # tα ∈ σ.h
∧ ∃ t2.f pp→ # tβ ∈ σ.h
∧ tα + tβ > 100⇒
t1 6= t2

Inequalities established by this axiom also effect function updates of mu and holds,
which will be described in Section 3.5.

1 Giving a rigorous formal definition of fresh is quite challenging and would make it much harder to
formalise the symbolic execution rules, and we thus refrain from it.
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3.5 FUNCTION UPDATES

Since locking order and hold-status of an object can change during program exe-
cution, we need to reflect this when adding terms such as

∀ r • holds(r)⇒ mu(r) < mu(tx)

to the path conditions. That is, we must be able to update functions at certain
positions. We achieve this by including two counters vh and vm indicating the cur-
rently valid revision of holds and mu as ghost fields in our heap. They are ghost
fields in the sense that they cannot be mentioned in a Chalice program and thus
cannot be modified by the programmer. This enables us, for example, to update
the holds-status for object x to ’released’, i.e. N, by incrementing vh and adding

holds(tx, vh) = N ∧ ∀ r 6= tx • holds(r, vh) = holds(r, vh − 1)

to the path conditions. Including the counters as field chunks in the heap directly
allows for two-state assertions, e.g. holds(x) == old(holds(x)) or the lockchange-
clause.

We use the following shorthand notations to conveniently read and update these
counter chunks:

v = h(vx) ⇔ ∃ thread.vx pp→ v # ∈ h ∨ v = 0

h′ = h[vx++] ⇔ v = h(vx) ∧ h′ = h− fc+ thread.vx pp→ v + 1 #

Reading a counter has been defined such that non-existing counters have a value
of zero. This merely is a convenience relieving us from the necessity of having to
explicitly initialise counter chunks whenever we create a new, i.e. empty heap to
operate on.

3.6 SNAPSHOTS

Snapshots are used to frame predicates and heap-dependent functions by storing
the relevant heap values alongside the predicate or function application term. In
this section we will give an illustrating example of how predicate snapshots work,
and another one that illustrates how function snapshots work. This should be suf-
ficient to understand the rules of our symbolic execution algorithm presented in
Section 3.8 ff. An example that shows how predicate and function snapshots inter-
act will be studied in greater detail in Section 3.13, where we show how snapshots
solve an unsoundness existing in the vcg-based Chalice verifier. When illustrating
our symbolic execution algorithm we will only show relevant parts of the current
symbolic state, e.g. we may omit some or even all path conditions.
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3.6.1 Predicate snapshots

Listing 5: Illustrating predicate snapshots

1 class Cell {
2 var x: int

3

4 predicate V { acc(x) && x >= 0 }
5

6 method Cell(a: int)

7 requires a >= 0 && acc(x)

8 ensures V

9 {
10 x := a

11 // γ : this pp→ t, a pp→ ta
12 // h : t.x pp→ ta
13 // π : ta ≥ 0

14 fold V

15 // h : t.V [ta]

16 }
17

18 method set(a: int)

19 requires V

20 ensures V

21 {
22 // γ : this pp→ t, a pp→ ta
23 // h : t.V [tv]

24 unfold V

25 // h : t.x pp→ tv
26 // π : tv ≥ 0

27 assert x >= 0

28 x := a ∗ a

29 // h : t.x pp→ ta ∗ ta
30 fold V

31 // h : t.V [ta ∗ ta]
32 }
33 }

When V is folded in method Cell in Listing 5, the snapshot of the resulting predi-
cate chunk is created from the access assertions that are part of the predicate body.
Intuitively, folding takes away access permissions from the current thread and
stores them together with the corresponding heap values in a predicate chunk.
The opposite happens in method set: unfolding the initial predicate chunk sets
the value of x to the chunk’s snapshot value, about which we only know that it is
at least zero. Folding V after updating x recreates the predicate chunk, but with a
different snapshot.

3.6.2 Function snapshots

Function snapshots are like predicate snapshots, except that they are created from
a function’s precondition, not from its body. Listing 6 illustrates function snap-
shots and shows how snapshots are used to create function application terms that
are, in a sense, versioned by their snapshots.
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Listing 6: Illustrating function snapshots

1 class Cell {
2 var x: int

3

4 function get(): int

5 requires rd(x)

6 { −x }
7

8 method useGet(a: int)

9 requires acc(x)

10 {
11 var y: int

12 var z: int

13

14 x := a

15 // γ : this pp→ t, a pp→ ta, y pp→ ty, z pp→ tz
16 // h : t.x pp→ ta
17 y := get()

18 // γ : y pp→ Cell.get(ta, t), z pp→ tz
19 // π : Cell.get(ta, t) = −ta
20 x := a − 1

21 // h : t.x pp→ ta − 1

22 z := get()

23 // γ : y pp→ Cell.get(ta, t), z pp→ Cell.get(ta − 1, t)

24 // π : Cell.get(ta, t) = −ta, Cell.get(ta − 1, t) = 1− ta
25 assert get() != y

26 }
27 }

3.6.3 Logic

The logic’s signature includes the following built-in functions dealing with snap-
shots:

unit : Snap
combine : Snap× Snap→ Snap

unit is the empty snapshot used for heap-independent predicates and functions,
and combine is used to build snapshots from conjuncted assertions. The latter is
axiomatised by

∀ t1, t2, t3, t4 • combine(t1, t2) = combine(t3, t4)⇒ t1 = t3 ∧ t2 = t4,

which is included in our theory T .

3.7 TECHNICAL PREFACE

In the symbolic execution rules presented in the following subsections we use
σ ` φ to denote that a formula φ follows from a state σ. This notation actually
is a shorthand for T (σ.h) ∪ σ.π ` φ, which states that φ follows from our back-
ground theory T together with the current path conditions. T (σ.h) denotes that
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some elements of T depend on the current heap, namely the object distinctness
axiom added to T in Section 3.4.

Following [SJP10] we present our rules in a continuation-passing style (CPS) [FW08].
In CPS, sequential execution is achieved by passing the remaining computation Q
as an argument to the first computation f to perform, i.e. f(. . . , Q). f invokes
Q after its own computation has been performed, thereby continuing with the
remaining computation. We consider most of the rules to be self-explaining and
usually do not give additional descriptions.

We use [ ] to denote the empty list, es to denote a list of arbitrary size, [e1, . . . , en]

to denote a list with n elements, e :: es to denote prepending element e to list es
and es1 ::: es2 to denote concatenation of lists es1 and es2.

3.8 EVALUATING EXPRESSIONS

Chalice expressions are evaluated into terms, which may be added to π as further
assumptions, or which have to be asserted or refuted in order for the verification
to succeed. The evaluation of an expression can itself add path conditions to π

– as done in the case of function application evaluation – and thus can have an
effect on the state. However, all other state components are guaranteed to remain
unchanged.

Expressions are evaluated by one of the following functions:

• eval : Σ×E × (Σ× T → Bool)→ Bool, evaluating an expression into a term.

• evals : Σ× E × (Σ× T → Bool)→ Bool, evaluating a list of expressions.

eval and evals are defined in terms of the following helper functions:

• eval′ : Σ×Π×F × E × (Π× T → Bool)→ Bool,

where the second argument accumulates path conditions yielded by the on-
going evaluation, and where the third argument represents a list of func-
tions currently being evaluated, which is necessary in order to avoid an infi-
nite recursive descent when evaluating recursive functions. See Section 5.3.6
for a related incompleteness of the vcg-based verifier that does not exist in
Syxc.

• evals′ : Σ×Π× E × T × (Π× T → Bool)→ Bool,

where the second argument accumulates path conditions and where the
fourth argument accumulates terms yielded by the ongoing evaluation.

The evaluation of function applications and unfolding-expressions is defined in
terms of produce and consume which are described in subsequent section. Basi-
cally, consume succeeds if a given assertion holds, and consuming access asser-
tions corresponds to losing them. The opposite holds for produce: boolean as-
sertions are produced by adding corresponding assumptions to the path condi-
tions, and access assertions are produced by adding corresponding chunks to the
heap.

The rules for the symbolic evaluation of expressions are presented in Figure 2 and
Figure 3.
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eval(σ, e, Q) =
eval′(σ, ∅, [ ], e, (λ π, t •

Q(σ + π, t)))

eval′(σ, π, rs, c, Q) =
Q(π, tc)

where c is a Chalice literal and tc is the corresponding term literal.

eval′(σ, π, rs, x, Q) =
Q(π, σ.γ(x))

eval′(σ, π, rs, old(e), Q) =
eval′(σ[g / h], π, rs, e, Q)

eval′(σ, π, rs, !e, Q) =
eval′(σ, π, rs, e, (λ π1, t •

Q(π1, ¬t)))

eval′(σ, π, rs, e1⊕ e2, Q) =
eval′(σ, π, rs, e1, (λ π1, t1 •

eval′(σ, π1, rs, e2, (λ π2, t2 •

Q(π2, t1⊕′ t2)))))

where e1, e2 6= waitlevel, ⊕ ∈ {&&, ||, ==>, <==>, ==, <, <=, >, >=, +, -, *, / , %, <<},
and where ⊕′ is a corresponding operator defined on terms.

Figure 2: Symbolic evaluation of expressions

• Evaluating an if-then-else expression can branch the symbolic execution.
The if-branch is evaluated if it cannot be proven that the guard will eva-
luate to false, and the continuation is then invoked assuming the guard is
true. Likewise, the else-branch is evaluated if it cannot be proven that the
guard evaluates to true.

• A field access is valid if the receiver is not null and if the current thread has
permissions to read that field, i.e. if there is a matching field chunk in the
heap.

• Evaluating a function application succeeds if the precondition holds. If so,
a function application term is created and related to the evaluated function
body. In order to avoid an infinite recursion, the body is evaluated only once.
Notice that the current rule does not consider information hiding, because
the function body is always evaluated and thus visible to all clients. This, ho-
wever, is not an innate property of our technique, and Chalice in fact already
supports the concept of modules to define visibility scopes.

• Unfolding a predicate in an expression temporarily gains the assertion hid-
den by the predicate and evaluates the expression in the resulting state. Un-
folding’s effect on the heap is implicitly reverted and hence only tempora-
rily, because evaluation does not pass the current heap to the continuation.
Again, information hiding is not yet considered and predicates can be unfol-
ded regardless of the current visibility scope.
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eval′(σ, π, rs, (n, ε), Q) =
eval′(σ, π, rs, n, (λ π1, tn •

eval′(σ, π1, rs, ε, (λ π2, tε •

Q(σ + π2, (tn, tε))))))

eval′(σ, π, rs, e0 ? e1 : e2, Q) =
eval′(σ, π, rs, e0, (λ π1, t0 •

(σ 6` ¬t0⇒ eval′(σ, π1 + t0, rs, e1, Q)) ∧
(σ 6` t0 ⇒ eval′(σ, π1 + ¬t0, rs, e2, Q))))

eval′(σ, π, rs, e.f, Q) =
eval′(σ, π, rs, e, (λ π1, t0 •

σ ` t0 6= null ∧ ∃ t0.f pp→ tv # ∈ σ.h ∧
Q(π1, tv)))

eval′(σ, π, rs, e0.p(e1, . . . , en), Q) =
eval′(σ, π, rs, e0, (λ π1, t0 •

evals′(σ, π1, [e1, . . . , en], [ ], (λ π2, ts •

σ + π2 ` t0 6= null ∧
let σ1 = σ[{(this, t0), (x1, ts1), . . . , (xn, tsn)} / γ] + π2 in

consume(σ2, full, preC.p, (λ σ3, tv •

let tf = C.p(tv, t0, ts)in
if C.p 6∈ rs

eval′(σ2, σ3.π, C.p :: rs, bodyC.p, (λ π4, tb •

Q(π4 + (tf = tb), tf)))
else
Q(σ3.π, tf)))))))

eval′(σ, π, rs, unfolding acc(e0.P, α) in e1, Q) =
eval′(σ, π, rs, e0, (λ π1, t0 •

eval′(σ, π1, rs, α, (λ π2, tα •

σ + π2 ` t0 6= null ∧ tα ≥ 0 ∧
consume(σ + π2, full, acc(e0.P, α), (λ σ1, tv •

produce(σ1[(this, t0) / γ], tv, tα, bodyC.P , (λ σ2 •

eval′(σ2[σ.g / g, σ.γ / γ, ∅ / π], σ2.π, rs, e1, Q)))))))))

eval′(σ, π, rs, holds(e, lm), Q) =
eval′(σ, π, rs, e, (λ π1, t •

eval′(σ, π1, rs, m, (λ π2, tlm •

Q(π2, holds(t, σ.h(vh)) = tlm))))

eval′(σ, π, rs, waitlevel⊕ e.mu, Q) =
eval′(σ, π, rs, e.mu, (λ π1, t •

Q(π1, ∀ o • holds(o, σ.h(vh)) 6= N ⇒ mu(o, σ.h(vm)) ⊕′ t)))

where ⊕ is either << or == and ⊕’ is the corresponding operator defined on terms.

