
Research in Computer Science

Title: Verifying Scala Traits
Group: Chair of Programming Methodology

Student: Malte Schwerhoff <scmalte@ethz.ch>

Supervisors: Valentin Wüstholz <valentin.wuestholz@inf.ethz.ch>

Prof. Peter Müller <peter.mueller@inf.ethz.ch>

Date: 2010-03-10

1 Introduction
This Research in Computer Science project is part of an effort to develop an automatic verification
system (similiar to Spec# [SpecSharp] or the Java Modelling Language JML [JML]) for the Scala
[Scala] programming language. Scala is a strongly typed multi-paradigm language developed at
the Ecole Polytechnique Fédérale de Lausanne that runs on the Java Virtual Machine.

The focus of this project is on the verification of Scala traits. Traits, also known as mixins (see the
glossary of [Odersky08] for a definition of the two terms in the context of Scala), have been
introduced by Moon [Moon] in 1986 and are seen as a solution to the diamond or linearisation
problem ([Bracha90a], [Ducasse06a]) of multiple inheritance. So far, mixin-based inheritance is
mainly available in untyped dynamic languages, but rarely as a native language feature (e.g. in
Ruby). Scala is currently one of the few strongly typed languages that offer native support for
traits.

The verification will be done with Boogie [Boogie], a programme verifier developed at Microsoft
Research. Boogie performs a series of transformations from a source programme written in the
Boogie Programming Language (BoogiePL, current version being Boogie 2 [Boogie2]) and
eventually feeds the result to a theorem prover.

BoogiePL is a procedural intermediate language that includes contracts and that is used to
verify several high-level languages such as Spec# or C# by first encoding the source programme
in BoogiePL and then having Boogie verify this encoding.

To the best of my knowledge there currently exists no research project with a similar goal. One
reason for this might be that the interest in static verification is naturally limited in the
communities of untyped dynamic languages where traits originate from.

—1—

2 Motivation
The following Scala snippet is adopted from [Odersky08] and shall work as a motivational
example to point out possible challenges regarding the verification of traits.

abstract class IntCell {
 def get(): Int
 def set(x: Int)
}

class BasicIntCell extends IntCell {
 private var x: Int = 0
 def get() = x
 def set(x: Int) { this.x = x }
}

trait Doubling extends IntCell {
 abstract override def set(x: Int) { super.set(2 * x) }
}

trait Increment extends IntCell {
 abstract override def set(x: Int) { super.set(x + 1) }
}

val cdi = new BasicIntCell with Increment with Doubling
 /* Double first, then increment. */
val cid = new BasicIntCell with Doubling with Increment
 /* Increment first, then double. */

cdi.set(1); cdi.set(2); cdi.set(3);
 /* cdi.get() would return 3, 5, 7, respectively. */
cid.set(1); cid.set(2); cid.set(3);
 /* cid.get() would return 4, 6, 8, respectively. */

This simple example already gives rise to several interesting questions:
Contract language expressiveness

How do we specify a postcondition for Doubling.set without knowing (inside the
declaration of Doubling) to which class or trait super.set will be bound when the trait is
applied? Can we specify the postcondition by parametrising the postcondition of
super.set? Can this already be done (conveniently) with established contract languages
such as Spec#, JML or Eiffel [Eiffel]?

Contract inheritance
Can we verify that cdi.get will always return an odd value after calling cdi.set, whereas
cid.get will always return an even value? Generally speaking, how do we cope with the fact
that traits can be mixed into arbitrary classes or objects in an arbitrary order?

Modularity
Does it make sense to verify Doubling and Increment only once (locally, on their own) or
do we need to reverify traits again anyway whenever they are mixed into a class or object?
Even if it is reasonable, is it also sufficient to verify them locally?

—2—

3 Project Plan

1. Developing a formalism that captures every possible application of traits and thereby
allows the verification of traits in an arbitrary scenario is a goal too demanding for this
research project. Thus, a reasonable subset (3 to 5) of use-cases has to be identified which
capture the most popular (and, from the point of good software engineering, desired) uses
of traits.

The obvious resources for such an identification are books about Scala, the Scala mailing
lists and adequately sized software written in Scala, e.g. the Scala compiler, the Scala
libraries (collections, actors) and the Lift framework.

2. Exemplifying each of the identified use-cases in its own Scala programme that is short but
still points out the challenges it imposes on static verification.

3. Sketching a contract language that is at least expressive enough to be applicable to the
implemented examples and also justifies the assumption that it is (easily) extendible to
cover Scala in general.

I expect the pivotal question to be whether it is possible to specify non-trivial contracts for
traits that are nonetheless permissive enough, so that the traits can still be used in as many
desirable scenarios as possible.

4. Specifying the examples with contracts by adding contract, so that the correctness of the
examples can be verified.

5. Finally, the annotated Scala programmes have to be manually encoded in BoogiePL, such
that Boogie is able to verify the correctness of the examples.

6. (Optional) Implementing an automatic encoder from contract-annotated Scala traits to
BoogiePL, probably by extending the Master's thesis of Valentin Wüstholz [Wüstholz].

4 Deliverables

1. An initial presentation on the project that is to be conducted and a final presentation on the
project's results

2. A project report

3. Programme implementations in Scala and in BoogiePL, as well as the results of the
verification with Boogie

—3—

5 Work Load Estimation

Phase Work load

Identifying use-case 10%

Exemplifying use-cases 5%

Sketching contract language 15%

Specifying examples 15%

Encoding in BoogiePL 30%

Presentations and report 25%

6 Bibliography
Scala http://www.scala-lang.org/
SpecSharp Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#

Programming System: An Overview. In Construction and Analysis of Safe,
Secure, and Interoperable Smart devices (CASSIS 2004), volume 3362 of LNCS,
2005, Springer

JML G. Leavens, A. L. Baker, and C. Ruby. JML: a notation for detailed design. In
Behavioral Specifications of Businesses and Systems, 1999, Springer

Moon David A. Moon. Object-Oriented Programming with Flavors. OOPSLA
Proceedings, 1986, ACM Press

Boogie Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K.
Rustan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In Formal Methods for Components and Objects 2005, volume 4111 of
LNCS, 2006, Springer

Boogie2 K. Rustan M. Leino. This is Boogie 2. (Draft).
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

Odersky08 Martin Odersky, Lex Spoon and Bill Venners. Programming in Scala. 2008,
Artima Inc.

Ducasse06a Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli and Andrew P. Black.
Traits: A mechanism for fine-grained reuse. Transactions on Programming
Languages and Systems 28, 2006

Bracha90a Gilad Bracha and William Cook. Mixin-based inheritance. OOPSLA
Proceedings, 1990, ACM Press

Eiffel Eiffel: Analysis, Design and Programming Language. Standard ECMA-367
(2nd edition), 2006, Ecma International

Wüstholz Valentin Wüstholz. Encoding Scala Programs for the Boogie Verifier. Master's
Project Report, 2009, ETH Zurich

—4—

http://www.scala-lang.org/
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

	1 Introduction
	2 Motivation
	3 Project Plan
	4 Deliverables
	5 Work Load Estimation
	6 Bibliography