Figure 2: Symbolic evaluation of expressions (continued)
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evals(σ, es, Q) =
evals′(σ, ∅, es, [ ], (λ π, ts • Q(σ + π, ts)))

evals′(σ, π, [ ], ts, Q) =
Q(σ + π, ts)

evals′(σ, π, e :: es, ts, Q) =
eval′(σ, π, [ ], e, (λ π1, t •

evals′(σ, π1, es, t :: ts, Q)))

Figure 3: Symbolic evaluation of a list of expressions

3.9 PRODUCING ASSERTIONS

Producing assertions corresponds to the concept of inhaling [LM09] used in the vcg-
based Chalice verifier. Basically, the assertion is evaluated and the resulting term
is used as an additional assumption during the rest of the execution. Producing an
assertion can effect the current heap and the path conditions, but the other state
components will remain unaltered.

Assertions are produced by the function

produce : Σ× T × TA× Φ× (Σ→ Bool)→ Bool

where the second argument is the snapshot term used to produce the assertion,
and where the third argument is a factor used to scale access permissions that are
to be produced. produce is defined in terms of the helper function

produce′ : Σ× T × TA× Φ× (H ×Π→ Bool)→ Bool

which passes only the newly produced heap chunks and path conditions to the
continuation.

In order to ensure that assertions are self-framing, the production is started in a
state where the heap contains only the ghost counter field chunks introduced in
Section 3.5. Hence, field reads and other heap-dependent operations will fail if
the assertion currently being produced does not include corresponding access as-
sertions. More specifically, access permissions must precede corresponding field
reads in the assertion. That is, the order of the conjuncts forming an assertion is of
relevance, in contrast to regular truth-valued formulae. The heap resulting from
a successful production is afterwards merged with the initial heap. Due to frac-
tional permissions both heaps may contain field chunks (or predicate chunks, res-
pectively) with the same receiver and field but with different values and different
fractional permissions. The existence of such a chunk in the initial heap implies
that the current thread already has read access to the field, which in turn implies
that the field’s value cannot be changed by other threads. The new chunk’s value
must therefore be equal to the initial chunk’s value and the new chunk’s permis-
sion are added to those already held by the thread.

The rules for the symbolic production of assertions are presented in Figure 5.

• Producing a conjunction takes place by producing both conjuncts with their
own fresh snapshot term and by refining the initial snapshot to be equal
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produce(σ, ts, tα, φ, Q) =
let
hv = {thread.vh pp→ # , thread.vm pp→ # } ⊆ σ.h,
h0 = σ.hr hv

in
produce′(σ / hv, ts, tα, φ, (λ h1, π1 •

let (hr, πr) = merge(h0, h1) in
Q(σ / hr / (π1 + πr))))

merge(h1, h2) =
foldl(h2, (h1, ∅), (λ (h, π), c •

if c = t.f pp→ tv # tα ∧ ∃ fc @ t.f pp→ tw # tβ ∈ h
(h− fc

+ t.f pp→ tv # (tα+ tβ),
π + (tv = tw))

else if c = t.V [tv] # tα ∧ ∃ pc @ t.V [tw] # tβ ∈ h
(h− pc

+ t.V [tv] # (tα+ tβ),
π + (tv = tw))))

where foldl is the left-folding higher-order function as e.g. available in Haskell with the first argu-
ment being the data structure to iterate over, the second argument being the initial accumulator
and the third argument being the combining function

Figure 4: Defining assertion production in terms of helper functions

to the pair of these two fresh snapshots. Using fresh snapshots to produce
the conjuncts implements the separating semantics of assertion conjunctions
in a very strict manner, such that acc(x) && acc(y) results in two disjoint
heap chunks. The task of preventing that e.g. acc(x, 10) && acc(x, 10) also
results in two disjoint heap chunks is delegated to the production rule for
access assertions and implemented by means of the already defined merge-
operation.

• A field access assertion is produced by merging a corresponding field chunk
with the heap produced so far. In case of producing a mu-field access asser-
tion a corresponding term is added to the path conditions. Producing predi-
cate access assertions is handled analogously.
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produce′(σ, tv, tα, true, Q) = Q(σ.h, σ.π)
produce′(σ, tv, tα, false, Q) = true

produce′(σ, tv, tα, φ1 && φ2, Q) =
let tv1 = fresh, tv2 = fresh in

produce′(σ + (tv = Combine(tv1, tv2)), tv1, tα, φ1, (λ h1, π1 •

produce′(σ1 / h1 / π1, tv2, tα, φ2, Q)))

produce′(σ, tv, tα, e ==> φ, Q) =
eval(σ, e, (λ σ1, t •

(σ1 6` ¬t⇒ produce′(σ1 + t, tv, tα, φ, Q)) ∧
(σ1 6` t ⇒ Q(σ1.h, σ1.π + ¬t))))

produce′(σ, tv, tα, e0 ? φ1 : φ2, Q) =
eval(σ, e0, (λ σ1, t0 •

(σ1 6` ¬t0⇒ produce′(σ1 + t0, tv, tα, Q)) ∧
(σ1 6` t0 ⇒ produce′(σ1 + ¬t0, tv, tα, φ2, Q))))

produce′(σ, tv, tα, acc(e.f, α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα1 •

σ2 ` t 6= null ∧ tα1 > 0 ∧ tα1 ≤ 100 ∧
let
fc = t.f pp→ tv # (tα ∗ tα1)
tµ = if f = mu then mu(t, σ.h(vm)) = tv else true,
h3, π3 = merge(σ2.h, {fc})

in
Q(h3, σ2.π + π3 + tµ)))))

produce′(σ, tv, tα, acc(e.V , α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα1 •

σ2 ` t 6= null ∧ tα1 > 0 ∧ tα1 ≤ 100 ∧
let h3, π3 = merge(σ2.h, {t.V [tv] # (tα ∗ tα1)}) in
Q(h3, σ2.π + π3)))))

produce′(σ, tv, tα, holds(e, m), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, m, (λ σ2, tm •

let v = σ2.h(vh) + 1, h3 = σ2.h[vh++]in
Q(h3, σ2.π + (holds(t, v) = tm)

+ (∀o 6= t · holds( t, v) = holds( t, v − 1)))))))

We assume that negated holds-assertions, i.e. !holds(e, ), are represented as holds(e, N).
See Section 5.3.9 for resulting limitations of this approach.

produce′(σ, tv, tα, lockchange es, Q) =
evals(σ, es, (λ σ1, ts •

Q(σ1.h, σ1.π + (∀o ∈ ts · holds(o, σ1.h(vh)) = holds(o, σ1.g(vh))))))

produce′(σ, tv, tα, e, Q) =
eval(σ, e, (λ σ1, t •

Q(σ1.h, σ1.π + t)))

Figure 5: Symbolic production of assertions
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3.10 CONSUMING ASSERTIONS

Consuming assertions corresponds to the concept of exhaling used in the vcg-based
Chalice verifier. Depending on the concrete assertion the consumption proceeds by
proving that the assertion actually holds, or by removing chunks from the heap.
In case of the latter the snapshot of the removed chunk is returned. Therefore,
consuming an assertion can effect the current heap and the path conditions, but
the other state components will remain unaltered.

Assertions are consumed by the function

consume : Σ× TA× Φ× (Σ× T → Bool)→ Bool

where the second argument TA is a factor used to scale the access permissions that
are to be consumed. consume is defined in terms of the helper function

consume′ : Σ×H × TA× Φ× (H ×Π× T → Bool)→ Bool

which passes remaining heap chunks, newly gained path conditions and the consu-
med snapshot to the continuation. The additional heap argument (second argu-
ment) represents the remaining heap which can be modified, i.e. pruned, and
which is eventually passed to the continuation. The state heap (first argument)
is used to evaluate expressions in. This separation is necessary in order to verify
the call-site of a method such as

method m()

requires acc(x) && x == 0

{. . .}

where consuming the second conjunct would fail because the consumption of the
first conjunct has already removed the required field chunk.

The rules for the symbolic consumption of assertions are presented in Figure 6.
Consuming a field access assertion is successful if the current thread holds the re-
quired access permissions, where the latter must be positive and not greater than
the permissions currently held. A distinction is made between completely and par-
tially losing permissions to a field. In the latter case the corresponding field chunk
is updated to reflect the remaining permissions. The former case includes a dedi-
cated handling of mu-fields by invalidating (havocing) the entry corresponding to
the receiving object in the mu-function. In both cases the field’s value is passed to
the continuation as the consumed snapshot.
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consume(σ, tα, φ, Q) =
consume′(σ, σ.H, tα, φ, (λ h1, π1, tv •

Q(σ / h1 / π1, tv)))

consume′(σ, h, tα, φ1 && φ2, Q) =
consume′(σ, h, tα, φ1, (λ h1, π1, tv1 •

consume′(σ / π1, h1, tα, φ2, (λ h2, π2, tv2 •

Q(h2, π2, Combine(tv1, tv2))))))

consume′(σ, h, tα, e ==> φ, Q) =
eval(σ, e, (λ σ1, t •

(σ1 6` ¬t⇒ consume′(σ1 + t, h, tα, φ, Q)) ∧
(σ1 6` t ⇒ Q(h, σ.π + ¬t, unit))))

consume′(σ, h, tα, e0 ? φ1 : φ2, Q) =
eval(σ, e0, (λ σ1, t0 •

(σ1 6` ¬t0⇒ consume′(σ1 + t0, h, tα, φ1, Q)) ∧
(σ1 6` t0 ⇒ consume′(σ1 + ¬t0, h, tα, φ2, Q))))

consume′(σ, h, tα, acc(e.f, α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα0 •

let tα2 = tα ∗ tα0 in
σ2 ` t 6= null

∧ ∃ fc @ t.f pp→ tv # tα1 ∈ h
∧ σ2 ` tα2 > 0 ∧ tα2 ≤ tα1 ∧
if σ2 ` tα2 = tα1

let (h3, tµ) =
if f = mu then

let v = h(vm)+1 in (h[vm++], ∀o 6= t·mu( t, v) = mu( t, v−1))

else
(h, true)

in
Q(h3− fc, σ2.π + tµ, tv)

else
Q(h− fc+ t.f pp→ tv # tα1− tα2, σ2.π, tv)))))

consume′(σ, h, tα, acc(e.V , α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα0 •

let tα2 = tα ∗ tα0 in
σ2 ` t 6= null

∧ ∃ pc @ t.V [tv] # tα1 ∈ h ∧
∧ σ2 ` tα2 > 0 ∧ tα2 ≤ tα1) ∧

if σ2 ` tα2 = tα1
Q(h− pc, σ2.π, tv)

else
Q(h− pc+ t.V [tv] # tα1− tα2, σ2.π, tv)))))

consume′(σ, h, tα, lockchange es, Q) =
evals(σ, es, (λ σ1, ts •

σ1 ` ∀o ∈ ts · holds(o, σ1.h(vh)) = holds(o, σ1.g(vh)) ∧
Q(h, σ1.π, unit)

consume′(σ, h, tα, e, Q) =
eval(σ, e, (λ σ1, t •

σ1 ` t ∧
Q(h, σ1.π + t, unit)))

Figure 6: Symbolic consumption of assertions (continued)
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3.11 EXECUTING STATEMENTS

The three functions introduced so far - eval, produce and consume - all handle
assertions or expressions, but do not cover statements and are thus not suited to
actually execute programs.

Statements are executed by the functions

• exec : Σ× S × (Σ→ Bool)→ Bool

• execs : Σ× S × (Σ→ Bool)→ Bool

executing a single and multiple statements, respectively. The execution functions
are implemented in terms of eval, produce and consume, and they may effect the
whole state, i.e. all of its four components.

The rules for the symbolic execution of statements are presented in Figure 7.

• Assert-statements are executed by temporarily consuming the assertion in
order to verify that it holds. In contrast, assume-statements are not execu-
ted by producing the assumption but by evaluating it. The reason for this
is that assumptions would need to be self-framing if they are to be produ-
ced. That is, given a field x the statement assume x > 0 would fail and only
assume rd(x) && x > 0 would succeed. But that would also increase the frac-
tional permissions the current thread holds, a consequence that is probably
undesired in general. Choosing eval over produce, though, limits assump-
tions to expressions and thereby disallows assuming permissions.

• Objects are instantiated by creating a corresponding entry in the store and
adding corresponding field chunks to the current heap. Note that fields are
not initialised to default values such as 0, false or null, and that the newly
instantiated object can only be assigned to a local variable, not to a field. The
latter is not crucial for our approach, but facilitates keeping the rules small
and simple.

• The invocation of a method basically corresponds to the consumption of
its precondition followed by the production of its postcondition and lock-
change clause in the appropriate environments, i.e. stores and heaps. Follo-
wing [Lei10] we could have encoded call-statements in terms of fork- and
join-statements. However, we did not do so, assuming that a dedicated rule
for call-statements might facilitate the understanding of the rules for fork-
and join-statements.

• Executing a fork-statement succeeds if the method’s precondition holds, in
which case a token chunk will be added to the heap. The chunk contains the
heap in which the precondition held, the receiver object and the actual me-
thod arguments. The latter two are necessary in order to restore the call-site
environment when eventually joining the token. Re-evaluating the expres-
sions denoting receiver object and actual method arguments at join-time is
not an option, because their values might have changed between fork and
join. Since tokens can be reused in another fork without joining the previous
one first, we have to remove possibly existing heap chunks related to the to-
ken before invoking the continuation.

• Sharing an object between lower and upper bounds requires the object to
not be shared already and the bounds to be valid, i.e. all lower bounds have
to be smaller than all upper bounds. The shared object’s mu-field is updated
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execs(σ, [ ], Q) = Q(σ)

execs(σ, s :: ss, Q) =
exec(σ, s, (λ σ1 •

execs(σ1, ss, Q)))

exec(σ, assert φ, Q) =
consume(σ, full, φ, (λ σ1, •

Q(σ / σ1.π)))

exec(σ, assume e, Q) =
eval(σ, e, (λ σ1, t •

Q(σ1 + t)))

exec(σ, var x: C, Q) =
Q(σ + (x, fresh))

exec(σ, x := e, Q) =
eval(σ, e, (λ σ1, t •

Q(σ1 + (x, t))))

Figure 7: Symbolic execution of statements

to reflect that the object is now shared and the object is declared to not be
held. The order in which the steps 1) update the mu-version, 2) assume that
the object is shared with respect to the bounds and 3) consume the monitor
invariant are executed is crucial for the soundness of the share-statement.
Consuming the invariant before sharing the object might lead to an incon-
sistent monitor invariant, as illustrated in Listing 7. The example verifies
in Syxc and in Chalice since the object is shared between waitlevel and c

before consuming the monitor invariant. Changing this order would allow
us to incorrectly verify the example with the modified monitor invariant
rd(mu) && mu == lockbottom, leading to a contradiction when the object is
acquired.

• The execution of a while loop comprises two steps, the verification of the
loop body and the actual execution. The first conjunct of the rule verifies
the loop body and includes well-formedness checks, the second conjunct
verifies the call-site. The rule is optimised with respect to the handling of
local variables, in the sense that local variables declared prior to the loop and
not assigned to in the loop’s body retain their values, i.e. are not havoced.
The operations involved in the rule as well as their order give rise to the
incompleteness described in Section 5.3.2.

Listing 7: A snippet illustrating the importance of the order of operations
when executing a share-statement

1 class Test {
2 invariant rd(mu) && mu != lockbottom

3

4 method init()

5 requires acc(mu) && mu == lockbottom

6 { share this above waitlevel }
7 }
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exec(σ, x := new C, Q) =
let t = fresh, tµ = bottomlock in
Q(σ + (x, t)

+ {t.f1 pp→ fresh # full, . . . , t.fn pp→ fresh # full, t.mu pp→ tµ # full}
+ (t 6= null) + mu(t, σ.h(vm)) = tµ)

where f1 to fn are all fields of class C except mu.

exec(σ, e0.f := e1, Q) =
eval(σ, e0, (λ σ1, t0 •

σ1 ` t0 6= null ∧ ∃ fc @ t0.f pp→ # tα ∈ σ1.h ∧ σ1 ` tα ≥ 100 ∧
eval(σ1, e1, (λ σ2, t1 •

Q(σ2− fc+ t0.f pp→ t1 # tα)))))

exec(σ, if e then s1 else s2, Q) =
eval(σ, e, (σ1, t •

(σ1 6` ¬t⇒ exec(σ1 + t, s1, Q)) ∧
(σ1 6` t ⇒ exec(σ1 + ¬t, s2, Q)))

exec(σ, call r1, . . . , rm := e.m(ex1, . . . , exn), Q) =
eval(σ, e, (λ σ1, t •

σ1 ` t 6= null ∧
evals(σ1, [ex1, . . . , exn], (λ σ2, [tx1, . . . , txn] •

let
xγ = {(x1, tx1), . . . , (xn, txn)},
yγ = {(y1, fresh), . . . , (ym, fresh)}

in
consume(σ2 / xγ + (this, t), full, preC.m, (λ σ3, •

produce(σ3[σ2.h / g]+yγ, fresh, full, postC.m && lkchC.m, (λ σ4 •

Q(σ4[σ2.γ / γ, σ2.g / g]
+ {(r1, σ4.γ(y1)), . . . , (rm, σ4.γ(ym))})))))))))

where preC.m, postC.m and lkchC.m are the precondition, postcondition and lockchange clause,
respectively, of the method to be invoked.

exec(σ, fork ek := e.m(ex1, . . . , exn), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, ek, (λ σ2, tk •

σ2 ` t 6= null ∧
evals(σ2, [ex1, . . . , exn], (λ σ3, [tx1, . . . , txn] •

let xγ = {(x1, tx1), . . . , (xn, txn)} in
consume(σ3 / xγ + (this, t), full, preC.m, (λ σ4, •

Q(σ4[σ3.γ / γ, σ3.g / g]
− tk.joinable pp→ #
+ tk.joinable pp→ true # eps
− tk pp→ ( , , , )
+ tk pp→ (C.m, σ2.h, t, [tx1, . . . , txn]))))))))))

Figure 7: Symbolic execution of statements (continued)
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exec(σ, join r1, . . . , rm := ek, Q) =
eval(σ, ek, (λ σ1, tk •

σ1 ` tk 6= null
∧ ∃ fc @ tk.joinable pp→ true # tα ∈ σ1.h
∧ ∃ tc @ tk pp→ (C.m, g1, t, [tx1, . . . , txn]) ∈ σ1.h ∧
let
xγ = {(x1, tx1), . . . , (xn, txn)},
yγ = {(y1, fresh), . . . , (ym, fresh)},
σ2 = σ1[g1 / g] / xγ + yγ + (this, t)

in
produce(σ2, fresh, full, postC.m && lkchC.m, (λ σ3 •

evals(σ3, lkchC.m, (λ σ4, [t1, . . . , tl] •

Q(σ4[σ1.g / g, σ1.γ / γ]
− fc− tc
+ {(r1, σ4.γ(y1)), . . . , (rm, σ4.γ(ym))}
+ tk.joinable pp→ false # tα)))))))

exec(σ, fold acc(e.V, α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα •

σ2 ` t 6= null ∧ tα ≥ 0 ∧
consume(σ2 / (this, t), tα, bodyC.V , (λ σ3, tv •

let (hr, πr) = merge(σ3.h, {t.V [tv] # tα}) in
Q(σ3 / hr + πr)))))))

where bodyC.V is the predicate’s body.

exec(σ, unfold acc(e.V, α), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, α, (λ σ2, tα •

σ2 ` t 6= null ∧ tα ≥ 0 ∧
consume(σ2, full, acc(e.V, α), (λ σ3, tv •

produce(σ3 / (this, t), tv, tα, bodyC.V , (λ σ4 •

Q(σ4 / σ2.γ)))))))))

exec(σ, share e between el and eu, Q) =
eval(σ, e, (λ σ1, t •

σ1 ` t 6= null
∧ ∃ fc @ t.mu pp→ lockbottom # tα ∈ σ1.h
∧ σ1 ` tα ≥ 100 ∧
let
pre = el1 << eu1 && . . . && el1 << eum && . . . && eln << eum,
post = el1 << e && . . . && eln << e && e << eu1 && . . . && e << eum

in
consume(σ1, full, pre, (λ σ2, •

let
tµ = fresh,
v = σ2.h(vm) + 1,
σ3 = σ2 / σ2.h[vm++]

+ ∀o 6= t ·mu( t, v) = mu( t, v − 1)
+ mu(t, v) = tµ+ (tµ 6= lockbottom)
+ holds(t, σ4.h(vh)) = N
− fc+ t.mu pp→ tµ # tα

in
eval(σ3, post, (λ σ4, tw •

consume(σ4 / (this, t) + tw, full, invC , (λ σ5, •

Q(σ5 / σ4.γ)))))))))

where the upper bounds eu contain neither waitlevel nor lockbottom, and where invC is the
monitor invariant of the object’s class.

Figure 7: Symbolic execution of statements (continued)
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exec(σ, unshare e, Q) =
eval(σ, e, (λ σ1, t •

σ1 ` t 6= null
∧ (holds(t, σ1.h(vh)) = W )
∧ ∃ fc @ t.mu pp→ # tα ∈ σ1.h
∧ σ1 ` tα ≥ 100 ∧
let v = σ1.h(vh) + 1 in
Q(σ1 / σ1.h[vh++]

− fc+ t.mu pp→ lockbottom # tα
+ mu(t, v) = lockbottom
+ ∀o 6= t ·mu( t, v) = mu( t, v − 1)
+ (holds(t, v) = N)
+ (∀o 6= t · holds( t, v) = holds( t, v − 1)))))

exec(σ, acquire(e, m), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, m, (λ σ2, tm •

σ2 ` t 6= null ∧
consume(σ2, full, waitlevel << e.mu, (λ σ3, •

let
tα = if (tm = W ) full else eps,
v = σ3.h(vh) + 1,
σ4 = σ3 / (this, t) / σ3.h[vh++]

+ (holds(t, v) = tm)
+ (∀o 6= t · holds( t, v) = holds( t, v − 1))

in
produce(σ4, fresh, tα, invC , (λ σ5 •

Q(σ5 / σ2.γ)))))))))

exec(σ, release(e, m), Q) =
eval(σ, e, (λ σ1, t •

eval(σ1, m, (λ σ2, tm •

σ2 ` t 6= null ∧ (holds(t, σ2.h(vh)) = tm) ∧
let tα = if (tm = W ) full else eps in

consume(σ2 / (this, t), tα, invC , (λ σ3, •

let v = σ3.h(vh) + 1 in
Q(σ3 / σ2.γ / σ3.h[vh++]

+ (holds(t, v) = N)
+ (∀o 6= t · holds( t, v) = holds( t, v − 1)))))))))

exec(σ, while (e) {ss}, Q) =
let γb = σ.γ + {(x1, fresh), . . . , (xn, fresh)} in

produce((γb, ∅, ∅, σ.π), fresh, full, invW && lkchW , (λ σ1 •

eval(σ1, e, (λ σ2, t •

exec(σ2[σ2.h / g] + t, bodyW , (λ σ3 •

consume(σ3, full, invW && lkchW , (λ σ4, • true))))))))
∧

consume(σ, full, invW && lkchW , (λ σ1, •

produce(σ1[σ.h / g] / γb, fresh, full, invW && lkchW , (λ σ2 •

eval(σ2, e, (λ σ3, t •

Q(σ3[σ.g / g] + ¬t)))))))
where x1, . . . , xn are all local variables that are assigned to in the loop body but that are declared
outside of it, i.e. before the loop and where invW , bodyW and lkchW are the loop invariant, loop
body and loop lockchange clause, respectively.

Figure 7: Symbolic execution of statements (continued)
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3.12 VALIDITY

The correctness of the rules for symbolic execution introduced in the previous sub-
sections, especially the rules for synchronous and asynchronous method invoca-
tions, rely on the assumption that methods are correct with respect to their pre-
and postconditions. In order to justify this assumption we have to prove that this
is actually the case, i.e. that all methods are valid, which in turn requires that func-
tions, invariants and all specifications in general are valid. Ensuring the validity
of pure functions includes proving their termination; an orthogonal problem that
we have postponed as future work.

In order to be valid a program must be well-formed, e.g. all mentioned variables,
fields and classes must exist, all expressions must be correctly typed, etc. We as-
sume that these usual requirements are all met, and focus on the only require-
ments arising from our verification technique: that assertions are self-framing and
that there are no null-dereferences. Producing an assertion fails if the assertion is
not self-framed, as already described in Section 3.9, and it is thus sufficient to en-
sure that assertions are producible in order to ensure that they are self-framing.
Moreover, producing an assertion also fails if a possibly null-object is dereferen-
ced, and we can therefore conclude that the whole program is well-formed if all
assertions can be produced.

Definition 15. Figure 8: A method is valid if the precondition can be produced
in any state where i) this is a non-null objects and ii) all method arguments and
return values exist, if the method body can then be executed in the resulting pre-
state, and finally if the postcondition and the lockchange clause hold in the post-
state resulting from the body’s execution.

let
γ = {(this, fresh), (x1, fresh), . . . , (xn, fresh),

(y1, fresh), . . . , (ym, fresh)}
in

produce((γ, ∅, ∅, {this 6= null}), fresh, full, preC.m, (λ σ1 •

produce(σ1[σ1.h / g], fresh, full, postC.m && lkchC.m, (λ • true))
∧

exec(σ1[σ1.h / g], bodyC.m, (λ σ2 •

consume(σ2, full, postC.m && lkchC.m, (λ , • true))))))

where x1, . . . , xn are the method arguments and y1, . . . , yn are the return values.

Figure 8: Method validation

The first conjunct of Figure 8 corresponds to ensuring well-formedness of the me-
thod specification, whereas the second conjunct ensures that the method is valid
with respect to its specification. It is not strictly necessary to produce the postcon-
dition in the first conjunct, because it would be produced at call-site when the
method is used, thus well-formedness would still be guaranteed. We produce it
nevertheless in order to detect all ill-formed assertions, regardless of their actual
use.

Definition 16. Figure 9: A function is valid if the precondition can be produced
in any state where i) this is a non-null objects and ii) all function arguments exist,
and if the method body can be evaluated in the resulting pre-state.
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let
γ = {(this, fresh)(result, fresh), (x1, fresh), . . . , (xn, fresh)},
σ = (γ, ∅, ∅, {this 6= null})

in
produce(σ, fresh, full, preC.p, (λ σ1 •

eval(σ1, bodyC.p, (λ , •

true))))

Figure 9: Function validation

Definition 17. Figure 10: Predicates and monitor invariants are valid if they are
well-formed, i.e. if they can be produced in any state where this is a non-null
object.

produce(({(this, fresh)}, ∅, ∅, {this 6= null}), fresh, full, spec, (λ • true))

where spec is either a predicate body bodyV or a monitor invariant invC .

Figure 10: Predicate and monitor invariant validation

Definition 18. A class is valid if all of its members are valid, i.e. if methods, func-
tions, predicates and the monitor invariant are valid.

Definition 19. A program is valid if all comprised classes are valid.

3.13 SNAPSHOTS AND CHALICE ’S UNSOUNDNESS

The vcg-based Chalice verifier is currently unsound in the way it handles predi-
cates. Listing 8 shows an illustrating example which is incorrectly verified by Cha-
lice but not by Syxc. In summary, method proveFalse() verifies because neither
exhaling nor inhaling (consume and produce in our terminology) havoc field x en-
capsulated by predicate V. Unfold would, but no unfolding is done while verifying
method proveFalse(). Hence, set(2) establishes that get() == 2 which incorrectly
remains valid when set(3), which completely consumes access to V and thus can
and actually will modify the field covered by it, establishes that get() == 3. Seen
from a different point of view, one could say that the framing of function appli-
cations depending on predicates is insufficient because it does only consider the
presence of the predicate but not the fields hidden by it.

Listing 8: Unsoundness in the vcg-based Chalice verifier

1 class Unsound {
2 var x: int

3

4 predicate V { acc(x) }
5

6 function get(): int

7 requires V

8 { unfolding V in x }
9

10 method set(x: int)

11 requires V

12 ensures V && get() == x

13 {
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14 unfold V

15 this.x := x

16 fold V

17 }
18

19 method proveFalse ()

20 requires V

21 {
22 call set (2)

23 call set (3)

24

25 assert get() == 2 && get() == 3

26 /∗ Correctly fails in Syxc , verifies in Chalice ∗/
27 }
28 }

Snapshots overcome this unsoundness by framing predicates and function appli-
cations more fine-grained. This is illustrated in Listing 9. Summarised, set(2) com-
pletely consumes access to V and produces a fresh instance of V, i.e. a predicate
chunk with a fresh snapshot. It also produces a function application term versio-
ned with the same fresh snapshot and relates this term to 2. Symbolically executing
set(3) proceeds analogously and thus outdates the previous function application
term by invalidating its frame.

Listing 9: Snapshots framing predicates and function applications

1 method proveFalse ()

2 requires V

3 {
4 h : t.V [t1]

5 call set (2)

6 h : t.V [t2]

7 π : C.get(t2, t) = t2, C.get(t2, t) = 2

8 call set (3)

9 h : t.V [t3]

10 π : C.get(t3, t) = t3, C.get(t3, t) = 3

11

12 assert get() == 3 /∗ Holds ∗/
13 σ ` C.get(t3, t) = 3

14

15 assert get() == 2 /∗ Fails ∗/
16 σ 6` C.get(t3, t) = 2

17 }

3.14 SORT WRAPPERS

The snapshot of a function application term is the result of the consumption of the
function’s precondition. Similarly, unfolding a predicate produces the predicate
body using the predicate snapshot to determine the values of fields occurring in
the body. Snapshot terms are always of sort Snap, whereas fields can be of different
sort, e.g. Int, Bool or Ref. This can lead to sort incompatibilities, as illustrated in
Listing 10.
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Listing 10: A snippet illustrating the need for sort wrappers

1 class C {
2 var a: bool

3

4 function neg(): bool

5 requires acc(a)

6 { !a }
7

8 method appNeg () returns (b: bool)

9 requires acc(a)

10 {
11 // γ : b pp→ tb

12 // h : t.a pp→ ta where ta is of sort Bool
13 b := neg()

14 // γ : b pp→ C.neg(¬ta, t) error, snapshot must be of sort Snap
15 // π : C.neg(ta, t) = ¬ta
16 }
17

18 predicate V { acc(a) }
19

20 method unfoldV ()

21 requires V

22 {
23 // h : t.V [ta] where ta is of sort Snap
24 unfold V

25 // h : t.a pp→ ta error, ta must be of sort Bool
26 }

In order to avoid this problem we include in our logic’s signature two sort wrapper
functions toSnapS and fromSnapS for each sort S:

toSnapS : S → Snap
fromSnapS : Snap→ S

When a field access assertion acc(x.f) is produced with a snapshot tv : Snap the
resulting field chunk points to tv as the field’s value, but appropriately wrapped
to match the field value’s sort S, i.e. tx.f pp→ fromSnapS(tv) # tα. The inverse
wrapper function is applied when a field access assertion is consumed. If the field’s
value has been tv then the term yielded by the consumption will be toSnapS(tv).
Accordingly, our theory T contains axioms defining the corresponding to- and
from-wrappers as mutually inverse:

∀ t : S • toSnapS(fromSnapS(t)) = t

∀ t : S • fromSnapS(toSnapS(t)) = t

For the sake of brevity we have omitted the application of these wrapper functions
from our symbolic execution rules for the production and consumption of field
access permissions.

3.15 SHARED OBJECTS

Careful readers might ask themselves why mu-fields are encoded as regular field
chunks and additionally by the mu-function as part of the path conditions, and
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why the holds-function is versioned by a counter and not by a snapshot, as are all
other functions. These are valid questions, especially since each function update
results in a quantified term being added to the path conditions, thwarting the ini-
tial goal of symbolic execution to reduce the number of quantified formulae that
the theorem prover has to deal with. However, we have good reasons for our taken
design decisions.

Mu-fields are regular fields in the sense that access to them has to be required by
e.g. acc(c.mu) assertions, which is why we have corresponding mu-field chunks.
At the same time, waitlevel-comparisons such as waitlevel << c.mu correspond
to ∀ r • holds(r) ⇒ mu(r) < mu(c) (simplified) and are therefore part of the path
conditions. The quantification ranges over possibly infinitely many (unknown) ob-
ject references, but our heap is always finite and mentions only those objects that
we explicitly know about. Hence, we need to encode mu-fields in a way that suits
both purposes.

Versioning applications of the holds-function by snapshots does not seem to be
possible since snapshots are created by consuming the precondition of a function,
but it is not apparent how a suitable precondition for the holds-function would
look like and if it can be expressed in Chalice. Since the holds-status of an object
may change during program execution we nevertheless need to be able to update
the holds-function, and revision numbers seem to be a good way of achieving
this.
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SYXC

This section gives a brief overview of Syxc, our implementation of the symbolic
execution algorithm presented in Section 3. Syxc has not yet been released, but we
plan to do so once the thesis has been submitted.

4.1 OVERVIEW

Syxc, our implementation of the symbolic execution algorithm presented in Sec-
tion 3, is written in Scala (version 2.8.0). It uses the existing Chalice parser to ty-
pecheck, parse and resolve the program to verify. The generated abstract syntax
tree (AST) is converted into a very similar, but nevertheless slightly different AST
representation. This gives us the possibility to report yet unsupported features
such as channels, and to rewrite and simplify certain AST nodes. In the long term,
it makes Syxc independent from Chalice in the sense that we could implement
converters from other languages to our AST and thereby verify these languages,
too. That way Syxc could be used as a general verification engine, as e.g. Boogie is
used. In order to facilitate future extensions, Syxc has been designed with modula-
rity in mind. Most interfaces are type-parameterised (generics), in particular state
and verifier classes.

Syxc depends on a two-level decision unit hierarchy to discharge arising proof
obligations. The first level, a so-called decider, is queried by Syxc directly and pro-
vides several specific functions that decide e.g. if permissions grant write access
or if a lock can be acquired. In order to make such decisions, the decider may or
may not make us of a general theorem prover. In our current implementation we
use Z3, but since our term hierarchy is independent of the underlying prover we
could replace Z3 by any other suitable theorem prover.

4.2 COMPONENTS

Syxc roughly consists of four major parts: the state, the actual verifier, the deci-
sion units and the algebraic datatype hierarchies AST nodes and terms, on which
the verifier operates. A sketch of the general structure is shown in Figure 11. AST
nodes and terms comprise an abstract base class – ASTNode and Term, respectively –
and many concrete nodes and terms, e.g. Class, Statement, Expression and, respec-
tively, FApp, Unit, UpdateHolds. For each abstract state, verifier or decision unit class
there currently exists one concrete implementation, e.g. the DefaultProducer imple-
menting the Producer interface, or the SetBackedPathConditions implementing the
PathConditions interface.

All state classes take at least one type parameter, the so-called MyType ([Bru93],
illustrated in Listing 26 in the appendix), which enables state classes to reference
objects of their own concrete type in a type-safe manner. The state interface is

37
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Figure 11: Components of Syxc

composed of three smaller interfaces (HasStore, HasHeaps, HasPathConditions), each
declaring the operations available on their particular component. See Listing 27
in the appendix for the major state class interfaces. Operations on collection-like
structures are uniformly named \+ and \− to indicate adding and removing of ele-
ments, respectively, and \ to indicate substitution. Combined with Unicode identi-
fiers this results in a strong visual correspondence between the rules as typeset in
Section 3 and as implemented in Syxc. All current state class implementations are
immutable, which facilitates reasoning by developers and thus maintenance, and
also contributes to the visual correspondence between typeset and implemented
rules. See Listing 11 for an example of how the implemented rules look like.

Listing 11: An example of an implemented rule

1 // ... Setting up local variables ...

2

3 /∗ Verify loop body (including well−formedness check) ∗/
4 val σW = ∅ \ (γ = bodyγ, π = σ.π)

5 (produce(σW, fresh , Full , inv , specsErr , σ1 =>

6 eval(σ1, guard , m, (σ1a, tGuard) =>

7 exec(σ1a \ (g = σ1a.h) \+ tGuard , body , m, σ2 =>

8 consume(σ2, Full , inv , InvNotPreserved , (σ3, ) =>

9 Success ))))

10 &&

11 /∗ Verify call−site ∗/
12 consume(σ, Full , inv , InvNotEstablished , (σ1, ) => {
13 val σ2 = σ1 \ (g = σ.h, γ = bodyγ)

14 produce(σ2, fresh , Full , inv , m, σ3 =>

15 eval(σ3, guard , m, (σ4, tGuard) =>

16 Q(σ4 \ (g = σ.g) \+ ¬(tGuard ))))}))
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The verifier itself consists of the interfaces ProgramVerifier and MemberVerifier,
where the former is intended to rely on the latter in order to verify complete pro-
grams. A direct consequence of this design is that members, especially methods,
can be verified in parallel by forking several member verifiers. Member verifiers
are intended to utilise an Evaluator, a Producer, a Consumer and an Executor to sym-
bolically execute the program. These interfaces are again heavily type-paramete-
rised, as can be seen in Listing 28 in the appendix. The current implementations,
called DefaultEvaluator etc., are almost completely independent of concrete state
classes, including permissions. The only exception is the DefaultEvaluator that de-
pends on the current concrete implementation of permissions, since it evaluates
Chalice permission AST nodes into Syxc permission terms. Since the permission
model of Chalice is currently being revised1, it is important to reference the cur-
rent permission term implementation as seldom as possible. However, there are
situations where referencing it cannot be avoided, e.g. in the DefaultEvaluator or
the DefaultDecider.

Evaluator, producer, consumer and executor have been implemented as Scala traits
with self-type annotations declaring mutual dependencies. An alternative would
have been regular dependency injection2, but:

1. Constructor dependency injection would not have been possible, because
e.g. the DefaultEvaluator depends on a Consumer and the DefaultConsumer

depends on an Evaluator. Thus, neither object could have been instantiated.

2. Setter injection would have been possible, but results a) in temporarily in-
complete, i.e. only partly initialised objects, which is error-prone, b) obfus-
cates object initialisation by lots of additional setter-invocations, and c) also
makes the implemented rules less readable, for example by turning invoca-
tions of eval(...) into evaluator.eval(...).

The decider is queried by the aforementioned verifier classes in order to prove
or refute that an assertion follows from the current state. Since this in general re-
quires support from a theorem prover, the decider usually proceeds by converting
the state, especially the gathered path conditions, into a format understood by the
prover. If appropriate, the decider may delegate tasks to other decision procedures
which are possibly better suited for specific tasks, e.g. numeric constraint solvers,
or to not delegate tasks at all. Our current decider, for example, distinguishes bet-
ween permissions that contain integer literals only, e.g. acc(f, 50), and those that
include general expressions, e.g. acc(f, n/2). When e.g. comparing two permis-
sions, it invokes Z3 only in the latter case.

4.3 ADDITIONAL FEATURES

In addition to the Chalice features covered in Figure 1 and by the rules presented
in Section 3.8 ff., Syxc also supports sequences and universally and existentially
quantified expressions. See Listing 12 for an illustrating example.

1 http://www.pm.inf.ethz.ch/education/theses/student_docs/Stefan_Heule/
Stefan_Heule_RCS_Description

2 http://martinfowler.com/articles/injection.html

http://www.pm.inf.ethz.ch/education/theses/student_docs/Stefan_Heule/Stefan_Heule_RCS_Description
http://www.pm.inf.ethz.ch/education/theses/student_docs/Stefan_Heule/Stefan_Heule_RCS_Description
http://martinfowler.com/articles/injection.html
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Listing 12: Sequences and quantified expressions

1 class Test {
2 method neg(xs: seq<int>) returns (ys: seq<int>)

3 requires forall i in [0.. | xs |] :: xs[i] > 0

4 ensures forall i in [0.. | ys |] :: ys[i] < 0

5 {
6 var i: int := 0

7 var x: int

8 ys := []

9

10 while (i < | xs |)
11 invariant 0 <= i

12 invariant forall j in [0.. | ys |] :: ys[j] < 0

13 {
14 x := −xs[i]
15 ys := ys ++ [x]

16 i := i + 1

17 }
18 }
19 }

4.4 TEST SUITE

In order to facilitate maintenance and future development, and to generally in-
crease confidence in the developed verifier, Syxc includes an extensive test suite
covering all supported Chalice constructs. In contrast to the existing Chalice test
suite, which is considerably smaller but instead contains several intricate test cases,
Syxc’s suite is intended to quickly uncover deviations from the expected verifica-
tion results. Syxc also includes an analyser that compares the test output with an-
notations made to the test cases and reports errors if the output does not match the
annotated behaviour. See Listing 13 for an illustrating example. So far, the analyser
reports thrown exceptions and it supports the following annotations:

• @Error n, where n is an error code. If the expected error occurs, nothing is re-
ported. Otherwise, the analyser distinguishes between the complete absence
of an error and mismatching ones.

• @Fails, which denotes a line/an assertion that is correct but does not (yet)
verify. The analyser will report an unexpected behaviour should the under-
lying incompleteness be resolved – by purpose or by accidentally introdu-
cing an unsoundness –, thereby facilitating maintenance of the test suite and
future development in general.

• Similarly, @Holds denotes a line/an assertion that should fail but currently
doesn’t. This annotation is intended to mark results of known unsound-
nesses such that they can be spotted easily. Again, the analyser will issue
a warning once the unsoundness has been fixed.

Errors occurring in lines that have not been annotated will be reported by the
analyser as unexpected errors.
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Listing 13: A test case and the output generated by the test case analyser

1 /∗ −−−−−−−−− Two failing test cases −−−−−−−−− ∗/
2 method fails1 ()

3 requires rd(this.mu)

4 ensures acc(this.mu) /∗ @Error 330 ∗/
5 {}
6

7 method fails2 ()

8 requires rd(this.mu)

9 { assert rd(this.mu, 2) } // Will fail

10

11 /∗ −−−−−−−−− Analyser output −−−−−−−−− ∗/
12 /∗
13 ===== Found unexpected errors in 1 file(s)! =====

14

15 testsuite\ example test case .chalice

16 Error 430: 4.4: Assertion might not hold at 4.11.

17 Insufficient permissions to access this.mu.

18 ∗/

At the time of writing, Syxc includes more than 100 test cases with round about
750 methods, 50 functions, 40 predicates, and 300 @Error, no @Holds and 25 @Fails

annotations. Most of the latter are due to sequences and a lot of those also fail in
the vcg-based verifier. Runtimes of both verifiers are presented in Table 3.





5
RESULTS

5.1 CHALICE TEST SUITE

In order to assess Syxc with respect to completeness and overall performance, Syxc
has been tested against the Chalice test suite found in the examples directory. This
set contains 29 test cases, of which 14 have been ignored for reasons itemised in
Table 1. Syxc has been tested against the remaining 15 test cases, with results ite-
mised in Table 2. See Section 5.3.1 for a description of what is being referred to as
the ”chunk lookup & fapp-term” incompleteness.

Table 1: Unconsidered test cases from the existing Chalice test suite

Files Reason

prog0 does not typecheck

RockBand-automagic,
cell-defaults

intended to test automagic-features of
Chalice that are not supported by Syxc, e.g.
-autoFold

AssociationList reordering of locks is not yet supported by
Syxc

counter, ForkJoin eval-expressions are not yet supported by
Syxc

prog3 eval-expressions, rd(x,*) and waitlevel ==

old(waitlevel) are not yet supported by
Syxc

quantifiers access permissions ranging over arrays, e.g.
rd(arr[*].x), are not yet supported by Syxc

CopyLessMessagePassing2,
ImplicitLocals,
ProdConsChannel, Sieve

channels are not yet supported by Syxc

Comparing the number of errors reported by Chalice with the number reported by
Syxc is not really meaningful due to the way the two verifiers proceed in the pre-
sence of errors. When an assertion fails, Chalice continues verifying the method or
function assuming that the assertion holds. Syxc, in contrast, immediately aborts
the current verification and continues with the next method or function. Another
difference in error handling can be perceived when a postcondition is ill-formed,
e.g. not self-framing. The vcg-based verifier will report this when the assertion’s
well-formedness is checked. When it verifies a corresponding call-site, however,
it apparently ignores the assertion and therefore e.g. does not havoc certain fields
which may result in a contradiction. Syxc, on the other hand, will report the asser-
tion as ill-formed and will again report an error when verifying the call-site.

2 CopyLessMessagePassing, CopyLessMessagePassing-with-ack and CopyLessMessagePassing-with-
ack2

43
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Table 2: Testing Syxc against the existing Chalice test suite

File Results

RockBand verifies when desugaring acc(x.*) and adding explicit
folds and unfolds

PetersonsAlgorithm,
OwickiGries,
linkedlist, prog1,
prog4, swap, cell

verify

LoopLockChange mostly verifies; additional non-null clauses necessary;
Test5 fails due to the incompleteness described in
Section 5.3.2

prog2 mostly verifies; removed assigned-expressions test
case; one expected error is missing due to unsupported
ghost const field modifiers; one additional error due to
different handling of ill-formed assertions

HandOverHand at least two unexpected lockchange-errors for reasons
yet to be determined; unsupported
assigned-expressions can be removed (still verifies in
Chalice)

iterator, iterator2 fail due to known ”chunk lookup & fapp-term”
incompleteness; additional non-null clauses necessary

dining-philosophers fails due to known ”chunk lookup & fapp-term”
incompleteness; desugaring of acc(x.*) necessary

producer-consumer fails due to known ”chunk lookup & fapp-term”
incompleteness

During the development of Syxc several bugs or shortcomings have been disco-
vered in the vcg-based Chalice verifier. Some of these merely regard unsupported
features, e.g. directly forking into a token field instead of a token variable. Others
uncovered bugs in the implementation and yet others revealed surprising aspects
of the semantics of certain constructs, e.g. old-expressions, and might lead to a ree-
valuation thereof. Due to time constraints, most bugs have not yet been reported
to the Chalice team, but we kept track of them and plan to file reports once this
thesis has been submitted.

5.2 RUNTIME PERFORMANCE

We benchmarked Syxc and Chalice in order to compare their runtime performance,
with results presented in Table 3. As one can see, Syxc in general outperforms Cha-
lice and is often twice as fast, with the striking exception of Peterson’s algorithm,
where it performs particularly worse. The reasons for this exception are yet to be
determined. All runtimes presented in this report are the average of three sub-
sequent verification runs on an Intel Core2 Quad CPU Q9550, 2.83GHz, 4GB RAM
running Windows 7 x64 and Chalice Rev64765, Boogie Rev63071, Z3 2.16, all three
with default settings.

We also tested Syxc and Chalice on two additional, rather artificial test cases. The
first test case corresponds to the test case in [SJP09b], page 14 bottom, and it subse-



5.3 COMPLETENESS 45

Table 3: Comparing runtime performance

Test(s) Syxc Chalice Comment

Syxc test suite
(100 files)

311s 440s Test category ”fast”; Syxc verifies
all cases as expected, but this
has not been checked for Chalice,
which could influence runtime per-
formance

RockBand 1.04s 3.04s

PetersonsAlgorithm 137.80s 6.59s

OwickiGries 1.22s 2.66s

linkedlist 2.02s 2.61s

prog1 1.04s 2.60s

prog4 1.02s 2.51s

swap 0.88s 2.24s

cell 1.68s 3.32s

LoopLockChange 1.38s 2.94s

prog2 1.02s 2.54s

quently instantiates 20 cells with 20 different values and finally asserts that all of
them have retained their initial value. Syxc needed less than one second to verify
this test case, whereas the vcg-based verifier needed 4.49s. The second test case
essentially is a huge nested if-then-else statement resulting in 104 disjoint execu-
tion paths. Our initial assumption has been that Syxc would perform significantly
worse than Chalice when challenged with such an amount of execution branches,
and runtimes of 617s (Syxc) vs. 330.44s (Chalice) apparently prove us right. Howe-
ver, the worse runtime of Syxc might partly result from the inefficient interaction
with Z3, as described in Section 6.2.

5.3 COMPLETENESS

While not being the only criterion for the assessment of an automatic verification
technique, completeness nevertheless is one of the most important ones. In this
subsection we will therefore present cases where Syxc succeeds and the vcg-based
verifier fails, or vice versa.

5.3.1 Function applications and heap lookups

A crucial but presumably not unsolvable incompleteness of the current state of
our symbolic execution algorithm arises from the way heap chunks are looked up.
For example, looking up a field chunk for a receiver t and a field f in a heap h

succeeds only if there exists a chunk t.f pp→ # in h. That is, the lookup will fail
if t = t′ is part of the path conditions and t′.f pp→ # is a chunk in the heap. As a
consequence, the verification of methods relying on getter-functions often fails, as
illustrated in Listing 14. In the example, assert acc(get().x) fails, although Syxc



46 RESULTS

can prove all necessary intermediate steps, i.e. acc(d.x) && d == get() == c. Eva-
luating the function application get() yields the term Fapp(td, t,get) and adds the
equality Fapp(td, t,get) = td to the path conditions. However, since these are not
considered when asserting that the current thread has access to Fapp(td, t,get).x,
the latter will fail.

Listing 14: Illustrating Syxc’ heap lookup incompleteness I

1 class Test {
2 var c: Cell

3

4 function get(): Cell

5 requires rd(c)

6 { c }
7

8 method test(a: int)

9 requires acc(c) && c != null && acc(c.x)

10 {
11 c.x := a

12 // γ : this pp→ t, a pp→ ta
13 // h : t.c pp→ tc, tc.x pp→ ta
14

15 assert get() == c /∗ Holds ∗/
16 assert get ().x == a

17 /∗ Fails in Syxc , holds in Chalice ∗/
18 // eval(get()) = Fapp(ta, t, get)

19 // and π : Fapp(ta, t, get) = ta
20 // but Fapp(ta, t, get).x pp→ ta 6∈ h
21 }
22 }

A possible solution to this incompleteness could be to include the prover in the
decision whether a certain heap chunk exists. It is not sufficient, though, to just
know that a necessary heap chunk exists, but rather which chunk that is. This is
due to the necessity that we must be able to remove that particular chunk from
the heap when consuming corresponding assertions. Using Z3’s model-finding
capabilities in a manual test encoding of such a situation took a promising course,
but requires references to be elements of a finite set in order for Z3 to find the
correct chunk. The disadvantage of this approach is, of course, that it increases the
number of Z3 invocations and, due to model-finding, also the complexity of the
operations to perform. Another approach would be invoke Z3 separately for each
heap chunk in order to assert equality between the current chunk at hand and the
chunk that is to be looked up.
An alternative might be to perform term substitution on the state whenever an
equality such as t = t′ is added to the path conditions. In the situation above, each
occurrence of Fapp(td, t,get) could be replaced by td (or the other way round),
including the term that is returned by the evaluation of get(). This approach is
probably more efficient in terms of performance and does not constrain the choice
of a prover to those having sufficient model-finding capabilities.

Another incompleteness arising from the separation of heap and path conditions is
illustrated in Listing 15. Here, Fapp(tc, t,get, 0).x pp→ tx # ∈ h and ta = 0 ∈ π, but
the example nevertheless fails in Syxc, because path conditions are not considered
when looking up heap chunks.
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Listing 15: Illustrating Syxc’ heap lookup incompleteness II

1 function get(a: int): Cell

2 requires rd(c)

3 { c }
4

5 method fails(a: int)

6 requires rd(c) && get(0) != null && acc(get (0).x)

7 requires a == 0

8 {
9 // γ : this pp→ t, a pp→ ta

10 // h : FApp(tc, t, 0).x pp→ tx
11 assert acc(get (0).x) /∗ Holds ∗/
12 assert acc(get(a).x)

13 /∗ Fails in Syxc , holds in Chalice ∗/
14 }

5.3.2 While loops

There are three tasks to perform when verifying a while loop: 1) ensure that the
specification, i.e. the invariant, is well-formed, 2) verify the loop body with respect
to the invariant and 3) verify the call-site, i.e. ensure that the invariant holds before
the loop is entered. Currently, the first task might fail if the loop invariant branches
due to if-then-else-expressions or implications and if the guards/antecedents of
those expressions depend on the loop guard.

Such a situation is illustrated by method fails in Listing 16, and the reason why
Syxc fails to verify the example is the following: The loop guard has to be evalua-
ted in order to assume that it holds before the loop body is executed. Since the loop
guard dereferences field x the invariant has to be produced first to ensure that x
is accessible. Producing the invariant, however, branches on the implication since
the guard has not yet been assumed. The execution of the branch that assumes a

correctly verifies, but the execution of the branch that assumes !a fails, because
acc(x) has not been produced and the evaluation of the guard therefore fails.

Method inconsistent in Listing 16 illustrates that the aforementioned problem of
mutually dependent loop guard and invariant can even lead to inconsistent path
conditions. This, however, is a spurious unsoundness in the sense that the branch
that verifies due to inconsistent path conditions is actually never executed.

A possible solution to this problem might be to partition the guard’s conjuncts
into heap-dependent and -independent ones, and to assume the latter before pro-
ducing the invariant and assuming the heap-dependent conjuncts.

Listing 16: Illustrating Syxc’s while loop incompleteness

1 class Test {
2 var x: int

3

4 method fails ()

5 requires acc(x)

6 {
7 var a: bool := true

8

9



48 RESULTS

10 /∗ Fails in Syxc , holds in Chalice ∗/
11 while (a && x > 0)

12 invariant a ==> acc(x)

13 { a := false }
14 }
15

16 method inconsistent ()

17 requires acc(x)

18 {
19 var a: bool := true

20

21 while (a)

22 invariant a ==> true

23 {
24 assert !a ==> false

25 /∗ Holds in Syxc and in Chalice ,

26 ∗ but for different reasons

27 ∗/
28 }
29 }
30 }

5.3.3 Recursive predicates

Listing 17 illustrates an incompleteness of the vcg-based verifier that does not exist
in Syxc and that manifests itself when dealing with recursive predicates. We as-
sume that the incompleteness arises from the current handling of predicates, but
the exact reason for it is yet to be determined. It is likely that the incompleteness
will be overcome soon since the predicate handling is currently being reconside-
red.

Listing 17: Illustrating Chalice’s recursive predicate incompleteness

1 class Node {
2 var v: int

3 var next: Node

4

5 predicate V {
6 acc(v) && acc(next) && (next != null ==> next.V)

7 }
8

9 function length (): int

10 requires rd(V)

11 {
12 1 + unfolding rd(V)

13 in next == null ? 0 : next.length ()

14 }
15

16 method test()

17 requires V

18 ensures V

19 {
20 unfold V /∗ Comment unfold ... ∗/
21 fold V /∗ ... and fold and the assertion holds ∗/
22 assert length () == old(length ())

23 /∗ Holds in Syxc , fails in Chalice ∗/
24 }
25 }
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5.3.4 Nested predicates

In addition to the previous incompleteness, there exists another predicate-related
incompleteness in the vcg-based verifier. In the example presented in Listing 18,
the second fold-statement fails due to insufficient permissions to access Test.Z.
This is not the case in Syxc, which correctly verifies the example. As with the pre-
vious incompleteness, the reason for this one is also yet unknown.

Listing 18: Illustrating Chalice’s nested predicates incompleteness

1 class Test {
2 var z: int

3 predicate Z { acc(z) }
4 predicate ZZ { Z }
5

6 method fails ()

7 requires ZZ

8 {
9 unfold acc(ZZ, 40)

10 unfold acc(Z, 20)

11 fold acc(Z, 10)

12 fold acc(ZZ, 30)

13 /∗ Holds in Syxc , fails in Chalice ∗/
14 }
15 }

5.3.5 Distributing access over multiple predicates

When the current thread gains a predicate chunk, Syxc currently does not inspect
the predicate body in order to relate it with other predicates the current thread al-
ready has access to, namely to those that hide access to the same fields. Listing 19
illustrates that this gives rise to an incompleteness. The key issue here is that the
predicate chunks t.X1[tv] # and t.X2[tw] # each include their own snapshot de-
termine the value of x. Thus, y1 is set to tv and y2 to tw, and it is unknown whether
they are equivalent or not. Setting y1 and y2 according to the commented lines, ho-
wever, adds tv = tw to the path conditions and thereby makes the example verify.
We assume that such additional unfolding-expressions can be inferred automati-
cally, but the conjecture has not been tested yet.

Listing 19: Illustrating Syxc’ distributed access incompleteness

1 class Test {
2 var x: int

3

4 predicate X1 { acc(x, 40) }
5 predicate X2 { acc(x, 60) }
6

7 method fails ()

8 requires X1 && X2

9 ensures X1 && X2

10 {
11 var y1: int := unfolding X1 in x

12 // var y1: int := unfolding X1 in unfolding X2 in x

13
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14 var y2: int := unfolding X2 in x

15 // var y2: int := unfolding X2 in unfolding X1 in x

16

17 assert y1 == y2

18 /∗ Fails in Syxc , holds in Chalice ∗/
19 }
20 }

5.3.6 Recursive functions

The linked list snippet presented in Listing 20 verifies in Syxc, but does not verify
in Chalice. According to Rustan Leino3, one of the creators of Chalice, this is due
to so-called limited functions:

”In general, limited functions are used to curb the SMT-solver’s appe-
tite for instantiate quantifiers. [...] The general idea is this: Suppose a
user declares a function F, defined recursively as follows:

function p(x): T {
if b then t else F(y)

}

where I’m using b, t, and y to stand for expressions that may involve
x. The straightforward axiom for this function is:

(forall x ::F(x)== if b then t else F(y))

but this may give rise to matching loops. So, instead, two functions
are introduced for the SMT-solver: F and F#limited, alongside the fol-
lowing axioms:

(forall x ::F(x)== F#limited(x))

(forall x ::F(x)== if b then t else F#limited(y))

Logically, these say the same thing about F as the straightforward
axiom above. The difference lies in which triggers are used with the
quantifiers. They are:

(forall x :: { F(x) } F(x) == F#limited(x))

(forall x :: { F(x) } F(x) == if b then t else F#limited(y))

So, if occurrences of F in the user’s program are translated into F, only
those functions will cause instantiations of the axioms. This means
that the SMT-solver will not know the function’s definition for recur-
sive calls.

[...]

But maybe limited function are not actually needed in Chalice. That
is, perhaps the perceived need for them was a premature conclusion.
Maybe the permissions in Chalice have some effect similar to that
achieved by limited functions in the first place.”

3 Source: personal e-mail communication, 14th February 2011
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Limited functions have been introduced to Chalice in August 2010, and older ver-
sions of Chalice correctly verify the linked list snippet.

Listing 20: Illustrating Chalice’s function application incompleteness

1 class Node {
2 var v: int

3 var next: Node

4

5 predicate V {
6 acc(v) && acc(next) && (next != null ==> next.V)

7 }
8

9 function length (): int

10 requires rd(V)

11 {
12 1 + unfolding rd(V)

13 in next == null ? 0 : next.length ()

14 }
15

16 function at(i: int): int

17 requires rd(V)

18 requires i >= 0

19 requires i < length ()

20 {
21 unfolding rd(V) in

22 i == 0

23 ? v

24 : next.at(i − 1)

25 /∗ Holds in Syxc , fails in Chalice ∗/
26 }
27 }

5.3.7 Waitlevel

A minor incompleteness of the vcg-based verifier reveals itself in the snippet pre-
sented in Listing 21. The incompleteness can be overcome by adding the axiom

∀ n : Mu • n 6= lockbottom⇒ lockbottom < n

to the Boogie preamble generated by the vcg-based Chalice verifier.

Listing 21: Illustrating Chalice’s waitlevel incompleteness

1 method test(c: Cell)

2 requires c != null && rd(c.mu) && lockbottom != c.mu

3 requires waitlevel == lockbottom

4 {
5 assert waitlevel << c.mu

6 /∗ Holds in Syxc , fails in Chalice ∗/
7 }

Listing 22 presents an incompleteness of Syxc, which currently does not handle
expressions of the form c << waitlevel correctly. Such an expression corresponds
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to an existential quantification over currently held objects, but this has not been
implemented yet.

Listing 22: Illustrating Syxc’s waitlevel incompleteness

1 class Test {
2 method test() {
3 var t1: Test := new Test

4 var t2: Test := new Test

5

6 share t1 above waitlevel

7 share t2 above t1

8 acquire t2

9

10 assert t1.mu << waitlevel

11 /∗ Fails in Syxc , holds in Chalice ∗/
12 unshare t2

13 }
14 }

5.3.8 Lockchange clauses

The example presented in Listing 23 verifies neither in Syxc nor in Chalice, with
the common reason that the lockchange clause might not contain all changed locks.
The only changed lock, however, corresponds to a local variable and thus is not
visible by method clients. The problem can be solved by unsharing the local object
and thus is a rather minor one.

Listing 23: Illustrating lockchange incompleteness

1 method fails () { /∗ Fails in Syxc and Chalice ∗/
2 var c: Cell := new Cell

3 share c

4 acquire c

5 // unshare t /∗ Solves the problem ∗/
6 }

5.3.9 Negated holds-expressions

As stated in Section 2.2, Syxc currently interprets !holds(c) and !rd holds(c) as
holds(c, N). While this simplifies the symbolic execution rules concerned with
holds-expressions, it also gives rise to an incompleteness illustrated in Listing 24.
The example does not verify, because the third conjunct of the precondition over-
writes the second one, i.e. it updates the holds-function.

Listing 24: Illustrating negated holds-expressions incompleteness

1 method fails(c: Cell)

2 requires c != null && rd holds(c) && !holds(c)

3 {
4 // assert false /∗ Fails , i.e. no unsoundness ∗/
5 assert !holds(c)
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6 assert rd holds(c)

7 /∗ Fails in Syxc , holds in Chalice ∗/
8 }

A possible solution would be to introduce a second holds-function, e.g. rdholds,
so that they can be updated independently, which actually is exactly what the vcg-
based verifier does. However, one could also reconsider lock modes in general and
replace them by lock permissions. That is, instead of only allowing read and write
locks, one would acquire a fraction 0 ≤ p ≤ 1 of the lock. That way, the permission
model could be reused for locks.

5.3.10 Sequences

Sequences are not really a strong point of neither Syxc nor the vcg-based verifier.
That said, Listing 25 presents three small cases: one that verifies in Syxc but not in
Chalice, and two that fail in both verifiers. See Section 6.2 for additional limitations
of Syxc with respect to the verification of sequence operations.

Listing 25: Illustrating sequence incompletenesses

1 class Test {
2 var xs: seq<int>

3

4 method concat(a: int)

5 requires acc(xs)

6 ensures acc(xs)

7 ensures | xs | == old ( | xs |) + 1

8 /∗ Holds in Syxc , fails in Chalice ∗/
9 { xs := xs ++ [a] }

10

11 method length ()

12 requires acc(xs)

13 requires forall x in [3,4,5,6,7,8,9] :: x in xs

14 { assert | xs | >= 6 /∗ Fails in both ∗/ }
15

16 method at(k: int)

17 requires k > 0

18 {
19 assert exists i in [0..k+1] :: [0..k+1][i] == k

20 /∗ Fails in both ∗/
21 }
22 }

Chalice includes the possibility to have access assertions range over sequences,
denoted by acc(e[*].f), where e is an expression of type seq<C>, and where f is
a field of class C. This is not yet supported by Syxc, and it poses an interesting
problem since it is not obvious how to encode such assertions while preserving
the separation between heaps and path conditions.
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5.3.11 Access permissions

Asserting that the current thread has at least zero permissions to access a field, e.g.
acc(c.x, 0), currently fails in Syxc if a corresponding heap chunk does not exist.
A possible solution would be to check if the fractional permission is equivalent to
zero first, and to only look for a corresponding chunk if that is not the case.

5.4 KNOWN ISSUES

At the time of writing, the following issues with Syxc are known:

• Boolean sequences are not yet supported and

var xs: seq<bool> := [true]

hence will fail with an exception reporting unexpected prover output. This
is due to an insufficient Z3-encoding of sequence elements, which are assu-
med to be of type Int. See Section 3.14 for a possible solution based on sort
wrapper functions.

• waitlevel inside old-expressions is not yet supported and e.g.

ensures waitlevel == old(waitlevel)

will fail with an exception reporting a match error.

• Type-quantifications, e.g.

requires forall i: int :: 5 <= i && i <= 10 ==> f(i)

are not yet supported and will result in a corresponding error message. Such
quantifications can sometimes be rewritten in a form supported by Syxc,
here for example as

requires forall i in [5..11] :: f(i)

However, this is in general only possible if the quantification ranges over a
finite set.

• Old-expressions in monitor invariants are not yet supported. Their seman-
tics are currently unspecified, thus using them might result in an error being
thrown, but it might also have other, arbitrary effects.
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CONCLUSION

We successfully extended the work of Smans, Jacobs and Piessens [SJP10], yielding
a symbolic execution algorithm for the Chalice language that supports fractional
permissions and fork-join concurrency with shared mutable data structures, mo-
nitor invariants and deadlock-detection. The algorithm has been formalised and
implemented in a research tool named Syxc, which already performs quite respec-
tably when challenged with the Chalice test suite, and in most cases outperforms
the vcg-based verifier. The symbolic execution rules have been implemented in a
way such that they closely resemble their formal counterparts. Syxc has been desi-
gned with extensibility and maintainability in mind and includes an extensive test
suite covering the supported language constructs.

Reviewing our goals from Section 1.1, we can conclude that we definitely gained
first-hand experience with symbolic execution, that we were able to identify rea-
sons for incompletenesses of our technique, and that we even gained further un-
derstanding of Chalice and the vcg-based verifier. However, we cannot yet clearly
decide if the symbolic-execution-based approach or the vcg-based approach is su-
perior and thus the technique of choice for the development of Scala verifier. The
answer probably depends on the ability to resolve the known incompletenesses
and to determine the reasons for the significant difference in runtime between
Syxc and Chalice when challenged with the implementation of Peterson’s algo-
rithm (Table 3).

6.1 RELATED WORK

Our work is, as a matter of course, closely related to the vcg-based Chalice verifier
developed by Leino and Müller [LM09], Leino [Lei10], Leino, Müller and Smans
[LMS10], and to VeriCool 31 and SpecCheck2 developed by Smans, Jacobs and Pies-
sens [SJP09b, SJP10]. We thoroughly compared our work to Chalice in Section 5,
and we described our extension relative to VeriCool in the previous paragraphs.
The incompleteness described in Section 5.3.1 does not seem to be a problem for
the latter.

Boyland [Boy03] introduced fractional permissions, which Chalice uses in combi-
nation with implicit dynamic frames introduced by Smans, Jacobs and Piessens
[SJP09a] to frame methods, to prohibit data races and to allow shared read access
to data structures.

Several tools using symbolic execution to verify programs specified in separation
logic have been developed in recent years: Smallfoot3, developed by Berdine, Cal-
cagno and O’Hearn [BCO05], which pioneered this idea, and jStar4 developed by

1 http://people.cs.kuleuven.be/˜jan.smans/vericool3/
2 http://people.cs.kuleuven.be/˜jan.smans/speccheck/
3 http://www.dcs.qmul.ac.uk/research/logic/theory/projects/smallfoot/
4 http://www.jstarverifier.org/
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Distefano and Parkinson [DP08] and VeriFast5 developed by Jacobs and Piessens
[JP08], targeting Java and C.

The relationship between separation logic and implicit dynamic frames is cur-
rently being investigated by Parkinson and Summers [PS11] and might allow spe-
cifications based on dynamic implicit frames to use additional features whose se-
paration logic counterparts are already well-understood by the separation logic
community.

6.2 FUTURE WORK

Obviously, all non-supported language constructs of Chalice, i.e. the delta bet-
ween the subset of Chalice as defined in Figure 1 and the existing Chalice lan-
guage, are to be considered as future work, e.g. channels or class and method
refinement.

Likewise, all incompletenesses of Syxc enumerated in Section 5.3, especially the
heap lookup incompleteness described in Section 5.3.1, and all known issues from
Section 5.4, e.g. old-expressions in monitor invariants, are considered to be future
work.

As stated in Section 3.12, Syxc currently does not check function termination,
which is crucial for the well-definedness of assertions and thus crucial for the
soundness of our verification technique. Function termination, however, is an or-
thogonal problem which has already been addressed, for example in [SJP10]. On
a related note, Syxc also does not try to prove method termination, i.e. it currently
does not consider total correctness.

Regarding Syxc there are also some implementational details that could be impro-
ved. The most worthwhile probably is the interaction with Z3, which is currently
done on a command-line basis and not via an API. Moreover, term symbols, in-
cluding functions, are currently extracted from the state and emitted to Z3 each
time a proof obligation has to be discharged. When Z3 terminates its state is reset
by a stack-like pop operation, which is why all symbols have to be redeclared all
over again. It would be much more efficient to push/pop Z3 states only when the
symbolic execution branches and to only emit new symbols once when they are
created.

Another possible modification of the implementation that might gain some run-
time performance is the change from a continuation-passing-based to an iterative
implementation. Currently, the continuation-passing style is achieved by intensive
use of mutual recursion, with the well-known danger of stack overflows. Howe-
ver, an iterative style probably makes it much harder to understand and maintain
the implementation. Another alternative might be the continuations introduced
to Scala by [RMO09]. Replacing immutable with mutable data structures to re-
present the symbolic state might also gain performance, again with the possible
disadvantage of obfuscating the implementation.

The encoding of mu-fields and the holds-function might also be an aspect of fu-
ture work. Since they are currently part of the path conditions, each update to
them results in an additional forall-quantifed term, thereby increasing the number

5 http://people.cs.kuleuven.be/˜bart.jacobs/verifast/

http://people.cs.kuleuven.be/~bart.jacobs/verifast/
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of assumptions the prover has to cope with. Encoding mu-fields and the holds-
function as elements of the heap only might thus yield a significant increase in
performance.

A related improvement, which presumably is much easier to realise, is preserving
types when encoding the state on the level of Z3. References, mu-values and se-
quences are currently all encoded as symbols of type Int. Consequently, all corres-
ponding axioms range over integers, which could result in unnecessary instantia-
tions of quantified axioms and thus could lower performance.

In Section 3.4 we state an axiom inferring object distinctness from fractional ac-
cess permissions. It is presumably possible to add such distinctness assumptions
when producing access assertions, thereby rendering the axiom superfluous.

It is claimed [SJP09b, SJP10] that symbolic-execution-based verifiers make it ea-
sier for developers to determine the reason for failing assertions and thus facilitate
debugging, when compared to vcg-based verifiers. We have not investigated in
this matter, but it would be interesting to see how a suitable assessment schema
for such a purpose would look like, and how Chalice and Syxc perform with res-
pect to it. A related improvement of Syxc would be to include the taken execution
branches when reporting error messages, which should already facilitate debug-
ging a lot.

Last but not least, our work has not yet been proven to be sound. Syxc extensive
test suite hopefully establishes some trust in the verifier, but a soundness proof as
provided by Smans, Jacobs and Piessens for their work6 has still do be done.

6 http://people.cs.kuleuven.be/˜jan.smans/soundness.pdf

http://people.cs.kuleuven.be/~jan.smans/soundness.pdf




B IBLIOGRAPHY

[Ode10] Martin Odersky. The Scala Language Specification: Version 2.8. Nov.
2010. URL: http : / / www . scala - lang . org / docu / files /
ScalaReference.pdf. (Cit. on p. 1).

[LM09] K. Rustan M. Leino and Peter Müller. ‘A Basis for Verifying Multi-
threaded Programs’. In: ESOP. 2009, pp. 378–393. (Cit. on pp. 1, 3, 21,
55).

[Kin76] James C. King. ‘Symbolic execution and program testing’. In: Commun.
ACM 19 (7 1976), pp. 385–394. ISSN: 0001-0782. DOI: http://doi.
acm.org/10.1145/360248.360252. URL: http://doi.acm.
org/10.1145/360248.360252. (Cit. on p. 1).

[BCO05] Josh Berdine, Cristiano Calcagno and Peter W. O’Hearn. ‘Symbolic
Execution with Separation Logic’. In: APLAS. Ed. by Kwangkeun Yi.
Vol. 3780. Lecture Notes in Computer Science. Springer, 2005, pp. 52–
68. ISBN: 3-540-29735-9. (Cit. on pp. 1, 55).

[SJP10] Jan Smans, Bart Jacobs and Frank Piessens. ‘Heap-Dependent Expres-
sions in Separation Logic’. In: FMOODS/FORTE. Ed. by John Hatcliff
and Elena Zucca. Vol. 6117. Lecture Notes in Computer Science. Sprin-
ger, 2010, pp. 170–185. ISBN: 978-3-642-13463-0. (Cit. on pp. 1, 2, 9, 13,
18, 55–57).

[SJP09a] Jan Smans, Bart Jacobs and Frank Piessens. ‘Implicit Dynamic Frames:
Combining Dynamic Frames and Separation Logic’. In: ECOOP. Ed. by
Sophia Drossopoulou. Vol. 5653. Lecture Notes in Computer Science.
Springer, 2009, pp. 148–172. ISBN: 978-3-642-03012-3. (Cit. on pp. 2, 55).

[Boy03] John Boyland. ‘Checking Interference with Fractional Permissions’. In:
SAS. Ed. by Radhia Cousot. Vol. 2694. Lecture Notes in Computer
Science. Springer, 2003, pp. 55–72. ISBN: 3-540-40325-6. (Cit. on pp. 2,
55).

[Bar+05] Michael Barnett et al. ‘Boogie: A Modular Reusable Verifier for Object-
Oriented Programs’. In: FMCO. Ed. by Frank S. de Boer et al. Vol. 4111.
Lecture Notes in Computer Science. Springer, 2005, pp. 364–387. ISBN:
3-540-36749-7. (Cit. on p. 2).

[Lei08] K. Rustan M. Leino. This is Boogie 2. (Draft). June 2008. URL: http:
//research.microsoft.com/en- us/um/people/leino/
papers/krml178.pdf. (Cit. on p. 2).

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. ‘Z3: An Efficient
SMT Solver’. In: TACAS. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, 2008, pp. 337–
340. ISBN: 978-3-540-78799-0. (Cit. on p. 2).

59

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/360248.360252
http://dx.doi.org/http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf


60 B IBLIOGRAPHY

[Lei10] K. Rustan M. Leino. ‘Verifying Concurrent Programs with Chalice’. In:
VMCAI. Ed. by Gilles Barthe and Manuel V. Hermenegildo. Vol. 5944.
Lecture Notes in Computer Science. Springer, 2010, p. 2. ISBN: 978-3-
642-11318-5. (Cit. on pp. 3, 26, 55).

[Dij71] Edsger W. Dijkstra. ‘Hierarchical Ordering of Sequential Processes’. In:
Acta Informatica 1 (1971), pp. 115–138. (Cit. on p. 5).

[FW08] Daniel P. Friedman and Mitchell Wand. Essentials of programming lan-
guages (3. ed.) MIT Press, 2008. ISBN: 978-0-262-06279-4. (Cit. on p. 18).

[Bru93] Kim B. Bruce. ‘A Paradigmatic Object-Oriented Programming Lan-
guage: Design, Static Typing and Semantics’. In: Journal of Functional
Programming 4 (1993), pp. 127–206. (Cit. on p. 37).

[SJP09b] Jan Smans, Bart Jacobs and Frank Piessens. Symbolic Execution for Im-
plicit Dynamic Frames. Tech. rep. Katholieke Universiteit Leuven, Bel-
gium, 2009. URL: http : / / people . cs . kuleuven . be / ˜jan .
smans/oopsla09.pdf. (Cit. on pp. 44, 55, 57).

[LMS10] K. Rustan M. Leino, Peter Müller and Jan Smans. ‘Deadlock-Free Chan-
nels and Locks’. In: ESOP. Ed. by Andrew D. Gordon. Vol. 6012. Lec-
ture Notes in Computer Science. Springer, 2010, pp. 407–426. ISBN: 978-
3-642-11956-9. (Cit. on p. 55).

[DP08] Dino Distefano and Matthew J. Parkinson. ‘jStar: towards practical
verification for java’. In: OOPSLA. Ed. by Gail E. Harris. ACM, 2008,
pp. 213–226. ISBN: 978-1-60558-215-3. (Cit. on p. 56).

[JP08] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical
Report CW-520. Department of Computer Science, Katholieke Univer-
siteit Leuven, Aug. 2008. URL: http://www.cs.kuleuven.be/
˜bartj/verifast/verifast.pdf. (Cit. on p. 56).

[PS11] M. J. Parkinson and A. J. Summers. ‘The Relationship Between Separa-
tion Logic and Implicit Dynamic Frames’. In: European Symposium on
Programming (ESOP). to appear. 2011. (Cit. on p. 56).

[RMO09] Tiark Rompf, Ingo Maier and Martin Odersky. ‘Implementing first-
class polymorphic delimited continuations by a type-directed selective
CPS-transform’. In: ICFP. Ed. by Graham Hutton and Andrew P. Tol-
mach. ACM, 2009, pp. 317–328. ISBN: 978-1-60558-332-7. (Cit. on p. 56).

http://people.cs.kuleuven.be/~jan.smans/oopsla09.pdf
http://people.cs.kuleuven.be/~jan.smans/oopsla09.pdf
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf


APPENDIX

The appendix contains code snippets, usually fragments of Syxc’s code, illustra-
ting claims made or information given in the report, and it is referenced at the
corresponding positions in the report.

MYTYPE

Listing 26: A snippet illustrating MyType type parameters

1 /∗
2 ∗ Works when using MyType

3 ∗/
4

5 abstract class A[S <: A[S]] {
6 def merge(a: S): S

7 }
8

9 case class A1(a: Int) extends A[A1] {
10 def merge(other: A1) = A1(a + other.a)

11 }
12

13 case class A2(a: Int , b: Int) extends A[A2] {
14 def merge(other: A2) = A2(a ∗ other.a, b ∗ other.b)

15 }
16

17 def aclient[S <: A[S]](x: S, y: S) = x.merge(y)

18

19 /∗
20 ∗ Type problems without use of MyType

21 ∗/
22

23 abstract class V {
24 def merge(a: V): V

25 }
26

27 case class V1(a: Int) extends V {
28 // def merge(other: V1) = V1(a + other.a)

29 /∗ Error: Wrong argument type ∗/
30

31 def merge(other: V) = V1(a + other.a)

32 /∗ Error: a is not a member of V ∗/
33 }
34

35 // case class V2(a: Int , b: Int) extends V { ... }
36 /∗ Same problems ∗/
37

38 // def vclient(x: V, y: V) = x.merge(y)

39 /∗ x and y might not be compatible ∗/
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SYXC ’S COMPONENTS

Listing 27: State classes

1 trait Permission[P <: Permission[P]] {
2 def +(perm: P): P

3 def −(perm: P): P

4 def ∗( perm: P): P

5 }
6

7 trait Chunk {
8 def rcvr: Term

9 def id: String

10 }
11

12 trait Store[S <: Store[S]] {
13 def apply(key: Variable ): Term

14 def updated(key: Variable , value: Term): S

15 def +(kv: (Variable , Term )): S

16 }
17

18 trait Heap[S <: Heap[S]] {
19 def findChunk(rcvr: Term , id: String ): Option[Chunk]

20 def +( chunk: Chunk): S

21 def −(chunk: Chunk ): S

22 }
23

24 trait PathConditions[S <: PathConditions[S]] {
25 def contains(t: Term): Boolean

26 def +(term: Term): S

27 }
28

29 trait HasStore[ST <: Store[ST], S <: HasStore[ST, S]] {
30 def ?: ST

31 def \(?: ST): S

32 def \+(v: Variable , t: Term): S

33 }
34

35 trait HasHeaps[H <: Heap[H], S <: HasHeaps[H, S]] {
36 def h: H

37 def g: H

38 def \(h: H, g: H): S

39 def \+(c: Chunk): S

40 def \−(c: Chunk): S

41 }
42

43 trait HasPathConditions[PC <: PathConditions[PC],

44 S <: HasPathConditions[PC, S]] {
45 def p: PC

46 def \(p: PC): S

47 def \+(t: Term): S

48 }
49

50 trait State[ST <: Store[ST], H <: Heap[H],

51 PC <: PathConditions[PC],

52 S <: State[ST, H, PC, S]]

53 extends HasStore[ST , S]

54 with HasHeaps[H, S]
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55 with HasPathConditions[PC, S] {
56

57 def \(?: ST = ?, h: H = h, g: H = g, p: PC = p): S

58 }

Listing 28: Symbolic execution classes

1 trait Evaluator[P <: Permission[P], ST <: Store[ST],

2 H <: Heap[H], PC <: PathConditions[PC],

3 S <: State[ST, H, PC, S]] {
4

5 def evals(s: S, es: List[Expression], m: Message ,

6 Q: (S, List[Term]) => VerificationResult)

7 : VerificationResult

8

9 def eval(s: S, e: Expression , m: Message ,

10 Q: (S, Term) => VerificationResult)

11 : VerificationResult

12

13 def evalp(s: S, p: FractionalPermission , m: Message ,

14 Q: (S, P) => VerificationResult)

15 : VerificationResult

16

17 def evall(lit: syxc.ast.Literal ): terms.Literal

18 def evallm(lm: syxc.ast.LockMode ): terms.LockMode

19 }
20

21 trait Producer[P <: Permission[P], ST <: Store[ST],

22 H <: Heap[H], PC <: PathConditions[PC],

23 S <: State[ST, H, PC, S]] {
24

25 def produce(s: S, s: Term , p: P, f: Expression ,

26 m: Message , Q: S => VerificationResult)

27 : VerificationResult

28 }
29

30 trait Consumer[P <: Permission[P], ST <: Store[ST],

31 H <: Heap[H], PC <: PathConditions[PC],

32 S <: State[ST, H, PC, S]] {
33

34 def consume(s: S, p: P, f: Expression , m: Message ,

35 Q: (S, Term) => VerificationResult)

36 : VerificationResult

37 }
38

39 trait Executor[ST <: Store[ST], H <: Heap[H],

40 PC <: PathConditions[PC],

41 S <: State[ST, H, PC, S]] {
42

43 def exec(s: S, stmts: List[Statement], m: Message ,

44 Q: S => VerificationResult)

45 : VerificationResult

46

47 def exec(s: S, stmt: Statement , m: Message ,

48 Q: S => VerificationResult)

49 : VerificationResult

50 }
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